100+ datasets found
  1. Deaths registered by single year of age, UK

    • ons.gov.uk
    • cy.ons.gov.uk
    xlsx
    Updated Jan 18, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Office for National Statistics (2022). Deaths registered by single year of age, UK [Dataset]. https://www.ons.gov.uk/peoplepopulationandcommunity/birthsdeathsandmarriages/deaths/datasets/deathregistrationssummarytablesenglandandwalesdeathsbysingleyearofagetables
    Explore at:
    xlsxAvailable download formats
    Dataset updated
    Jan 18, 2022
    Dataset provided by
    Office for National Statisticshttp://www.ons.gov.uk/
    License

    Open Government Licence 3.0http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
    License information was derived automatically

    Description

    Annual data on death registrations by single year of age for the UK (1974 onwards) and England and Wales (1963 onwards).

  2. C

    Death Profiles by County

    • data.chhs.ca.gov
    • data.ca.gov
    • +3more
    csv, zip
    Updated Nov 26, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    California Department of Public Health (2025). Death Profiles by County [Dataset]. https://data.chhs.ca.gov/dataset/death-profiles-by-county
    Explore at:
    csv(74351424), csv(75015194), csv(11738570), csv(1128641), csv(15127221), csv(60517511), csv(73906266), csv(60201673), csv(60676655), csv(28125832), csv(60023260), csv(51592721), csv(74689382), csv(52019564), csv(5095), csv(74043128), csv(24235858), csv(74497014), zip, csv(29775349)Available download formats
    Dataset updated
    Nov 26, 2025
    Dataset authored and provided by
    California Department of Public Health
    Description

    This dataset contains counts of deaths for California counties based on information entered on death certificates. Final counts are derived from static data and include out-of-state deaths to California residents, whereas provisional counts are derived from incomplete and dynamic data. Provisional counts are based on the records available when the data was retrieved and may not represent all deaths that occurred during the time period. Deaths involving injuries from external or environmental forces, such as accidents, homicide and suicide, often require additional investigation that tends to delay certification of the cause and manner of death. This can result in significant under-reporting of these deaths in provisional data.

    The final data tables include both deaths that occurred in each California county regardless of the place of residence (by occurrence) and deaths to residents of each California county (by residence), whereas the provisional data table only includes deaths that occurred in each county regardless of the place of residence (by occurrence). The data are reported as totals, as well as stratified by age, gender, race-ethnicity, and death place type. Deaths due to all causes (ALL) and selected underlying cause of death categories are provided. See temporal coverage for more information on which combinations are available for which years.

    The cause of death categories are based solely on the underlying cause of death as coded by the International Classification of Diseases. The underlying cause of death is defined by the World Health Organization (WHO) as "the disease or injury which initiated the train of events leading directly to death, or the circumstances of the accident or violence which produced the fatal injury." It is a single value assigned to each death based on the details as entered on the death certificate. When more than one cause is listed, the order in which they are listed can affect which cause is coded as the underlying cause. This means that similar events could be coded with different underlying causes of death depending on variations in how they were entered. Consequently, while underlying cause of death provides a convenient comparison between cause of death categories, it may not capture the full impact of each cause of death as it does not always take into account all conditions contributing to the death.

  3. Data from: Life Expectancy prediction Dataset

    • kaggle.com
    zip
    Updated Dec 6, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Sujay Kapadnis (2023). Life Expectancy prediction Dataset [Dataset]. https://www.kaggle.com/datasets/sujaykapadnis/life-expectancy-prediction-dataset
    Explore at:
    zip(765628 bytes)Available download formats
    Dataset updated
    Dec 6, 2023
    Authors
    Sujay Kapadnis
    Description

    Across the world, people are living longer. In 1900, the average life expectancy of a newborn was 32 years. By 2021 this had more than doubled to 71 years. But where, when, how, and why has this dramatic change occurred? To understand it, we can look at data on life expectancy worldwide. The large reduction in child mortality has played an important role in increasing life expectancy. But life expectancy has increased at all ages. Infants, children, adults, and the elderly are all less likely to die than in the past, and death is being delayed. This remarkable shift results from advances in medicine, public health, and living standards. Along with it, many predictions of the ‘limit’ of life expectancy have been broken.

    Data Dictionary

    life_expectancy.csv

    variableclassdescription
    EntitycharacterCountry or region entity
    CodecharacterEntity code
    YeardoubleYear
    LifeExpectancydoublePeriod life expectancy at birth - Sex: all - Age: 0

    life_expectancy_different_ages.csv

    variableclassdescription
    EntitycharacterCountry or region entity
    CodecharacterEntity code
    YeardoubleYear
    LifeExpectancy0doublePeriod life expectancy at birth - Sex: all - Age: 0
    LifeExpectancy10doublePeriod life expectancy - Sex: all - Age: 10
    LifeExpectancy25doublePeriod life expectancy - Sex: all - Age: 25
    LifeExpectancy45doublePeriod life expectancy - Sex: all - Age: 45
    LifeExpectancy65doublePeriod life expectancy - Sex: all - Age: 65
    LifeExpectancy80doublePeriod life expectancy - Sex: all - Age: 80

    life_expectancy_female_male.csv

    variableclassdescription
    EntitycharacterCountry or region entity
    CodecharacterEntity code
    YeardoubleYear
    LifeExpectancyDiffFMdoubleLife expectancy difference (f-m) - Type: period - Sex: both - Age: 0

    citation(tidytuesday)

  4. Leading Causes of Death in the USA

    • kaggle.com
    zip
    Updated Mar 30, 2017
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Liam Larsen (2017). Leading Causes of Death in the USA [Dataset]. https://www.kaggle.com/kingburrito666/leading-causes-of-death-usa
    Explore at:
    zip(143340 bytes)Available download formats
    Dataset updated
    Mar 30, 2017
    Authors
    Liam Larsen
    Area covered
    United States
    Description

    Content

    Age-adjusted Death Rates for Selected Major Causes of Death: United States, 1900-2013

    Age adjusting rates

    is a way to make fairer comparisons between groups with different age distributions. For example, a county having a higher percentage of elderly people may have a higher rate of death or hospitalization than a county with a younger population, merely because the elderly are more likely to die or be hospitalized. (The same distortion can happen when comparing races, genders, or time periods.) Age adjustment can make the different groups more comparable. A "standard" population distribution is used to adjust death and hospitalization rates. The age-adjusted rates are rates that would have existed if the population under study had the same age distribution as the "standard" population. Therefore, they are summary measures adjusted for differences in age distributions.

    Acknowledgements

    Scrap data from data.gov

  5. Mortality rates, by age group

    • www150.statcan.gc.ca
    • open.canada.ca
    Updated Dec 4, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Government of Canada, Statistics Canada (2024). Mortality rates, by age group [Dataset]. http://doi.org/10.25318/1310071001-eng
    Explore at:
    Dataset updated
    Dec 4, 2024
    Dataset provided by
    Government of Canadahttp://www.gg.ca/
    Statistics Canadahttps://statcan.gc.ca/en
    Area covered
    Canada
    Description

    Number of deaths and mortality rates, by age group, sex, and place of residence, 1991 to most recent year.

  6. Deaths, by age group and sex

    • www150.statcan.gc.ca
    • open.canada.ca
    • +1more
    Updated Feb 19, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Government of Canada, Statistics Canada (2025). Deaths, by age group and sex [Dataset]. http://doi.org/10.25318/1310070901-eng
    Explore at:
    Dataset updated
    Feb 19, 2025
    Dataset provided by
    Statistics Canadahttps://statcan.gc.ca/en
    Area covered
    Canada
    Description

    Number and percentage of deaths, by age group, sex, and place of residence, 1991 to most recent year.

  7. Statewide Death Profiles

    • data.chhs.ca.gov
    • data.ca.gov
    • +3more
    csv, zip
    Updated Dec 2, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    California Department of Public Health (2025). Statewide Death Profiles [Dataset]. https://data.chhs.ca.gov/dataset/statewide-death-profiles
    Explore at:
    csv(4689434), csv(164006), csv(5034), csv(476576), csv(2026589), csv(5401561), csv(463460), csv(419332), csv(200270), csv(16301), zipAvailable download formats
    Dataset updated
    Dec 2, 2025
    Dataset authored and provided by
    California Department of Public Healthhttps://www.cdph.ca.gov/
    Description

    This dataset contains counts of deaths for California as a whole based on information entered on death certificates. Final counts are derived from static data and include out-of-state deaths to California residents, whereas provisional counts are derived from incomplete and dynamic data. Provisional counts are based on the records available when the data was retrieved and may not represent all deaths that occurred during the time period. Deaths involving injuries from external or environmental forces, such as accidents, homicide and suicide, often require additional investigation that tends to delay certification of the cause and manner of death. This can result in significant under-reporting of these deaths in provisional data.

    The final data tables include both deaths that occurred in California regardless of the place of residence (by occurrence) and deaths to California residents (by residence), whereas the provisional data table only includes deaths that occurred in California regardless of the place of residence (by occurrence). The data are reported as totals, as well as stratified by age, gender, race-ethnicity, and death place type. Deaths due to all causes (ALL) and selected underlying cause of death categories are provided. See temporal coverage for more information on which combinations are available for which years.

    The cause of death categories are based solely on the underlying cause of death as coded by the International Classification of Diseases. The underlying cause of death is defined by the World Health Organization (WHO) as "the disease or injury which initiated the train of events leading directly to death, or the circumstances of the accident or violence which produced the fatal injury." It is a single value assigned to each death based on the details as entered on the death certificate. When more than one cause is listed, the order in which they are listed can affect which cause is coded as the underlying cause. This means that similar events could be coded with different underlying causes of death depending on variations in how they were entered. Consequently, while underlying cause of death provides a convenient comparison between cause of death categories, it may not capture the full impact of each cause of death as it does not always take into account all conditions contributing to the death.

  8. Single year of age and average age of death of people whose death was due to...

    • ons.gov.uk
    xlsx
    Updated Aug 23, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Office for National Statistics (2023). Single year of age and average age of death of people whose death was due to or involved coronavirus (COVID-19) [Dataset]. https://www.ons.gov.uk/peoplepopulationandcommunity/birthsdeathsandmarriages/deaths/datasets/singleyearofageandaverageageofdeathofpeoplewhosedeathwasduetoorinvolvedcovid19
    Explore at:
    xlsxAvailable download formats
    Dataset updated
    Aug 23, 2023
    Dataset provided by
    Office for National Statisticshttp://www.ons.gov.uk/
    License

    Open Government Licence 3.0http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
    License information was derived automatically

    Description

    Provisional deaths registration data for single year of age and average age of death (median and mean) of persons whose death involved coronavirus (COVID-19), England and Wales. Includes deaths due to COVID-19 and breakdowns by sex.

  9. O

    COVID-19 Cases and Deaths by Race/Ethnicity - ARCHIVE

    • data.ct.gov
    • s.cnmilf.com
    • +2more
    csv, xlsx, xml
    Updated Jun 24, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Department of Public Health (2022). COVID-19 Cases and Deaths by Race/Ethnicity - ARCHIVE [Dataset]. https://data.ct.gov/Health-and-Human-Services/COVID-19-Cases-and-Deaths-by-Race-Ethnicity-ARCHIV/7rne-efic
    Explore at:
    xlsx, csv, xmlAvailable download formats
    Dataset updated
    Jun 24, 2022
    Dataset authored and provided by
    Department of Public Health
    License

    U.S. Government Workshttps://www.usa.gov/government-works
    License information was derived automatically

    Description

    Note: DPH is updating and streamlining the COVID-19 cases, deaths, and testing data. As of 6/27/2022, the data will be published in four tables instead of twelve.

    The COVID-19 Cases, Deaths, and Tests by Day dataset contains cases and test data by date of sample submission. The death data are by date of death. This dataset is updated daily and contains information back to the beginning of the pandemic. The data can be found at https://data.ct.gov/Health-and-Human-Services/COVID-19-Cases-Deaths-and-Tests-by-Day/g9vi-2ahj.

    The COVID-19 State Metrics dataset contains over 93 columns of data. This dataset is updated daily and currently contains information starting June 21, 2022 to the present. The data can be found at https://data.ct.gov/Health-and-Human-Services/COVID-19-State-Level-Data/qmgw-5kp6 .

    The COVID-19 County Metrics dataset contains 25 columns of data. This dataset is updated daily and currently contains information starting June 16, 2022 to the present. The data can be found at https://data.ct.gov/Health-and-Human-Services/COVID-19-County-Level-Data/ujiq-dy22 .

    The COVID-19 Town Metrics dataset contains 16 columns of data. This dataset is updated daily and currently contains information starting June 16, 2022 to the present. The data can be found at https://data.ct.gov/Health-and-Human-Services/COVID-19-Town-Level-Data/icxw-cada . To protect confidentiality, if a town has fewer than 5 cases or positive NAAT tests over the past 7 days, those data will be suppressed.

    COVID-19 cases and associated deaths that have been reported among Connecticut residents, broken down by race and ethnicity. All data in this report are preliminary; data for previous dates will be updated as new reports are received and data errors are corrected. Deaths reported to the either the Office of the Chief Medical Examiner (OCME) or Department of Public Health (DPH) are included in the COVID-19 update.

    The following data show the number of COVID-19 cases and associated deaths per 100,000 population by race and ethnicity. Crude rates represent the total cases or deaths per 100,000 people. Age-adjusted rates consider the age of the person at diagnosis or death when estimating the rate and use a standardized population to provide a fair comparison between population groups with different age distributions. Age-adjustment is important in Connecticut as the median age of among the non-Hispanic white population is 47 years, whereas it is 34 years among non-Hispanic blacks, and 29 years among Hispanics. Because most non-Hispanic white residents who died were over 75 years of age, the age-adjusted rates are lower than the unadjusted rates. In contrast, Hispanic residents who died tend to be younger than 75 years of age which results in higher age-adjusted rates.

    The population data used to calculate rates is based on the CT DPH population statistics for 2019, which is available online here: https://portal.ct.gov/DPH/Health-Information-Systems--Reporting/Population/Population-Statistics. Prior to 5/10/2021, the population estimates from 2018 were used.

    Rates are standardized to the 2000 US Millions Standard population (data available here: https://seer.cancer.gov/stdpopulations/). Standardization was done using 19 age groups (0, 1-4, 5-9, 10-14, ..., 80-84, 85 years and older). More information about direct standardization for age adjustment is available here: https://www.cdc.gov/nchs/data/statnt/statnt06rv.pdf

    Categories are mutually exclusive. The category “multiracial” includes people who answered ‘yes’ to more than one race category. Counts may not add up to total case counts as data on race and ethnicity may be missing. Age adjusted rates calculated only for groups with more than 20 deaths. Abbreviation: NH=Non-Hispanic.

    Data on Connecticut deaths were obtained from the Connecticut Deaths Registry maintained by the DPH Office of Vital Records. Cause of death was determined by a death certifier (e.g., physician, APRN, medical examiner) using their best clinical judgment. Additionally, all COVID-19 deaths, including suspected or related, are required to be reported to OCME. On April 4, 2020, CT DPH and OCME released a joint memo to providers and facilities within Connecticut providing guidelines for certifying deaths due to COVID-19 that were consistent with the CDC’s guidelines and a reminder of the required reporting to OCME.25,26 As of July 1, 2021, OCME had reviewed every case reported and performed additional investigation on about one-third of reported deaths to better ascertain if COVID-19 did or did not cause or contribute to the death. Some of these investigations resulted in the OCME performing postmortem swabs for PCR testing on individuals whose deaths were suspected to be due to COVID-19, but antemortem diagnosis was unable to be made.31 The OCME issued or re-issued about 10% of COVID-19 death certificates and, when appropriate, removed COVID-19 from the death certificate. For standardization and tabulation of mortality statistics, written cause of death statements made by the certifiers on death certificates are sent to the National Center for Health Statistics (NCHS) at the CDC which assigns cause of death codes according to the International Causes of Disease 10th Revision (ICD-10) classification system.25,26 COVID-19 deaths in this report are defined as those for which the death certificate has an ICD-10 code of U07.1 as either a primary (underlying) or a contributing cause of death. More information on COVID-19 mortality can be found at the following link: https://portal.ct.gov/DPH/Health-Information-Systems--Reporting/Mortality/Mortality-Statistics

    Data are subject to future revision as reporting changes.

    Starting in July 2020, this dataset will be updated every weekday.

    Additional notes: A delay in the data pull schedule occurred on 06/23/2020. Data from 06/22/2020 was processed on 06/23/2020 at 3:30 PM. The normal data cycle resumed with the data for 06/23/2020.

    A network outage on 05/19/2020 resulted in a change in the data pull schedule. Data from 5/19/2020 was processed on 05/20/2020 at 12:00 PM. Data from 5/20/2020 was processed on 5/20/2020 8:30 PM. The normal data cycle resumed on 05/20/2020 with the 8:30 PM data pull. As a result of the network outage, the timestamp on the datasets on the Open Data Portal differ from the timestamp in DPH's daily PDF reports.

    Starting 5/10/2021, the date field will represent the date this data was updated on data.ct.gov. Previously the date the data was pulled by DPH was listed, which typically coincided with the date before the data was published on data.ct.gov. This change was made to standardize the COVID-19 data sets on data.ct.gov.

  10. Leading causes of death, total population, by age group

    • www150.statcan.gc.ca
    • ouvert.canada.ca
    • +1more
    Updated Feb 19, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Government of Canada, Statistics Canada (2025). Leading causes of death, total population, by age group [Dataset]. http://doi.org/10.25318/1310039401-eng
    Explore at:
    Dataset updated
    Feb 19, 2025
    Dataset provided by
    Statistics Canadahttps://statcan.gc.ca/en
    Area covered
    Canada
    Description

    Rank, number of deaths, percentage of deaths, and age-specific mortality rates for the leading causes of death, by age group and sex, 2000 to most recent year.

  11. Excess Winter Deaths, Borough - Dataset - data.gov.uk

    • ckan.publishing.service.gov.uk
    Updated Jun 9, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    ckan.publishing.service.gov.uk (2025). Excess Winter Deaths, Borough - Dataset - data.gov.uk [Dataset]. https://ckan.publishing.service.gov.uk/dataset/excess-winter-deaths-borough
    Explore at:
    Dataset updated
    Jun 9, 2025
    Dataset provided by
    CKANhttps://ckan.org/
    Description

    Excess Winter Deaths (EWD) by age and conditions (underlying cause of death) expressed as average per year based on 7 years pooled data, 2004-2011. EWD trend expressed as average per year based on 3 years data. The Excess Winter Mortality Index (EWM Index was calculated based on the 'ONS Method' which defines the winter period as December to March, and the non-winter period as August to November of that same year and April to July of the following year. This winter period was selected as they are the months which over the last 50 years have displayed above average monthly mortality. However, if mortality starts to increase prior to this, for example in November, the number of deaths in the non-winter period will increase, which in turn will decrease the estimate of excess winter mortality. The EWM Index will be partly dependent on the proportion of older people in the population as most excess winter deaths effect older people (there is no standardisation in this calculation by age or any other factor). Excess winter mortality is calculated as winter deaths (deaths occurring in December to March) minus the average of non-winter deaths (April to July of the current year and August to November of the previous year). The Excess winter mortality index is calculated as excess winter deaths divided by the average non-winter deaths, expressed as a percentage. Relevant link: http://www.wmpho.org.uk/excesswinterdeathsinEnglandatlas/

  12. New York State Statewide COVID-19 Fatalities by Age Group (Archived)

    • health.data.ny.gov
    • healthdata.gov
    csv, xlsx, xml
    Updated Oct 6, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    New York State Department of Health (2023). New York State Statewide COVID-19 Fatalities by Age Group (Archived) [Dataset]. https://health.data.ny.gov/Health/New-York-State-Statewide-COVID-19-Fatalities-by-Ag/du97-svf7
    Explore at:
    xml, csv, xlsxAvailable download formats
    Dataset updated
    Oct 6, 2023
    Dataset authored and provided by
    New York State Department of Health
    Area covered
    New York
    Description

    Note: Data elements were retired from HERDS on 10/6/23 and this dataset was archived.

    This dataset includes the cumulative number and percent of healthcare facility-reported fatalities for patients with lab-confirmed COVID-19 disease by reporting date and age group. This dataset does not include fatalities related to COVID-19 disease that did not occur at a hospital, nursing home, or adult care facility. The primary goal of publishing this dataset is to provide users with information about healthcare facility fatalities among patients with lab-confirmed COVID-19 disease.

    The information in this dataset is also updated daily on the NYS COVID-19 Tracker at https://www.ny.gov/covid-19tracker.

    The data source for this dataset is the daily COVID-19 survey through the New York State Department of Health (NYSDOH) Health Electronic Response Data System (HERDS). Hospitals, nursing homes, and adult care facilities are required to complete this survey daily. The information from the survey is used for statewide surveillance, planning, resource allocation, and emergency response activities. Hospitals began reporting for the HERDS COVID-19 survey in March 2020, while Nursing Homes and Adult Care Facilities began reporting in April 2020. It is important to note that fatalities related to COVID-19 disease that occurred prior to the first publication dates are also included.

    The fatality numbers in this dataset are calculated by assigning age groups to each patient based on the patient age, then summing the patient fatalities within each age group, as of each reporting date. The statewide total fatality numbers are calculated by summing the number of fatalities across all age groups, by reporting date. The fatality percentages are calculated by dividing the number of fatalities in each age group by the statewide total number of fatalities, by reporting date. The fatality numbers represent the cumulative number of fatalities that have been reported as of each reporting date.

  13. d

    Deaths from Suicide - Dataset - Datopian CKAN instance

    • demo.dev.datopian.com
    Updated Oct 7, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2025). Deaths from Suicide - Dataset - Datopian CKAN instance [Dataset]. https://demo.dev.datopian.com/dataset/lcc--deaths-from-suicide
    Explore at:
    Dataset updated
    Oct 7, 2025
    License

    Open Government Licence 3.0http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
    License information was derived automatically

    Description

    This data shows deaths (of people age 10 and over) from Suicide and Undetermined Injury, numbers and rates by gender, as 3-year moving-averages. Suicide is a significant cause of premature deaths occurring generally at younger ages than other common causes of premature mortality. It may also be seen as an indicator of underlying rates of mental ill-health. Directly Age-Standardised Rates (DASR) are shown in the data, where numbers are sufficient, so that death rates can be directly compared between areas. The DASR calculation applies Age-specific rates to a Standard (European) population to cancel out possible effects on crude rates due to different age structures among populations, thus enabling direct comparisons of rates. The figures in this dataset include deaths recorded as suicide (people age 10 and over) and undetermined injury (age 15 and over) as those are mostly likely also to have been caused by self-harm rather than unverifiable accident, neglect or abuse. The population denominators for rates are age 10 and over. Low numbers may result in zero values or missing data. Data source: Office for Health Improvement and Disparities (OHID), Public Health Outcomes Framework (PHOF) indicator 41001 (E10). This data is updated annually.

  14. f

    Data from: Epidemiologic profile of elderly people who died because of falls...

    • datasetcatalog.nlm.nih.gov
    • scielo.figshare.com
    Updated Mar 24, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    dos Santos Filha, Valdete Alves Valentins; Rosa, Tábada Samantha Marques; de Moraes, Anaelena Bragança; Peripolli, Angélica (2021). Epidemiologic profile of elderly people who died because of falls in Rio Grande do Sul state, Brazil [Dataset]. https://datasetcatalog.nlm.nih.gov/dataset?q=0000828663
    Explore at:
    Dataset updated
    Mar 24, 2021
    Authors
    dos Santos Filha, Valdete Alves Valentins; Rosa, Tábada Samantha Marques; de Moraes, Anaelena Bragança; Peripolli, Angélica
    Area covered
    Brazil, State of Rio Grande do Sul
    Description

    OBJECTIVE: To determine the characteristics of elderly who died by falling in Rio Grande do Sul state, Brazil, from 2006 to 2011. METHODS: We analyzed 2,126 deaths from falls in the state from 2006 to 2011, registered in the Brazilian Mortality Information System. Statistical analyzes were performed using the SPSS 17.0 computer application. RESULTS: The chance of death from falls in the elderly is significantly higher for females, age group above 69 years and elderly people with white skin color, widowed or single. There was a 41.8% increase in specific mortality rates fall during the study period, the highest rate occurring in 2011 31.56 deaths fall among 100,000 elderly, higher for females and age 80 years or more. CONCLUSION: It was found that the mortality rate from falls increased from 2006 to 2011 in that state, being highest for those aged 80 and over, relevance of results for the development of public policies for the elderly.

  15. Rates of COVID-19 Cases or Deaths by Age Group and Vaccination Status

    • data.virginia.gov
    • healthdata.gov
    • +1more
    csv, json, rdf, xsl
    Updated Jul 20, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Centers for Disease Control and Prevention (2023). Rates of COVID-19 Cases or Deaths by Age Group and Vaccination Status [Dataset]. https://data.virginia.gov/dataset/rates-of-covid-19-cases-or-deaths-by-age-group-and-vaccination-status
    Explore at:
    xsl, csv, rdf, jsonAvailable download formats
    Dataset updated
    Jul 20, 2023
    Dataset provided by
    Centers for Disease Control and Preventionhttp://www.cdc.gov/
    Description

    Data for CDC’s COVID Data Tracker site on Rates of COVID-19 Cases and Deaths by Vaccination Status. Click 'More' for important dataset description and footnotes

    Dataset and data visualization details: These data were posted on October 21, 2022, archived on November 18, 2022, and revised on February 22, 2023. These data reflect cases among persons with a positive specimen collection date through September 24, 2022, and deaths among persons with a positive specimen collection date through September 3, 2022.

    Vaccination status: A person vaccinated with a primary series had SARS-CoV-2 RNA or antigen detected on a respiratory specimen collected ≥14 days after verifiably completing the primary series of an FDA-authorized or approved COVID-19 vaccine. An unvaccinated person had SARS-CoV-2 RNA or antigen detected on a respiratory specimen and has not been verified to have received COVID-19 vaccine. Excluded were partially vaccinated people who received at least one FDA-authorized vaccine dose but did not complete a primary series ≥14 days before collection of a specimen where SARS-CoV-2 RNA or antigen was detected. Additional or booster dose: A person vaccinated with a primary series and an additional or booster dose had SARS-CoV-2 RNA or antigen detected on a respiratory specimen collected ≥14 days after receipt of an additional or booster dose of any COVID-19 vaccine on or after August 13, 2021. For people ages 18 years and older, data are graphed starting the week including September 24, 2021, when a COVID-19 booster dose was first recommended by CDC for adults 65+ years old and people in certain populations and high risk occupational and institutional settings. For people ages 12-17 years, data are graphed starting the week of December 26, 2021, 2 weeks after the first recommendation for a booster dose for adolescents ages 16-17 years. For people ages 5-11 years, data are included starting the week of June 5, 2022, 2 weeks after the first recommendation for a booster dose for children aged 5-11 years. For people ages 50 years and older, data on second booster doses are graphed starting the week including March 29, 2022, when the recommendation was made for second boosters. Vertical lines represent dates when changes occurred in U.S. policy for COVID-19 vaccination (details provided above). Reporting is by primary series vaccine type rather than additional or booster dose vaccine type. The booster dose vaccine type may be different than the primary series vaccine type. ** Because data on the immune status of cases and associated deaths are unavailable, an additional dose in an immunocompromised person cannot be distinguished from a booster dose. This is a relevant consideration because vaccines can be less effective in this group. Deaths: A COVID-19–associated death occurred in a person with a documented COVID-19 diagnosis who died; health department staff reviewed to make a determination using vital records, public health investigation, or other data sources. Rates of COVID-19 deaths by vaccination status are reported based on when the patient was tested for COVID-19, not the date they died. Deaths usually occur up to 30 days after COVID-19 diagnosis. Participating jurisdictions: Currently, these 31 health departments that regularly link their case surveillance to immunization information system data are included in these incidence rate estimates: Alabama, Arizona, Arkansas, California, Colorado, Connecticut, District of Columbia, Florida, Georgia, Idaho, Indiana, Kansas, Kentucky, Louisiana, Massachusetts, Michigan, Minnesota, Nebraska, New Jersey, New Mexico, New York, New York City (New York), North Carolina, Philadelphia (Pennsylvania), Rhode Island, South Dakota, Tennessee, Texas, Utah, Washington, and West Virginia; 30 jurisdictions also report deaths among vaccinated and unvaccinated people. These jurisdictions represent 72% of the total U.S. population and all ten of the Health and Human Services Regions. Data on cases

  16. Socioeconomic Factors and All Cause and Cause-Specific Mortality among Older...

    • plos.figshare.com
    • datasetcatalog.nlm.nih.gov
    doc
    Updated Jun 1, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Cleusa P. Ferri; Daisy Acosta; Mariella Guerra; Yueqin Huang; Juan J. Llibre-Rodriguez; Aquiles Salas; Ana Luisa Sosa; Joseph D. Williams; Ciro Gaona; Zhaorui Liu; Lisseth Noriega-Fernandez; A. T. Jotheeswaran; Martin J. Prince (2023). Socioeconomic Factors and All Cause and Cause-Specific Mortality among Older People in Latin America, India, and China: A Population-Based Cohort Study [Dataset]. http://doi.org/10.1371/journal.pmed.1001179
    Explore at:
    docAvailable download formats
    Dataset updated
    Jun 1, 2023
    Dataset provided by
    PLOShttp://plos.org/
    Authors
    Cleusa P. Ferri; Daisy Acosta; Mariella Guerra; Yueqin Huang; Juan J. Llibre-Rodriguez; Aquiles Salas; Ana Luisa Sosa; Joseph D. Williams; Ciro Gaona; Zhaorui Liu; Lisseth Noriega-Fernandez; A. T. Jotheeswaran; Martin J. Prince
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Latin America, China, India
    Description

    BackgroundEven in low and middle income countries most deaths occur in older adults. In Europe, the effects of better education and home ownership upon mortality seem to persist into old age, but these effects may not generalise to LMICs. Reliable data on causes and determinants of mortality are lacking. Methods and FindingsThe vital status of 12,373 people aged 65 y and over was determined 3–5 y after baseline survey in sites in Latin America, India, and China. We report crude and standardised mortality rates, standardized mortality ratios comparing mortality experience with that in the United States, and estimated associations with socioeconomic factors using Cox's proportional hazards regression. Cause-specific mortality fractions were estimated using the InterVA algorithm. Crude mortality rates varied from 27.3 to 70.0 per 1,000 person-years, a 3-fold variation persisting after standardisation for demographic and economic factors. Compared with the US, mortality was much higher in urban India and rural China, much lower in Peru, Venezuela, and urban Mexico, and similar in other sites. Mortality rates were higher among men, and increased with age. Adjusting for these effects, it was found that education, occupational attainment, assets, and pension receipt were all inversely associated with mortality, and food insecurity positively associated. Mutually adjusted, only education remained protective (pooled hazard ratio 0.93, 95% CI 0.89–0.98). Most deaths occurred at home, but, except in India, most individuals received medical attention during their final illness. Chronic diseases were the main causes of death, together with tuberculosis and liver disease, with stroke the leading cause in nearly all sites. ConclusionsEducation seems to have an important latent effect on mortality into late life. However, compositional differences in socioeconomic position do not explain differences in mortality between sites. Social protection for older people, and the effectiveness of health systems in preventing and treating chronic disease, may be as important as economic and human development. Please see later in the article for the Editors' Summary

  17. Demographic Trends and Health Outcomes in the U.S

    • kaggle.com
    zip
    Updated Jan 12, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    The Devastator (2023). Demographic Trends and Health Outcomes in the U.S [Dataset]. https://www.kaggle.com/datasets/thedevastator/demographic-trends-and-health-outcomes-in-the-u
    Explore at:
    zip(1726637 bytes)Available download formats
    Dataset updated
    Jan 12, 2023
    Authors
    The Devastator
    Area covered
    United States
    Description

    Demographic Trends and Health Outcomes in the U.S

    Inequalities,Risk Factors and Access to Care

    By Data Society [source]

    About this dataset

    This dataset contains key demographic, health status indicators and leading cause of death data to help us understand the current trends and health outcomes in communities across the United States. By looking at this data, it can be seen how different states, counties and populations have changed over time. With this data we can analyze levels of national health services use such as vaccination rates or mammography rates; review leading causes of death to create public policy initiatives; as well as identify risk factors for specific conditions that may be associated with certain populations or regions. The information from these files includes State FIPS Code, County FIPS Code, CHSI County Name, CHSI State Name, CHSI State Abbreviation, Influenza B (FluB) report count & expected cases rate per 100K population , Hepatitis A (HepA) Report Count & expected cases rate per 100K population , Hepatitis B (HepB) Report Count & expected cases rate per 100K population , Measles (Meas) Report Count & expected cases rate per 100K population , Pertussis(Pert) Report Count & expected case rate per 100K population , CRS report count & expected case rate per 100K population , Syphilis report count and expected case rate per 100k popuation. We also look at measures related to preventive care services such as Pap smear screen among women aged 18-64 years old check lower/upper confidence intervals seperately ; Mammogram checks among women aged 40-64 years old specified lower/upper conifence intervals separetly ; Colonosopy/ Proctoscpushy among men aged 50+ measured in lower/upper limits ; Pneumonia Vaccination amongst 65+ with loewr/upper confidence level detail Additionally we have some interesting trend indicating variables like measures of birth adn death which includes general fertility ratye ; Teen Birth Rate by Mother's age group etc Summary Measures covers mortality trend following life expectancy by sex&age categories Vressionable populations access info gives us insight into disablilty ratio + access to envtiromental issues due to poor quality housing facilities Finally Risk Factors cover speicfic hoslitic condtiions suchs asthma diagnosis prevelance cancer diabetes alcholic abuse smoking trends All these information give a good understanding on Healthy People 2020 target setings demograpihcally speaking hence will aid is generating more evience backed policies

    More Datasets

    For more datasets, click here.

    Featured Notebooks

    • 🚨 Your notebook can be here! 🚨!

    How to use the dataset

    What the Dataset Contains

    This dataset contains valuable information about public health relevant to each county in the United States, broken down into 9 indicator domains: Demographics, Leading Causes of Death, Summary Measures of Health, Measures of Birth and Death Rates, Relative Health Importance, Vulnerable Populations and Environmental Health Conditions, Preventive Services Use Data from BRFSS Survey System Data , Risk Factors and Access to Care/Health Insurance Coverage & State Developed Types of Measurements such as CRS with Multiple Categories Identified for Each Type . The data includes indicators such as percentages or rates for influenza (FLU), hepatitis (HepA/B), measles(MEAS) pertussis(PERT), syphilis(Syphilis) , cervical cancer (CI_Min_Pap_Smear - CI_Max\Pap \Smear), breast cancer (CI\Min Mammogram - CI \Max \Mammogram ) proctoscopy (CI Min Proctoscopy - CI Max Proctoscopy ), pneumococcal vaccinations (Ci min Pneumo Vax - Ci max Pneumo Vax )and flu vaccinations (Ci min Flu Vac - Ci Max Flu Vac). Additionally , it provides information on leading causes of death at both county levels & national level including age-adjusted mortality rates due to suicide among teens aged between 15-19 yrs per 100000 population etc.. Furthermore , summary measures such as age adjusted percentage who consider their physical health fair or poor are provided; vulnerable populations related indicators like relative importance score for disabled adults ; preventive service use related ones ranging from self reported vaccination coverage among men40-64 yrs old against hepatitis B virus etc...

    Getting Started With The Dataset

    To get started with exploring this dataset first your need to understand what each column in the table represents: State FIPS Code identifies a unique identifier used by various US government agencies which denote states . County FIPS code denotes counties wi...

  18. [DISCONTINUED] Suicide death rate, by age group

    • data.europa.eu
    • data.wu.ac.at
    Updated Oct 16, 2015
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Eurostat (2015). [DISCONTINUED] Suicide death rate, by age group [Dataset]. https://data.europa.eu/data/datasets/wnhnylhfaz6eqpj67bag?locale=en
    Explore at:
    Dataset updated
    Oct 16, 2015
    Dataset authored and provided by
    Eurostathttps://ec.europa.eu/eurostat
    Description

    Dataset replaced by: http://data.europa.eu/euodp/data/dataset/CAJrcG2qBzdgHFsUWHFw

    This indicator is defined as the crude death rate from suicide and intentional self-harm per 100 000 people, by age group. Figures should be interpreted with care as suicide registration methods vary between countries and over time. Moreover, the figures do not include deaths from events of undetermined intent (part of which should be considered as suicides) and attempted suicides which did not result in death.

  19. C

    Death Profiles by ZIP Code

    • data.chhs.ca.gov
    • data.ca.gov
    • +2more
    csv, zip
    Updated Nov 7, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    California Department of Public Health (2025). Death Profiles by ZIP Code [Dataset]. https://data.chhs.ca.gov/dataset/death-profiles-by-zip-code
    Explore at:
    csv(4571), csv(78958555), csv(80055974), csv(80054609), csv(40627562), zipAvailable download formats
    Dataset updated
    Nov 7, 2025
    Dataset authored and provided by
    California Department of Public Health
    Description

    This dataset contains counts of deaths for California residents by ZIP Code based on information entered on death certificates. Final counts are derived from static data and include out-of-state deaths of California residents. The data tables include deaths of residents of California by ZIP Code of residence (by residence). The data are reported as totals, as well as stratified by age and gender. Deaths due to all causes (ALL) and selected underlying cause of death categories are provided. See temporal coverage for more information on which combinations are available for which years.

    The cause of death categories are based solely on the underlying cause of death as coded by the International Classification of Diseases. The underlying cause of death is defined by the World Health Organization (WHO) as "the disease or injury which initiated the train of events leading directly to death, or the circumstances of the accident or violence which produced the fatal injury." It is a single value assigned to each death based on the details as entered on the death certificate. When more than one cause is listed, the order in which they are listed can affect which cause is coded as the underlying cause. This means that similar events could be coded with different underlying causes of death depending on variations in how they were entered. Consequently, while underlying cause of death provides a convenient comparison between cause of death categories, it may not capture the full impact of each cause of death as it does not always take into account all conditions contributing to the death.

  20. d

    COVID-19 Cases and Deaths by Age Group - ARCHIVE

    • catalog.data.gov
    • data.ct.gov
    • +1more
    Updated Aug 12, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    data.ct.gov (2023). COVID-19 Cases and Deaths by Age Group - ARCHIVE [Dataset]. https://catalog.data.gov/dataset/covid-19-cases-and-deaths-by-age-group
    Explore at:
    Dataset updated
    Aug 12, 2023
    Dataset provided by
    data.ct.gov
    Description

    Note: DPH is updating and streamlining the COVID-19 cases, deaths, and testing data. As of 6/27/2022, the data will be published in four tables instead of twelve. The COVID-19 Cases, Deaths, and Tests by Day dataset contains cases and test data by date of sample submission. The death data are by date of death. This dataset is updated daily and contains information back to the beginning of the pandemic. The data can be found at https://data.ct.gov/Health-and-Human-Services/COVID-19-Cases-Deaths-and-Tests-by-Day/g9vi-2ahj. The COVID-19 State Metrics dataset contains over 93 columns of data. This dataset is updated daily and currently contains information starting June 21, 2022 to the present. The data can be found at https://data.ct.gov/Health-and-Human-Services/COVID-19-State-Level-Data/qmgw-5kp6 . The COVID-19 County Metrics dataset contains 25 columns of data. This dataset is updated daily and currently contains information starting June 16, 2022 to the present. The data can be found at https://data.ct.gov/Health-and-Human-Services/COVID-19-County-Level-Data/ujiq-dy22 . The COVID-19 Town Metrics dataset contains 16 columns of data. This dataset is updated daily and currently contains information starting June 16, 2022 to the present. The data can be found at https://data.ct.gov/Health-and-Human-Services/COVID-19-Town-Level-Data/icxw-cada . To protect confidentiality, if a town has fewer than 5 cases or positive NAAT tests over the past 7 days, those data will be suppressed. COVID-19 cases and associated deaths that have been reported among Connecticut residents, broken out by age group. All data in this report are preliminary; data for previous dates will be updated as new reports are received and data errors are corrected. Deaths reported to the either the Office of the Chief Medical Examiner (OCME) or Department of Public Health (DPH) are included in the daily COVID-19 update. Data are reported daily, with timestamps indicated in the daily briefings posted at: portal.ct.gov/coronavirus. Data are subject to future revision as reporting changes. Starting in July 2020, this dataset will be updated every weekday. Additional notes: A delay in the data pull schedule occurred on 06/23/2020. Data from 06/22/2020 was processed on 06/23/2020 at 3:30 PM. The normal data cycle resumed with the data for 06/23/2020. A network outage on 05/19/2020 resulted in a change in the data pull schedule. Data from 5/19/2020 was processed on 05/20/2020 at 12:00 PM. Data from 5/20/2020 was processed on 5/20/2020 8:30 PM. The normal data cycle resumed on 05/20/2020 with the 8:30 PM data pull. As a result of the network outage, the timestamp on the datasets on the Open Data Portal differ from the timestamp in DPH's daily PDF reports. Starting 5/10/2021, the date field will represent the date this data was updated on data.ct.gov. Previously the date the data was pulled by DPH was listed, which typically coincided with the date before the data was published on data.ct.gov. This change was made to standardize the COVID-19 data sets on data.ct.gov.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Office for National Statistics (2022). Deaths registered by single year of age, UK [Dataset]. https://www.ons.gov.uk/peoplepopulationandcommunity/birthsdeathsandmarriages/deaths/datasets/deathregistrationssummarytablesenglandandwalesdeathsbysingleyearofagetables
Organization logo

Deaths registered by single year of age, UK

Explore at:
26 scholarly articles cite this dataset (View in Google Scholar)
xlsxAvailable download formats
Dataset updated
Jan 18, 2022
Dataset provided by
Office for National Statisticshttp://www.ons.gov.uk/
License

Open Government Licence 3.0http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
License information was derived automatically

Description

Annual data on death registrations by single year of age for the UK (1974 onwards) and England and Wales (1963 onwards).

Search
Clear search
Close search
Google apps
Main menu