47 datasets found
  1. d

    Obesity Percentages

    • catalog.data.gov
    • hub.arcgis.com
    • +2more
    Updated Nov 22, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Lake County Illinois GIS (2024). Obesity Percentages [Dataset]. https://catalog.data.gov/dataset/obesity-percentages-090d2
    Explore at:
    Dataset updated
    Nov 22, 2024
    Dataset provided by
    Lake County Illinois GIS
    Description

    Obesity percentages for Lake County, Illinois. Explanation of field attributes: Pct_Obese – The percent of people in the zip code who are considered obese, defined as having a BMI greater than or equal to 30. ObsOrOvrwt –The percent of people in the zip code who are considered overweight (defined as having a BMI greater than or equal to 25 but less than 30) or obese (defined as having a BMI greater than or equal to 30).

  2. a

    Coronary heart disease (in persons of all ages): England

    • hub.arcgis.com
    • data.catchmentbasedapproach.org
    Updated Apr 7, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    The Rivers Trust (2021). Coronary heart disease (in persons of all ages): England [Dataset]. https://hub.arcgis.com/datasets/theriverstrust::coronary-heart-disease-in-persons-of-all-ages-england/explore
    Explore at:
    Dataset updated
    Apr 7, 2021
    Dataset authored and provided by
    The Rivers Trust
    Area covered
    Description

    SUMMARYThis analysis, designed and executed by Ribble Rivers Trust, identifies areas across England with the greatest levels of coronary heart disease (in persons of all ages). Please read the below information to gain a full understanding of what the data shows and how it should be interpreted.ANALYSIS METHODOLOGYThe analysis was carried out using Quality and Outcomes Framework (QOF) data, derived from NHS Digital, relating to coronary heart disease (in persons of all ages).This information was recorded at the GP practice level. However, GP catchment areas are not mutually exclusive: they overlap, with some areas covered by 30+ GP practices. Therefore, to increase the clarity and usability of the data, the GP-level statistics were converted into statistics based on Middle Layer Super Output Area (MSOA) census boundaries.The percentage of each MSOA’s population (all ages) with coronary heart disease was estimated. This was achieved by calculating a weighted average based on:The percentage of the MSOA area that was covered by each GP practice’s catchment areaOf the GPs that covered part of that MSOA: the percentage of registered patients that have that illness The estimated percentage of each MSOA’s population with coronary heart disease was then combined with Office for National Statistics Mid-Year Population Estimates (2019) data for MSOAs, to estimate the number of people in each MSOA with coronary heart disease, within the relevant age range.Each MSOA was assigned a relative score between 1 and 0 (1 = worst, 0 = best) based on:A) the PERCENTAGE of the population within that MSOA who are estimated to have coronary heart diseaseB) the NUMBER of people within that MSOA who are estimated to have coronary heart diseaseAn average of scores A & B was taken, and converted to a relative score between 1 and 0 (1= worst, 0 = best). The closer to 1 the score, the greater both the number and percentage of the population in the MSOA that are estimated to have coronary heart disease, compared to other MSOAs. In other words, those are areas where it’s estimated a large number of people suffer from coronary heart disease, and where those people make up a large percentage of the population, indicating there is a real issue with coronary heart disease within the population and the investment of resources to address that issue could have the greatest benefits.LIMITATIONS1. GP data for the financial year 1st April 2018 – 31st March 2019 was used in preference to data for the financial year 1st April 2019 – 31st March 2020, as the onset of the COVID19 pandemic during the latter year could have affected the reporting of medical statistics by GPs. However, for 53 GPs (out of 7670) that did not submit data in 2018/19, data from 2019/20 was used instead. Note also that some GPs (997 out of 7670) did not submit data in either year. This dataset should be viewed in conjunction with the ‘Health and wellbeing statistics (GP-level, England): Missing data and potential outliers’ dataset, to determine areas where data from 2019/20 was used, where one or more GPs did not submit data in either year, or where there were large discrepancies between the 2018/19 and 2019/20 data (differences in statistics that were > mean +/- 1 St.Dev.), which suggests erroneous data in one of those years (it was not feasible for this study to investigate this further), and thus where data should be interpreted with caution. Note also that there are some rural areas (with little or no population) that do not officially fall into any GP catchment area (although this will not affect the results of this analysis if there are no people living in those areas).2. Although all of the obesity/inactivity-related illnesses listed can be caused or exacerbated by inactivity and obesity, it was not possible to distinguish from the data the cause of the illnesses in patients: obesity and inactivity are highly unlikely to be the cause of all cases of each illness. By combining the data with data relating to levels of obesity and inactivity in adults and children (see the ‘Levels of obesity, inactivity and associated illnesses: Summary (England)’ dataset), we can identify where obesity/inactivity could be a contributing factor, and where interventions to reduce obesity and increase activity could be most beneficial for the health of the local population.3. It was not feasible to incorporate ultra-fine-scale geographic distribution of populations that are registered with each GP practice or who live within each MSOA. Populations might be concentrated in certain areas of a GP practice’s catchment area or MSOA and relatively sparse in other areas. Therefore, the dataset should be used to identify general areas where there are high levels of coronary heart disease, rather than interpreting the boundaries between areas as ‘hard’ boundaries that mark definite divisions between areas with differing levels of coronary heart disease.TO BE VIEWED IN COMBINATION WITH:This dataset should be viewed alongside the following datasets, which highlight areas of missing data and potential outliers in the data:Health and wellbeing statistics (GP-level, England): Missing data and potential outliersLevels of obesity, inactivity and associated illnesses (England): Missing dataDOWNLOADING THIS DATATo access this data on your desktop GIS, download the ‘Levels of obesity, inactivity and associated illnesses: Summary (England)’ dataset.DATA SOURCESThis dataset was produced using:Quality and Outcomes Framework data: Copyright © 2020, Health and Social Care Information Centre. The Health and Social Care Information Centre is a non-departmental body created by statute, also known as NHS Digital.GP Catchment Outlines. Copyright © 2020, Health and Social Care Information Centre. The Health and Social Care Information Centre is a non-departmental body created by statute, also known as NHS Digital. Data was cleaned by Ribble Rivers Trust before use.COPYRIGHT NOTICEThe reproduction of this data must be accompanied by the following statement:© Ribble Rivers Trust 2021. Analysis carried out using data that is: Copyright © 2020, Health and Social Care Information Centre. The Health and Social Care Information Centre is a non-departmental body created by statute, also known as NHS Digital.CaBA HEALTH & WELLBEING EVIDENCE BASEThis dataset forms part of the wider CaBA Health and Wellbeing Evidence Base.

  3. a

    Levels of obesity, inactivity and associated illnesses (England): Summary

    • hamhanding-dcdev.opendata.arcgis.com
    • data.catchmentbasedapproach.org
    Updated Apr 20, 2021
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    The Rivers Trust (2021). Levels of obesity, inactivity and associated illnesses (England): Summary [Dataset]. https://hamhanding-dcdev.opendata.arcgis.com/datasets/theriverstrust::levels-of-obesity-inactivity-and-associated-illnesses-england-summary
    Explore at:
    Dataset updated
    Apr 20, 2021
    Dataset authored and provided by
    The Rivers Trust
    Area covered
    Description

    SUMMARYThis analysis, designed and executed by Ribble Rivers Trust, identifies areas across England with the greatest levels of obesity, inactivity and inactivity/obesity-related illnesses. Please read the below information to gain a full understanding of what the data shows and how it should be interpreted.The analysis incorporates data relating to the following:Obesity/inactivity-related illnesses (asthma, cancer, chronic kidney disease, coronary heart disease, depression, diabetes mellitus, hypertension, stroke and transient ischaemic attack)Excess weight in children and obesity in adults (combined)Inactivity in children and adults (combined)The analysis was designed with the intention that this dataset could be used to identify locations where investment could encourage greater levels of activity. In particular, it is hoped the dataset will be used to identify locations where the creation or improvement of accessible green/blue spaces and public engagement programmes could encourage greater levels of outdoor activity within the target population, and reduce the health issues associated with obesity and inactivity.ANALYSIS METHODOLOGY1. Obesity/inactivity-related illnessesThe analysis was carried out using Quality and Outcomes Framework (QOF) data, derived from NHS Digital, relating to:- Asthma (in persons of all ages)- Cancer (in persons of all ages)- Chronic kidney disease (in adults aged 18+)- Coronary heart disease (in persons of all ages)- Depression (in adults aged 18+)- Diabetes mellitus (in persons aged 17+)- Hypertension (in persons of all ages)- Stroke and transient ischaemic attack (in persons of all ages)This information was recorded at the GP practice level. However, GP catchment areas are not mutually exclusive: they overlap, with some areas covered by 30+ GP practices. Therefore, to increase the clarity and usability of the data, the GP-level statistics were converted into statistics based on Middle Layer Super Output Area (MSOA) census boundaries.For each of the above illnesses, the percentage of each MSOA’s population with that illness was estimated. This was achieved by calculating a weighted average based on:The percentage of the MSOA area that was covered by each GP practice’s catchment areaOf the GPs that covered part of that MSOA: the percentage of patients registered with each GP that have that illness The estimated percentage of each MSOA’s population with each illness was then combined with Office for National Statistics Mid-Year Population Estimates (2019) data for MSOAs, to estimate the number of people in each MSOA with each illness, within the relevant age range.For each illness, each MSOA was assigned a relative score between 1 and 0 (1 = worst, 0 = best) based on:A) the PERCENTAGE of the population within that MSOA who are estimated to have that illnessB) the NUMBER of people within that MSOA who are estimated to have that illnessAn average of scores A & B was taken, and converted to a relative score between 1 and 0 (1= worst, 0 = best). The closer to 1 the score, the greater both the number and percentage of the population in the MSOA predicted to have that illness, compared to other MSOAs. In other words, those are areas where a large number of people are predicted to suffer from an illness, and where those people make up a large percentage of the population, indicating there is a real issue with that illness within the population and the investment of resources to address that issue could have the greatest benefits.The scores for each of the 8 illnesses were added together then converted to a relative score between 1 – 0 (1 = worst, 0 = best), to give an overall score for each MSOA: a score close to 1 would indicate that an area has high predicted levels of all obesity/inactivity-related illnesses, and these are areas where the local population could benefit the most from interventions to address those illnesses. A score close to 0 would indicate very low predicted levels of obesity/inactivity-related illnesses and therefore interventions might not be required.2. Excess weight in children and obesity in adults (combined)For each MSOA, the number and percentage of children in Reception and Year 6 with excess weight was combined with population data (up to age 17) to estimate the total number of children with excess weight.The first part of the analysis detailed in section 1 was used to estimate the number of adults with obesity in each MSOA, based on GP-level statistics.The percentage of each MSOA’s adult population (aged 18+) with obesity was estimated, using GP-level data (see section 1 above). This was achieved by calculating a weighted average based on:The percentage of the MSOA area that was covered by each GP practice’s catchment areaOf the GPs that covered part of that MSOA: the percentage of adult patients registered with each GP that are obeseThe estimated percentage of each MSOA’s adult population with obesity was then combined with Office for National Statistics Mid-Year Population Estimates (2019) data for MSOAs, to estimate the number of adults in each MSOA with obesity.The estimated number of children with excess weight and adults with obesity were combined with population data, to give the total number and percentage of the population with excess weight.Each MSOA was assigned a relative score between 1 and 0 (1 = worst, 0 = best) based on:A) the PERCENTAGE of the population within that MSOA who are estimated to have excess weight/obesityB) the NUMBER of people within that MSOA who are estimated to have excess weight/obesityAn average of scores A & B was taken, and converted to a relative score between 1 and 0 (1= worst, 0 = best). The closer to 1 the score, the greater both the number and percentage of the population in the MSOA predicted to have excess weight/obesity, compared to other MSOAs. In other words, those are areas where a large number of people are predicted to suffer from excess weight/obesity, and where those people make up a large percentage of the population, indicating there is a real issue with that excess weight/obesity within the population and the investment of resources to address that issue could have the greatest benefits.3. Inactivity in children and adultsFor each administrative district, the number of children and adults who are inactive was combined with population data to estimate the total number and percentage of the population that are inactive.Each district was assigned a relative score between 1 and 0 (1 = worst, 0 = best) based on:A) the PERCENTAGE of the population within that district who are estimated to be inactiveB) the NUMBER of people within that district who are estimated to be inactiveAn average of scores A & B was taken, and converted to a relative score between 1 and 0 (1= worst, 0 = best). The closer to 1 the score, the greater both the number and percentage of the population in the district predicted to be inactive, compared to other districts. In other words, those are areas where a large number of people are predicted to be inactive, and where those people make up a large percentage of the population, indicating there is a real issue with that inactivity within the population and the investment of resources to address that issue could have the greatest benefits.Summary datasetAn average of the scores calculated in sections 1-3 was taken, and converted to a relative score between 1 and 0 (1= worst, 0 = best). The closer the score to 1, the greater the number and percentage of people suffering from obesity, inactivity and associated illnesses. I.e. these are areas where there are a large number of people (both children and adults) who are obese, inactive and suffer from obesity/inactivity-related illnesses, and where those people make up a large percentage of the local population. These are the locations where interventions could have the greatest health and wellbeing benefits for the local population.LIMITATIONS1. For data recorded at the GP practice level, data for the financial year 1st April 2018 – 31st March 2019 was used in preference to data for the financial year 1st April 2019 – 31st March 2020, as the onset of the COVID19 pandemic during the latter year could have affected the reporting of medical statistics by GPs. However, for 53 GPs (out of 7670) that did not submit data in 2018/19, data from 2019/20 was used instead. Note also that some GPs (997 out of 7670) did not submit data in either year. This dataset should be viewed in conjunction with the ‘Levels of obesity, inactivity and associated illnesses: Summary (England). Areas with data missing’ dataset, to determine areas where data from 2019/20 was used, where one or more GPs did not submit data in either year, or where there were large discrepancies between the 2018/19 and 2019/20 data (differences in statistics that were > mean +/- 1 St.Dev.), which suggests erroneous data in one of those years (it was not feasible for this study to investigate this further), and thus where data should be interpreted with caution. Note also that there are some rural areas (with little or no population) that do not officially fall into any GP catchment area (although this will not affect the results of this analysis if there are no people living in those areas).2. Although all of the obesity/inactivity-related illnesses listed can be caused or exacerbated by inactivity and obesity, it was not possible to distinguish from the data the cause of the illnesses in patients: obesity and inactivity are highly unlikely to be the cause of all cases of each illness. By combining the data with data relating to levels of obesity and inactivity in adults and children, we can identify where obesity/inactivity could be a contributing factor, and where interventions to reduce obesity and increase activity could be most beneficial for the health of the local population.3. It was not feasible to incorporate ultra-fine-scale geographic distribution of

  4. Obesity Prediction Dataset

    • kaggle.com
    Updated Jan 14, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    RK (2025). Obesity Prediction Dataset [Dataset]. https://www.kaggle.com/datasets/ruchikakumbhar/obesity-prediction
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Jan 14, 2025
    Dataset provided by
    Kagglehttp://kaggle.com/
    Authors
    RK
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Overview: This dataset include data for the estimation of obesity levels in individuals from the countries of Mexico, Peru and Colombia, based on their eating habits and physical condition. The data contains 17 attributes and 2111 records, the records are labeled with the class variable NObesity (Obesity Level), that allows classification of the data using the values of Insufficient Weight, Normal Weight, Overweight Level I, Overweight Level II, Obesity Type I, Obesity Type II and Obesity Type III.

    Data Details: - Gender: Gender
    - Age: Age
    - Height : in metres
    - Weight : in kgs
    - family_history : Has a family member suffered or suffers from overweight?
    - FAVC : Do you eat high caloric food frequently?
    - FCVC : Do you usually eat vegetables in your meals?
    - NCP : How many main meals do you have daily? - CAEC : Do you eat any food between meals?
    - SMOKE : Do you smoke?
    - CH2O : How much water do you drink daily?
    - SCC : Do you monitor the calories you eat daily?
    - FAF: How often do you have physical activity?
    - TUE : How much time do you use technological devices such as cell phone, videogames, television, computer and others? - CALC : How often do you drink alcohol?
    - MTRANS : Which transportation do you usually use? - Obesity_level (Target Column) : Obesity level

    https://www.semanticscholar.org/paper/Dataset-for-estimation-of-obesity-levels-based-on-Palechor-Manotas/35b40bacd2ffa9370885b7a3004d88995fd1d011

  5. d

    National Obesity By State

    • catalog.data.gov
    • gimi9.com
    • +3more
    Updated Nov 22, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Lake County Illinois GIS (2024). National Obesity By State [Dataset]. https://catalog.data.gov/dataset/national-obesity-by-state-d765a
    Explore at:
    Dataset updated
    Nov 22, 2024
    Dataset provided by
    Lake County Illinois GIS
    Description

    National Obesity Percentages by State. Explanation of Field Attributes:Obesity - The percent of the state population that is considered obese from the 2015 CDC BRFSS Survey.

  6. c

    Cancer (in persons of all ages): England

    • data.catchmentbasedapproach.org
    • hub.arcgis.com
    Updated Apr 6, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    The Rivers Trust (2021). Cancer (in persons of all ages): England [Dataset]. https://data.catchmentbasedapproach.org/datasets/cancer-in-persons-of-all-ages-england
    Explore at:
    Dataset updated
    Apr 6, 2021
    Dataset authored and provided by
    The Rivers Trust
    Area covered
    Description

    SUMMARYThis analysis, designed and executed by Ribble Rivers Trust, identifies areas across England with the greatest levels of cancer (in persons of all ages). Please read the below information to gain a full understanding of what the data shows and how it should be interpreted.ANALYSIS METHODOLOGYThe analysis was carried out using Quality and Outcomes Framework (QOF) data, derived from NHS Digital, relating to cancer (in persons of all ages).This information was recorded at the GP practice level. However, GP catchment areas are not mutually exclusive: they overlap, with some areas covered by 30+ GP practices. Therefore, to increase the clarity and usability of the data, the GP-level statistics were converted into statistics based on Middle Layer Super Output Area (MSOA) census boundaries.The percentage of each MSOA’s population (all ages) with cancer was estimated. This was achieved by calculating a weighted average based on:The percentage of the MSOA area that was covered by each GP practice’s catchment areaOf the GPs that covered part of that MSOA: the percentage of registered patients that have that illness The estimated percentage of each MSOA’s population with cancer was then combined with Office for National Statistics Mid-Year Population Estimates (2019) data for MSOAs, to estimate the number of people in each MSOA with cancer, within the relevant age range.Each MSOA was assigned a relative score between 1 and 0 (1 = worst, 0 = best) based on:A) the PERCENTAGE of the population within that MSOA who are estimated to have cancerB) the NUMBER of people within that MSOA who are estimated to have cancerAn average of scores A & B was taken, and converted to a relative score between 1 and 0 (1= worst, 0 = best). The closer to 1 the score, the greater both the number and percentage of the population in the MSOA that are estimated to have cancer, compared to other MSOAs. In other words, those are areas where it’s estimated a large number of people suffer from cancer, and where those people make up a large percentage of the population, indicating there is a real issue with cancer within the population and the investment of resources to address that issue could have the greatest benefits.LIMITATIONS1. GP data for the financial year 1st April 2018 – 31st March 2019 was used in preference to data for the financial year 1st April 2019 – 31st March 2020, as the onset of the COVID19 pandemic during the latter year could have affected the reporting of medical statistics by GPs. However, for 53 GPs (out of 7670) that did not submit data in 2018/19, data from 2019/20 was used instead. Note also that some GPs (997 out of 7670) did not submit data in either year. This dataset should be viewed in conjunction with the ‘Health and wellbeing statistics (GP-level, England): Missing data and potential outliers’ dataset, to determine areas where data from 2019/20 was used, where one or more GPs did not submit data in either year, or where there were large discrepancies between the 2018/19 and 2019/20 data (differences in statistics that were > mean +/- 1 St.Dev.), which suggests erroneous data in one of those years (it was not feasible for this study to investigate this further), and thus where data should be interpreted with caution. Note also that there are some rural areas (with little or no population) that do not officially fall into any GP catchment area (although this will not affect the results of this analysis if there are no people living in those areas).2. Although all of the obesity/inactivity-related illnesses listed can be caused or exacerbated by inactivity and obesity, it was not possible to distinguish from the data the cause of the illnesses in patients: obesity and inactivity are highly unlikely to be the cause of all cases of each illness. By combining the data with data relating to levels of obesity and inactivity in adults and children (see the ‘Levels of obesity, inactivity and associated illnesses: Summary (England)’ dataset), we can identify where obesity/inactivity could be a contributing factor, and where interventions to reduce obesity and increase activity could be most beneficial for the health of the local population.3. It was not feasible to incorporate ultra-fine-scale geographic distribution of populations that are registered with each GP practice or who live within each MSOA. Populations might be concentrated in certain areas of a GP practice’s catchment area or MSOA and relatively sparse in other areas. Therefore, the dataset should be used to identify general areas where there are high levels of cancer, rather than interpreting the boundaries between areas as ‘hard’ boundaries that mark definite divisions between areas with differing levels of cancer.TO BE VIEWED IN COMBINATION WITH:This dataset should be viewed alongside the following datasets, which highlight areas of missing data and potential outliers in the data:Health and wellbeing statistics (GP-level, England): Missing data and potential outliersLevels of obesity, inactivity and associated illnesses (England): Missing dataDOWNLOADING THIS DATATo access this data on your desktop GIS, download the ‘Levels of obesity, inactivity and associated illnesses: Summary (England)’ dataset.DATA SOURCESThis dataset was produced using:Quality and Outcomes Framework data: Copyright © 2020, Health and Social Care Information Centre. The Health and Social Care Information Centre is a non-departmental body created by statute, also known as NHS Digital.GP Catchment Outlines. Copyright © 2020, Health and Social Care Information Centre. The Health and Social Care Information Centre is a non-departmental body created by statute, also known as NHS Digital. Data was cleaned by Ribble Rivers Trust before use.MSOA boundaries: © Office for National Statistics licensed under the Open Government Licence v3.0. Contains OS data © Crown copyright and database right 2021.Population data: Mid-2019 (June 30) Population Estimates for Middle Layer Super Output Areas in England and Wales. © Office for National Statistics licensed under the Open Government Licence v3.0. © Crown Copyright 2020.COPYRIGHT NOTICEThe reproduction of this data must be accompanied by the following statement:© Ribble Rivers Trust 2021. Analysis carried out using data that is: Copyright © 2020, Health and Social Care Information Centre. The Health and Social Care Information Centre is a non-departmental body created by statute, also known as NHS Digital; © Office for National Statistics licensed under the Open Government Licence v3.0. Contains OS data © Crown copyright and database right 2021. © Crown Copyright 2020.CaBA HEALTH & WELLBEING EVIDENCE BASEThis dataset forms part of the wider CaBA Health and Wellbeing Evidence Base.

  7. Population share with overweight in Canada 2014-2029

    • statista.com
    Updated Nov 20, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista Research Department (2024). Population share with overweight in Canada 2014-2029 [Dataset]. https://www.statista.com/topics/9644/obesity-in-canada/
    Explore at:
    Dataset updated
    Nov 20, 2024
    Dataset provided by
    Statistahttp://statista.com/
    Authors
    Statista Research Department
    Area covered
    Canada
    Description

    The share of the population with overweight in Canada was forecast to continuously increase between 2024 and 2029 by in total 1.6 percentage points. After the fifteenth consecutive increasing year, the overweight population share is estimated to reach 74.45 percent and therefore a new peak in 2029. Notably, the share of the population with overweight of was continuously increasing over the past years.Overweight is defined as a body mass index (BMI) of more than 25.The shown data are an excerpt of Statista's Key Market Indicators (KMI). The KMI are a collection of primary and secondary indicators on the macro-economic, demographic and technological environment in up to 150 countries and regions worldwide. All indicators are sourced from international and national statistical offices, trade associations and the trade press and they are processed to generate comparable data sets (see supplementary notes under details for more information).Find more key insights for the share of the population with overweight in countries like Mexico and United States.

  8. c

    Asthma (in persons of all ages): England

    • data.catchmentbasedapproach.org
    • hub.arcgis.com
    Updated Apr 6, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    The Rivers Trust (2021). Asthma (in persons of all ages): England [Dataset]. https://data.catchmentbasedapproach.org/datasets/1c87a458b35d4df38e0744ae039b8e0e
    Explore at:
    Dataset updated
    Apr 6, 2021
    Dataset authored and provided by
    The Rivers Trust
    Area covered
    Description

    SUMMARYThis analysis, designed and executed by Ribble Rivers Trust, identifies areas across England with the greatest levels of asthma (in persons of all ages). Please read the below information to gain a full understanding of what the data shows and how it should be interpreted.ANALYSIS METHODOLOGYThe analysis was carried out using Quality and Outcomes Framework (QOF) data, derived from NHS Digital, relating to asthma (in persons of all ages).This information was recorded at the GP practice level. However, GP catchment areas are not mutually exclusive: they overlap, with some areas covered by 30+ GP practices. Therefore, to increase the clarity and usability of the data, the GP-level statistics were converted into statistics based on Middle Layer Super Output Area (MSOA) census boundaries.The percentage of each MSOA’s population (all ages) with asthma was estimated. This was achieved by calculating a weighted average based on:The percentage of the MSOA area that was covered by each GP practice’s catchment areaOf the GPs that covered part of that MSOA: the percentage of registered patients that have that illness The estimated percentage of each MSOA’s population with asthma was then combined with Office for National Statistics Mid-Year Population Estimates (2019) data for MSOAs, to estimate the number of people in each MSOA with asthma, within the relevant age range.Each MSOA was assigned a relative score between 1 and 0 (1 = worst, 0 = best) based on:A) the PERCENTAGE of the population within that MSOA who are estimated to have asthmaB) the NUMBER of people within that MSOA who are estimated to have asthmaAn average of scores A & B was taken, and converted to a relative score between 1 and 0 (1= worst, 0 = best). The closer to 1 the score, the greater both the number and percentage of the population in the MSOA that are estimated to have asthma, compared to other MSOAs. In other words, those are areas where it’s estimated a large number of people suffer from asthma, and where those people make up a large percentage of the population, indicating there is a real issue with asthma within the population and the investment of resources to address that issue could have the greatest benefits.LIMITATIONS1. GP data for the financial year 1st April 2018 – 31st March 2019 was used in preference to data for the financial year 1st April 2019 – 31st March 2020, as the onset of the COVID19 pandemic during the latter year could have affected the reporting of medical statistics by GPs. However, for 53 GPs (out of 7670) that did not submit data in 2018/19, data from 2019/20 was used instead. Note also that some GPs (997 out of 7670) did not submit data in either year. This dataset should be viewed in conjunction with the ‘Health and wellbeing statistics (GP-level, England): Missing data and potential outliers’ dataset, to determine areas where data from 2019/20 was used, where one or more GPs did not submit data in either year, or where there were large discrepancies between the 2018/19 and 2019/20 data (differences in statistics that were > mean +/- 1 St.Dev.), which suggests erroneous data in one of those years (it was not feasible for this study to investigate this further), and thus where data should be interpreted with caution. Note also that there are some rural areas (with little or no population) that do not officially fall into any GP catchment area (although this will not affect the results of this analysis if there are no people living in those areas).2. Although all of the obesity/inactivity-related illnesses listed can be caused or exacerbated by inactivity and obesity, it was not possible to distinguish from the data the cause of the illnesses in patients: obesity and inactivity are highly unlikely to be the cause of all cases of each illness. By combining the data with data relating to levels of obesity and inactivity in adults and children (see the ‘Levels of obesity, inactivity and associated illnesses: Summary (England)’ dataset), we can identify where obesity/inactivity could be a contributing factor, and where interventions to reduce obesity and increase activity could be most beneficial for the health of the local population.3. It was not feasible to incorporate ultra-fine-scale geographic distribution of populations that are registered with each GP practice or who live within each MSOA. Populations might be concentrated in certain areas of a GP practice’s catchment area or MSOA and relatively sparse in other areas. Therefore, the dataset should be used to identify general areas where there are high levels of asthma, rather than interpreting the boundaries between areas as ‘hard’ boundaries that mark definite divisions between areas with differing levels of asthma.TO BE VIEWED IN COMBINATION WITH:This dataset should be viewed alongside the following datasets, which highlight areas of missing data and potential outliers in the data:Health and wellbeing statistics (GP-level, England): Missing data and potential outliersLevels of obesity, inactivity and associated illnesses (England): Missing dataDOWNLOADING THIS DATATo access this data on your desktop GIS, download the ‘Levels of obesity, inactivity and associated illnesses: Summary (England)’ dataset.DATA SOURCESThis dataset was produced using:Quality and Outcomes Framework data: Copyright © 2020, Health and Social Care Information Centre. The Health and Social Care Information Centre is a non-departmental body created by statute, also known as NHS Digital.GP Catchment Outlines. Copyright © 2020, Health and Social Care Information Centre. The Health and Social Care Information Centre is a non-departmental body created by statute, also known as NHS Digital. Data was cleaned by Ribble Rivers Trust before use.COPYRIGHT NOTICEThe reproduction of this data must be accompanied by the following statement:© Ribble Rivers Trust 2021. Analysis carried out using data that is: Copyright © 2020, Health and Social Care Information Centre. The Health and Social Care Information Centre is a non-departmental body created by statute, also known as NHS Digital.CaBA HEALTH & WELLBEING EVIDENCE BASEThis dataset forms part of the wider CaBA Health and Wellbeing Evidence Base.

  9. a

    Depression (in adults aged 18 and over): England

    • hub.arcgis.com
    • data.catchmentbasedapproach.org
    Updated Apr 6, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    The Rivers Trust (2021). Depression (in adults aged 18 and over): England [Dataset]. https://hub.arcgis.com/maps/theriverstrust::depression-in-adults-aged-18-and-over-england
    Explore at:
    Dataset updated
    Apr 6, 2021
    Dataset authored and provided by
    The Rivers Trust
    Area covered
    Description

    SUMMARYThis analysis, designed and executed by Ribble Rivers Trust, identifies areas across England with the greatest levels of depression in adults (aged 18+). Please read the below information to gain a full understanding of what the data shows and how it should be interpreted.ANALYSIS METHODOLOGYThe analysis was carried out using Quality and Outcomes Framework (QOF) data, derived from NHS Digital, relating to depression in adults (aged 18+).This information was recorded at the GP practice level. However, GP catchment areas are not mutually exclusive: they overlap, with some areas covered by 30+ GP practices. Therefore, to increase the clarity and usability of the data, the GP-level statistics were converted into statistics based on Middle Layer Super Output Area (MSOA) census boundaries.The percentage of each MSOA’s population (aged 18+) with depression was estimated. This was achieved by calculating a weighted average based on:The percentage of the MSOA area that was covered by each GP practice’s catchment areaOf the GPs that covered part of that MSOA: the percentage of registered patients that have that illness The estimated percentage of each MSOA’s population with depression was then combined with Office for National Statistics Mid-Year Population Estimates (2019) data for MSOAs, to estimate the number of people in each MSOA with depression, within the relevant age range.Each MSOA was assigned a relative score between 1 and 0 (1 = worst, 0 = best) based on:A) the PERCENTAGE of the population within that MSOA who are estimated to have depressionB) the NUMBER of people within that MSOA who are estimated to have depressionAn average of scores A & B was taken, and converted to a relative score between 1 and 0 (1= worst, 0 = best). The closer to 1 the score, the greater both the number and percentage of the population in the MSOA that are estimated to have depression, compared to other MSOAs. In other words, those are areas where it’s estimated a large number of people suffer from depression, and where those people make up a large percentage of the population, indicating there is a real issue with depression within the population and the investment of resources to address that issue could have the greatest benefits.LIMITATIONS1. GP data for the financial year 1st April 2018 – 31st March 2019 was used in preference to data for the financial year 1st April 2019 – 31st March 2020, as the onset of the COVID19 pandemic during the latter year could have affected the reporting of medical statistics by GPs. However, for 53 GPs (out of 7670) that did not submit data in 2018/19, data from 2019/20 was used instead. Note also that some GPs (997 out of 7670) did not submit data in either year. This dataset should be viewed in conjunction with the ‘Health and wellbeing statistics (GP-level, England): Missing data and potential outliers’ dataset, to determine areas where data from 2019/20 was used, where one or more GPs did not submit data in either year, or where there were large discrepancies between the 2018/19 and 2019/20 data (differences in statistics that were > mean +/- 1 St.Dev.), which suggests erroneous data in one of those years (it was not feasible for this study to investigate this further), and thus where data should be interpreted with caution. Note also that there are some rural areas (with little or no population) that do not officially fall into any GP catchment area (although this will not affect the results of this analysis if there are no people living in those areas).2. Although all of the obesity/inactivity-related illnesses listed can be caused or exacerbated by inactivity and obesity, it was not possible to distinguish from the data the cause of the illnesses in patients: obesity and inactivity are highly unlikely to be the cause of all cases of each illness. By combining the data with data relating to levels of obesity and inactivity in adults and children (see the ‘Levels of obesity, inactivity and associated illnesses: Summary (England)’ dataset), we can identify where obesity/inactivity could be a contributing factor, and where interventions to reduce obesity and increase activity could be most beneficial for the health of the local population.3. It was not feasible to incorporate ultra-fine-scale geographic distribution of populations that are registered with each GP practice or who live within each MSOA. Populations might be concentrated in certain areas of a GP practice’s catchment area or MSOA and relatively sparse in other areas. Therefore, the dataset should be used to identify general areas where there are high levels of depression, rather than interpreting the boundaries between areas as ‘hard’ boundaries that mark definite divisions between areas with differing levels of depression.TO BE VIEWED IN COMBINATION WITH:This dataset should be viewed alongside the following datasets, which highlight areas of missing data and potential outliers in the data:Health and wellbeing statistics (GP-level, England): Missing data and potential outliersLevels of obesity, inactivity and associated illnesses (England): Missing dataDOWNLOADING THIS DATATo access this data on your desktop GIS, download the ‘Levels of obesity, inactivity and associated illnesses: Summary (England)’ dataset.DATA SOURCESThis dataset was produced using:Quality and Outcomes Framework data: Copyright © 2020, Health and Social Care Information Centre. The Health and Social Care Information Centre is a non-departmental body created by statute, also known as NHS Digital.GP Catchment Outlines. Copyright © 2020, Health and Social Care Information Centre. The Health and Social Care Information Centre is a non-departmental body created by statute, also known as NHS Digital. Data was cleaned by Ribble Rivers Trust before use.COPYRIGHT NOTICEThe reproduction of this data must be accompanied by the following statement:© Ribble Rivers Trust 2021. Analysis carried out using data that is: Copyright © 2020, Health and Social Care Information Centre. The Health and Social Care Information Centre is a non-departmental body created by statute, also known as NHS Digital.CaBA HEALTH & WELLBEING EVIDENCE BASEThis dataset forms part of the wider CaBA Health and Wellbeing Evidence Base.

  10. Obesity in Adults - Dataset - data.gov.uk

    • ckan.publishing.service.gov.uk
    Updated Jun 9, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    ckan.publishing.service.gov.uk (2025). Obesity in Adults - Dataset - data.gov.uk [Dataset]. https://ckan.publishing.service.gov.uk/dataset/obesity-in-adults
    Explore at:
    Dataset updated
    Jun 9, 2025
    Dataset provided by
    CKANhttps://ckan.org/
    Description

    The spreadsheet contains regional level obesity trend data from the the HSE, BMI data from Understanding Society, and adjusted prevalence of underweight, healthy weight, overweight, and obesity by local authority from the Active People Survey. Understanding Society data shows the percentage of the population aged 10 and over by their Body Mass Index Classification, covering underweight, normal weight, overweight, and three classes of obesity. Questions on self-reported height and weight were added to the Sport England Active People Survey (APS) in January 2012 to provide data for monitoring excess weight (overweight including obesity, BMI ≥25kg/m2) in adults (age 16 and over) at local authority level for the Public Health Outcomes Framework (PHOF). Health Survey for England (HSE) results at a national level are available on the NHS Information Centre website. Other NHS indicators on obesity are available for Strategic Health Authorities (SHA). Relevant links: http://discover.ukdataservice.ac.uk/series/?sn=2000053 http://www.noo.org.uk/visualisation/adult_obesity

  11. d

    Statistics on Obesity, Physical Activity and Diet (replaced by Statistics on...

    • digital.nhs.uk
    Updated May 5, 2020
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2020). Statistics on Obesity, Physical Activity and Diet (replaced by Statistics on Public Health) [Dataset]. https://digital.nhs.uk/data-and-information/publications/statistical/statistics-on-obesity-physical-activity-and-diet
    Explore at:
    Dataset updated
    May 5, 2020
    License

    https://digital.nhs.uk/about-nhs-digital/terms-and-conditionshttps://digital.nhs.uk/about-nhs-digital/terms-and-conditions

    Time period covered
    Apr 1, 2018 - Dec 31, 2019
    Description

    This report presents information on obesity, physical activity and diet drawn together from a variety of sources for England. More information can be found in the source publications which contain a wider range of data and analysis. Each section provides an overview of key findings, as well as providing links to relevant documents and sources. Some of the data have been published previously by NHS Digital. A data visualisation tool (link provided within the key facts) allows users to select obesity related hospital admissions data for any Local Authority (as contained in the data tables), along with time series data from 2013/14. Regional and national comparisons are also provided. The report includes information on: Obesity related hospital admissions, including obesity related bariatric surgery. Obesity prevalence. Physical activity levels. Walking and cycling rates. Prescriptions items for the treatment of obesity. Perception of weight and weight management. Food and drink purchases and expenditure. Fruit and vegetable consumption. Key facts cover the latest year of data available: Hospital admissions: 2018/19 Adult obesity: 2018 Childhood obesity: 2018/19 Adult physical activity: 12 months to November 2019 Children and young people's physical activity: 2018/19 academic year

  12. Obesity in California, 2012 and 2013

    • data.ca.gov
    csv, xlsx, zip
    Updated Aug 29, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    California Department of Public Health (2024). Obesity in California, 2012 and 2013 [Dataset]. https://data.ca.gov/dataset/obesity-in-california-2012-and-2013
    Explore at:
    xlsx, csv, zipAvailable download formats
    Dataset updated
    Aug 29, 2024
    Dataset authored and provided by
    California Department of Public Healthhttps://www.cdph.ca.gov/
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    California
    Description

    These data are from the 2013 California Dietary Practices Surveys (CDPS), 2012 California Teen Eating, Exercise and Nutrition Survey (CalTEENS), and 2013 California Children’s Healthy Eating and Exercise Practices Surveys (CalCHEEPS). These surveys have been discontinued. Adults, adolescents, and children (with parental assistance) were asked for their current height and weight, from which, body mass index (BMI) was calculated. For adults, a BMI of 30.0 and above is considered obese. For adolescents and children, obesity is defined as having a BMI at or above the 95th percentile, according to CDC growth charts.

    The California Dietary Practices Surveys (CDPS), the California Teen Eating, Exercise and Nutrition Survey (CalTEENS), and the California Children’s Healthy Eating and Exercise Practices Surveys (CalCHEEPS) (now discontinued) were the most extensive dietary and physical activity assessments of adults 18 years and older, adolescents 12 to 17, and children 6 to 11, respectively, in the state of California. CDPS and CalCHEEPS were administered biennially in odd years up through 2013 and CalTEENS was administered biennially in even years through 2014. The surveys were designed to monitor dietary trends, especially fruit and vegetable consumption, among Californias for evaluating their progress toward meeting the Dietary Guidelines for Americans and the Healthy People 2020 Objectives. All three surveys were conducted via telephone. Adult and adolescent data were collected using a list of participating CalFresh households and random digit dial, and child data were collected using only the list of CalFresh households. Older children (9-11) were the primary respondents with some parental assistance. For younger children (6-8), the primary respondent was parents. Data were oversampled for low-income and African American to provide greater sensitivity for analyzing trends among the target population. Wording of the question used for these analyses varied by survey (age group). The questions were worded are as follows: Adult:1) How tall are you without shoes?2) How much do you weigh?Adolescent:1) About how much do you weigh without shoes?2) About how tall are you without shoes? Child:1) How tall is [child's name] now without shoes on?2) How much does [child's name] weigh now without shoes on?

  13. E

    World Obesity levels 2002-10

    • dtechtive.com
    • find.data.gov.scot
    xml, zip
    Updated Feb 22, 2017
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    University of Edinburgh (2017). World Obesity levels 2002-10 [Dataset]. http://doi.org/10.7488/ds/1941
    Explore at:
    zip(4.643 MB), xml(0.0038 MB)Available download formats
    Dataset updated
    Feb 22, 2017
    Dataset provided by
    University of Edinburgh
    License

    Open Database License (ODbL) v1.0https://www.opendatacommons.org/licenses/odbl/1.0/
    License information was derived automatically

    Area covered
    Global
    Description

    This dataset shows the levels of overweight and obese people by country. Data is provided for 2002 and 2010 as a percentage of the total population and is also broken down by sex. Rates of change between 2002 and 2010 are also provided. The data was collated by the World Health Organisation (WHO)(http://www.who.int/gho/ncd/risk_factors/overweight/en/index.html) and was downloaded via the Guardian website (http://www.theguardian.com/news/datablog/interactive/2013/feb/19/obesity-map-of-world-weight). GIS vector data. This dataset was first accessioned in the EDINA ShareGeo Open repository on 2014-01-03 and migrated to Edinburgh DataShare on 2017-02-22.

  14. Policy Radar - Obesity Prevalence

    • data-insight-tfwm.hub.arcgis.com
    Updated Nov 24, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Transport for West Midlands (2021). Policy Radar - Obesity Prevalence [Dataset]. https://data-insight-tfwm.hub.arcgis.com/documents/5f34ec84f6cf4c1d9049dd4df7dfe5be
    Explore at:
    Dataset updated
    Nov 24, 2021
    Dataset authored and provided by
    Transport for West Midlandshttp://www.tfwm.org.uk/
    Description

    Utilising a regression analysis we created a correlation matrix utilising a number of demographic indicators from the Local Insight platform. This application is showing the distribution of the datasets that were found to have the strongest relationships, with the base comparison dataset of estimated percentage of obesity prevalence. This app contains the following datasets: proportion of people in employment working in the occupation group skilled trade occupations, proportion of people in employment working in the manufacturing industry, proportion of people in employment working in the information and communication sector, percentage of people aged 45 and over with knee osteoarthritis, estimated percentage of COPD prevalence, proportion of people in employment in the approximated social grade N-SEC 6. semi-routine occupations, proportion of residents who have self-reported very good health, proportion of adults aged 25 to 34 with their highest level of qualification at Level 2, estimated percentage of rheumatoid arthritis prevalence and proportion of adults aged 25 to 34 with their highest level of qualification at Level 4 and above.

  15. Percentage of obese U.S. adults by state 2023

    • statista.com
    • tokrwards.com
    Updated Oct 28, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2024). Percentage of obese U.S. adults by state 2023 [Dataset]. https://www.statista.com/statistics/378988/us-obesity-rate-by-state/
    Explore at:
    Dataset updated
    Oct 28, 2024
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    2023
    Area covered
    United States
    Description

    West Virginia, Mississippi, and Arkansas are the U.S. states with the highest percentage of their population who are obese. The states with the lowest percentage of their population who are obese include Colorado, Hawaii, and Massachusetts. Obesity in the United States Obesity is a growing problem in many countries around the world, but the United States has the highest rate of obesity among all OECD countries. The prevalence of obesity in the United States has risen steadily over the previous two decades, with no signs of declining. Obesity in the U.S. is more common among women than men, and overweight and obesity rates are higher among African Americans than any other race or ethnicity. Causes and health impacts Obesity is most commonly the result of a combination of poor diet, overeating, physical inactivity, and a genetic susceptibility. Obesity is associated with various negative health impacts, including an increased risk of cardiovascular diseases, certain types of cancer, and diabetes type 2. As of 2022, around 8.4 percent of the U.S. population had been diagnosed with diabetes. Diabetes is currently the eighth leading cause of death in the United States.

  16. g

    Obesity in Adults

    • gimi9.com
    • data.europa.eu
    • +1more
    Updated Oct 24, 2014
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2014). Obesity in Adults [Dataset]. https://gimi9.com/dataset/uk_obesity-in-adults/
    Explore at:
    Dataset updated
    Oct 24, 2014
    License

    CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
    License information was derived automatically

    Description

    🇬🇧 United Kingdom English The spreadsheet contains regional level obesity trend data from the the HSE, BMI data from Understanding Society, and adjusted prevalence of underweight, healthy weight, overweight, and obesity by local authority from the Active People Survey. Understanding Society data shows the percentage of the population aged 10 and over by their Body Mass Index Classification, covering underweight, normal weight, overweight, and three classes of obesity. Questions on self-reported height and weight were added to the Sport England Active People Survey (APS) in January 2012 to provide data for monitoring excess weight (overweight including obesity, BMI ≥25kg/m2) in adults (age 16 and over) at local authority level for the Public Health Outcomes Framework (PHOF). Health Survey for England (HSE) results at a national level are available on the NHS Information Centre website. Other NHS indicators on obesity are available for Strategic Health Authorities (SHA). Relevant links: http://discover.ukdataservice.ac.uk/series/?sn=2000053 http://www.noo.org.uk/visualisation/adult_obesity

  17. d

    Maternal, Child, and Adolescent Health Needs Assessment, 2023-2024

    • catalog.data.gov
    • data.sfgov.org
    Updated Aug 11, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    data.sfgov.org (2025). Maternal, Child, and Adolescent Health Needs Assessment, 2023-2024 [Dataset]. https://catalog.data.gov/dataset/maternal-child-and-adolescent-health-needs-assessment-2023-2024
    Explore at:
    Dataset updated
    Aug 11, 2025
    Dataset provided by
    data.sfgov.org
    Description

    SUMMARY This table contains data about women, ages 15 to 50, pregnant people, infants, children, and youths, up to age 24. It contains information about a wide range of health topics, including medical conditions, nutrition, dehydration, oral health, mental health, safety, access to health care, and basic needs, like housing. Local, county-level prevalence rates, time trends, and health disparities about national public health priorities, including preterm birth, infant death, childhood obesity, adolescent depression and substance use, and high blood pressure, diabetes, and kidney disease in young adults. The population data is from the 2023-2024 San Francisco Maternal Child and Adolescent Health needs assessment and is published on the Open Data Portal to share with community partners, plan services, and promote health. For more information see: Maternal, Child, and Adolescent Health Homepage Maternal, Child, and Adolescent Health Reports HOW THE DATASET IS CREATED The Maternal, Child, and Adolescent Health (MCAH) Needs Assessment for San Francisco included review of a wide range of citywide population data covering a ten-year span, from 2014 to 2023. Data from over 83,000 birth records, 59,000 death records, 261,000 emergency room visits, 66,000 hospital admissions, and 90,000 newborn screening discharges were gathered, along with citywide data from child welfare records, health screenings in childcare and schools, DMV records of first-time drivers, school surveys, and a state-run mailed survey of recent births (California Department of Public Health MIHA survey). The datasets provided information about approximately 700 health conditions. Each health condition was described in terms of the number of people affected or cases, and the rate affected, stratified by age, sex, race-ethnicity, insurance status, zip code, and time period. Rates were calculated by dividing the number of people or events by the population group estimate (e.g., total births or census estimates), then multiplying by 100 or 1,000 depending on the measure. Each rate was presented with its 95% confidence interval to support users to compare any two rates, either between groups or over time. Two rates differ “significantly” if their 95% confidence intervals do not overlap. The present dataset summarizes the group-level results for any age-, sex-, race-, insurance-, zip code-, and/or period-specific group that included at least 20 people or cases. Causes of death, health conditions that affected over 1000 people in the time frame, problems that got worse over time, and health disparities by insurance, race-ethnicity and/or zip code were flagged for the MCAH Needs Assessment. UPDATE PROCESS The dataset will be updated manually, bi-annually, each December and June. HOW TO USE THIS DATASET Population data from the MCAH needs assessment are shared in several formats, including aggregated datasets on DataSF.gov, downloadable PDF summary reports by age group, interactive online visualizations, data tables, trend graphs, and maps. Information about each variable is available in a linked data dictionary. The definition of each numerator and denominator depends on data source, life stage, and time. Health conditions may not be directly comparable across life stage, if the numerator definition includes age- or pregnancy-specific diagnosis codes (e.g. diabetes hospitalization). For small groups or rare conditions, consider combining time periods and/or groups. Data are suppressed if fewer than 20 cases happened in the group and period. Group-specific rates are available if the matched group-specific census estimates (denominator) were available. Census estim

  18. c

    Levels of obesity, inactivity and associated illnesses (England): Missing...

    • data.catchmentbasedapproach.org
    • hub.arcgis.com
    Updated Apr 8, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    The Rivers Trust (2021). Levels of obesity, inactivity and associated illnesses (England): Missing data [Dataset]. https://data.catchmentbasedapproach.org/datasets/theriverstrust::levels-of-obesity-inactivity-and-associated-illnesses-england-missing-data/about
    Explore at:
    Dataset updated
    Apr 8, 2021
    Dataset authored and provided by
    The Rivers Trust
    Area covered
    Description

    SUMMARYTo be viewed in combination with the ‘Levels of obesity, inactivity and associated illnesses: Summary (England)’ dataset.This dataset shows where there was no data* relating to one of more of the following factors:Obesity/inactivity-related illnesses (recorded at the GP practice catchment area level*)Adult obesity (recorded at the GP practice catchment area level*)Inactivity in children (recorded at the district level)Excess weight in children (recorded at the Middle Layer Super Output Area level)* GPs do not have catchments that are mutually exclusive from each other: they overlap, with some geographic areas being covered by 30+ practices.GP data for the financial year 1st April 2018 – 31st March 2019 was used in preference to data for the financial year 1st April 2019 – 31st March 2020, as the onset of the COVID19 pandemic during the latter year could have affected the reporting of medical statistics by GPs. However, for 53 GPs (out of 7670) that did not submit data in 2018/19, data from 2019/20 was used instead. This dataset identifies areas where data from 2019/20 was used, where one or more GPs did not submit data in either year (this could be because there are rural areas that aren’t officially covered by any GP practices), or where there were large discrepancies between the 2018/19 and 2019/20 data (differences in statistics that were > mean +/- 1 St.Dev.), which suggests erroneous data in one of those years (it was not feasible for this study to investigate this further), and thus where data should be interpreted with caution.Results of the ‘Levels of obesity, inactivity and associated illnesses: Summary (England)’ analysis in these areas should be interpreted with caution, particularly if the levels of obesity, inactivity and associated illnesses appear to be significantly lower than in their immediate surrounding areas.Really small areas with ‘missing’ data were deleted, where it was deemed that missing data will not have impacted the overall analysis (i.e. where GP data was missing from really small countryside areas where no people live).See also Health and wellbeing statistics (GP-level, England): Missing data and potential outliers dataDATA SOURCESThis dataset was produced using:- Quality and Outcomes Framework data: Copyright © 2020, Health and Social Care Information Centre. The Health and Social Care Information Centre is a non-departmental body created by statute, also known as NHS Digital.- National Child Measurement Programme: Copyright © 2020, Health and Social Care Information Centre. The Health and Social Care Information Centre is a non-departmental body created by statute, also known as NHS Digital. - Active Lives Survey 2019: Sport and Physical Activity Levels amongst children and young people in school years 1-11 (aged 5-16). © Sport England 2020.- Active Lives Survey 2019: Sport and Physical Activity Levels amongst adults aged 16+. © Sport England 2020.- GP Catchment Outlines. Copyright © 2020, Health and Social Care Information Centre. The Health and Social Care Information Centre is a non-departmental body created by statute, also known as NHS Digital. Data was cleaned by Ribble Rivers Trust before use.- Administrative boundaries: Boundary-LineTM: Contains Ordnance Survey data © Crown copyright and database right 2021. Contains public sector information licensed under the Open Government Licence v3.0.- MSOA boundaries: © Office for National Statistics licensed under the Open Government Licence v3.0. Contains OS data © Crown copyright and database right 2021.COPYRIGHT NOTICEThe reproduction of this data must be accompanied by the following statement:© Ribble Rivers Trust 2021. Analysis carried out using data that is: Copyright © 2020, Health and Social Care Information Centre. The Health and Social Care Information Centre is a non-departmental body created by statute, also known as NHS Digital; © Sport England 2020; © Office for National Statistics licensed under the Open Government Licence v3.0. Contains Ordnance Survey data © Crown copyright and database right 2021. Contains public sector information licensed under the Open Government Licence v3.0.CaBA HEALTH & WELLBEING EVIDENCE BASEThis dataset forms part of the wider CaBA Health and Wellbeing Evidence Base.

  19. f

    Data from: Trends of self-rated health in relation to overweight in the...

    • scielo.figshare.com
    • datasetcatalog.nlm.nih.gov
    png
    Updated Jun 1, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Lúcia Stela Pessanha Lopes de Souza; Gisela Soares Brunken; Neuber José Segri; Deborah Carvalho Malta (2023). Trends of self-rated health in relation to overweight in the adult population in Brazilian Midwest capitals [Dataset]. http://doi.org/10.6084/m9.figshare.5671126.v1
    Explore at:
    pngAvailable download formats
    Dataset updated
    Jun 1, 2023
    Dataset provided by
    SciELO journals
    Authors
    Lúcia Stela Pessanha Lopes de Souza; Gisela Soares Brunken; Neuber José Segri; Deborah Carvalho Malta
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    ABSTRACT: Objective: To estimate the trends of self-rated health in relation to overweight in the adult population of the capitals of the Brazilian Midwest region and the Federal District. Methods: Cross-sectional study with a population aged 20 to 59 years, using data from the Telephone-based Surveillance of Risk and Protective Factors for Chronic Diseases (VIGITEL), performed between 2008 and 2014. The estimates using the complex sampling design were made using simple linear regression, trend graphs and Boxplot. Results: The categories “poor” and “very poor” didn’t increase in the analyzed period. There was an average increase of 0.5 percentage point per year in the categories “fair” and “good” and an average decrease of 1.0 percentage point in the category “very good”. The trend analysis of mean body mass index found there was a progressive growth in all cities. The worst health perceptions showed higher values of body mass index in both sexes. We observed the existence of obese people assessing their health positively. Conclusion: Self-rated health remained relatively constant whereas the body mass index continued to grow between 2008 and 2014. The self-rated health of individuals with high body mass index (>30 kg/m2) does not seem to be directly related to their weight. Therefore, it is important to analyze the association of these two variables controlling for morbidity, health behaviors (smoking and alcohol consumption, physical activity and diet), and sociodemographic factors.

  20. Population share with overweight in the United States 2014-2029

    • statista.com
    Updated Nov 6, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista Research Department (2024). Population share with overweight in the United States 2014-2029 [Dataset]. https://www.statista.com/topics/8951/chronic-disease-prevention-in-the-us/
    Explore at:
    Dataset updated
    Nov 6, 2024
    Dataset provided by
    Statistahttp://statista.com/
    Authors
    Statista Research Department
    Area covered
    United States
    Description

    The share of the population with overweight in the United States was forecast to continuously increase between 2024 and 2029 by in total 1.6 percentage points. After the fifteenth consecutive increasing year, the overweight population share is estimated to reach 77.43 percent and therefore a new peak in 2029. Notably, the share of the population with overweight of was continuously increasing over the past years.Overweight is defined as a body mass index (BMI) of more than 25.The shown data are an excerpt of Statista's Key Market Indicators (KMI). The KMI are a collection of primary and secondary indicators on the macro-economic, demographic and technological environment in up to 150 countries and regions worldwide. All indicators are sourced from international and national statistical offices, trade associations and the trade press and they are processed to generate comparable data sets (see supplementary notes under details for more information).Find more key insights for the share of the population with overweight in countries like Canada and Mexico.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Lake County Illinois GIS (2024). Obesity Percentages [Dataset]. https://catalog.data.gov/dataset/obesity-percentages-090d2

Obesity Percentages

Explore at:
267 scholarly articles cite this dataset (View in Google Scholar)
Dataset updated
Nov 22, 2024
Dataset provided by
Lake County Illinois GIS
Description

Obesity percentages for Lake County, Illinois. Explanation of field attributes: Pct_Obese – The percent of people in the zip code who are considered obese, defined as having a BMI greater than or equal to 30. ObsOrOvrwt –The percent of people in the zip code who are considered overweight (defined as having a BMI greater than or equal to 25 but less than 30) or obese (defined as having a BMI greater than or equal to 30).

Search
Clear search
Close search
Google apps
Main menu