Facebook
Twitterhttps://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
By Humanitarian Data Exchange [source]
This dataset provides comprehensive insights into critical health conditions around the world, such as mortality rate, malnutrition levels, and frequency of preventable diseases. It documents the prevalence of life-threatening diseases like malaria and tuberculosis, and are tracked alongside key health indicators like adult mortality rates, HIV prevalence, physicians per 10,000 people ratio and public health expenditures. Such metrics provide us with an accurate picture of how developed healthcare systems are in certain countries which ultimately leads to improvements in public policy formation and awareness amongst decision-makers. With this data it is possible to observe disparities between different regions of the world which can help inform global strategies for providing equitable care globally. This dataset is a valuable source for researchers interested in understanding global health trends over time or seeking to evaluate regional differences within countries
For more datasets, click here.
- 🚨 Your notebook can be here! 🚨!
This dataset provides comprehensive global health outcome data for countries around the world. It includes vital information such as infant mortality rates, child malnutrition rates, adult mortality rates, deaths due to malaria and tuberculosis, HIV prevalence rates, life expectancy at age 60 and public health expenditure. This dataset can be used to gain valuable insight into the challenges faced by different countries in providing a good quality of life for their citizens.
To use this dataset, first identify what questions you need answered and what outcomes you are looking to measure. You may want to look at specific disease-based indicators (e.g. malaria or tuberculosis), health-related indicators (e.g., nutrition), or overall population markers (e.g., life expectancy).
Then decide which data points from the provided fields will help answer your questions and provide the results needed - e.g,. infant mortality rate or HIV prevalence rate - extracting these values from relevant columns like “Infants lacking immunization (% of one-year-olds) Measles 2013” or “HIV prevalence, adult (% ages 15Ð49) 2013” respectively
Next extract other columnwise relevant information - e.g., country name — that could also aid your analysis using tools like Excel or Python's Pandas library; sorting through them based on any metric desired — e..g,, physicians per 10k people — while being mindful that some data points are missing in some cases (denoted by NA).
Finally perform basic analyses with either your own scripting language, like R/Python libraries' numerical functions with accompanying visuals/graphs etc if elucidating trends is desired; drawing meaningful conclusions about overall state of global health outcomes accordingly before making informed decisions thereafter if needed too!
- Create a world health map to visualize the differences in health outcomes across different countries and regions.
- Develop an AI-based decision support tool that identifies optimal public health policies or interventions based on these metrics for different countries.
- Design a dashboard or web app that displays and updates this data in real-time, to allow users to compare the current state of global health indicators and benchmark them against historical figures
If you use this dataset in your research, please credit the original authors. Data Source
License: CC0 1.0 Universal (CC0 1.0) - Public Domain Dedication No Copyright - You can copy, modify, distribute and perform the work, even for commercial purposes, all without asking permission. See Other Information.
File: health-outcomes-csv-1.csv | Column name | Description | |:-------------------------------------------------------------------------------|:--------------------------------------------------------------------------------------------------------------------| | Country | The name of the country. (String) ...
Facebook
Twitterhttps://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
this graph was created in R:
https://www.googleapis.com/download/storage/v1/b/kaggle-user-content/o/inbox%2F16731800%2F99ddcc7060665597ad9b1c263aa8174d%2Fgraph1.gif?generation=1717872782993200&alt=media" alt="">
https://www.googleapis.com/download/storage/v1/b/kaggle-user-content/o/inbox%2F16731800%2Ff7af5fc372d601a18645c41c37411157%2Fgraph2.gif?generation=1717872788516258&alt=media" alt="">
https://www.googleapis.com/download/storage/v1/b/kaggle-user-content/o/inbox%2F16731800%2Fc85d9de1d5b88949298afa0bab1d9406%2Fgraph3.gif?generation=1717872793749722&alt=media" alt="">
Having enough to eat is one of the fundamental basic human needs. Hunger – or, more formally, undernourishment – is defined as eating less than the energy required to maintain an active and healthy life.
The share of undernourished people is the leading indicator for food security and nutrition used by the Food and Agriculture Organization of the United Nations.
The fight against hunger focuses on a sufficient energy intake – enough calories per person per day. But it is not the only factor that matters for a healthy diet. Sufficient protein, fats, and micronutrients are also essential, and we cover this in our topic page on micronutrient deficiencies.
Undernourishment in mothers and children is a leading risk factor for death and other poor health outcomes.
The UN has set a global target as part of the Sustainable Development Goals to “end hunger by 2030“. While the world has progressed in past decades, we are far from reaching this target.
On this page, you can find our data, visualizations, and writing on hunger and undernourishment. It looks at how many people are undernourished, where they are, and other metrics used to track food security.
Hunger – also known as undernourishment – is defined as not consuming enough calories to maintain a normal, active, healthy life.
The world has made much progress in reducing global hunger in recent decades — we will see this in the following key insight. But we are still far away from an end to hunger. Tragically, nearly one-in-ten people still do not get enough food to eat.
The share of the undernourished population is shown globally and by region in the chart.
You can see that rates of hunger are highest in Sub-Saharan Africa. South Asia has much higher rates than the Americas and East Asia. Rates in North America and Europe are below 2.5%. However, the FAO shows this as “2.5%” rather than the specific point estimate.
Facebook
Twitterhttps://dataverse.harvard.edu/api/datasets/:persistentId/versions/1.3/customlicense?persistentId=doi:10.7910/DVN/JL16EWhttps://dataverse.harvard.edu/api/datasets/:persistentId/versions/1.3/customlicense?persistentId=doi:10.7910/DVN/JL16EW
The Global Hunger Index (GHI) is a tool designed to comprehensively measure and track hunger globally, regionally, and by country. Each year, the International Food Policy Research Institute (IFPRI) calculates GHI scores in order to assess progress, or the lack thereof, in decreasing hunger. The GHI is designed to raise awareness and understanding of regional and country differences in the struggle against hunger. This year, GHI scores have been calculated using a revised and improved formula. The revision replaces child underweight, previously the sole indicator of child undernutrition, with two indicators of child undernutrition—child wasting and child stunting—which are equally weighted in the GHI calculation. The revised formula also standardizes each of the component indicators to balance their contribution to the overall index and to changes in the GHI scores over time. The 2015 GHI has been calculated for 117 countries for which data on the four component indicators are available and where measuring hunger is considered most relevant. GHI scores are not calculated for some higher income countries where the prevalence of hunger is very low. The GHI is only as current as the data for its four component indicators. This year's GHI reflects the most recent available country-level data and projections available between 2010 and 2016. It therefore reflects the hunger levels during this period rather than solely capturing conditions in 2015. The 1990, 1995, 2000, 2005, and 2015 GHI scores reflect the latest revised data for the four component indicators of the GHI. Where original source data were not available, the estimates of the GHI component indicators were based on the most recent data available. The four component indicators used to calculate the GHI scores draw upon data from the following sources: 1. Undernourishment: Updated data from the Food and Agriculture Organization of the United Nations (FAO) were used for the 1990, 1995, 2000, 2005, and 2015 GHI scores. Undernourishment data and projections for the 2015 GHI are for 2014-2016. 2. Child wasting and stunting: The child undernutrition indicators of the GHI—child wasting and child stunting—include data from the joint database of United Nations Children's Fund (UNICEF), the World Health Organization (WHO), and the World Bank, and additional data from WHO's continuously updated Global Database on Child Growth and Malnutrition; the most recent Demographic and Health Survey (DHS) and Multiple Indicator Cluster Survey (MICS) reports; statistical tables from UNICEF; and the latest national survey data for India from UNICEF India. For the 2015 GHI, data on child wasting and child stunting are for the latest year for which data are available in the period 2010-2014. 3. Child mortality: Updated data from the UN Inter-agency Group for Child Mortality Estimation were used for the 1990, 1995, 2000, and 2005, and 2015 GHI scores. For the 2015 GHI, data on child mortality are for 2013. Resources related to 2015 Global Hunger Index 2015 Global Hunger Index Web App Snapshots of Hunger in the Developing World 2015 Global Hunger Index Linked Open Data (LOD) 2015 Global Hunger Index Report
Facebook
TwitterPolygons in this layer represent Census Tracts in the DMV (DC, Maryland, and Virginia). Data are included for each tract which estimate hunger and food insecurity. Data were compiled by the CAFB through internal tracking, and the layer was shared with the DC government as a courtesy. Fields include (all available for 2015 and 2014):15_FI_Rate: The estimated portion of the population in the census tract experiencing food insecurity (by CAFB standards). 15/14 indicates year measured.15_FI_Pop: The estimated number of people in the census tract experiencing food insecurity (by CAFB standards). 15/14 indicates year measured.15_LB_Need: The estimated pounds of food needed by the food insecure population in the census tract. 15/14 indicates year measured.15_Distrib: The number of pounds of food distributed by CAFB and partners in the census tract. 15/14 indicates year in which the distribution took place.15_LB_Unme: The difference between the estimated pounds of food needed and the real pounds of food distributed by CAFB and partners, representing the unmet need for food assistance in the census tract. 15/14 indicates year.The layer was shared with the DC government in May 2016 and is based on 2015 and 2014 data.
Facebook
TwitterU.S. Government Workshttps://www.usa.gov/government-works
License information was derived automatically
This dataset measures food availability and access for 76 low- and middle-income countries. The dataset includes annual country-level data on area, yield, production, nonfood use, trade, and consumption for grains and root and tuber crops (combined as R&T in the documentation tables), food aid, total value of imports and exports, gross domestic product, and population compiled from a variety of sources. This dataset is the basis for the International Food Security Assessment 2015-2025 released in June 2015. This annual ERS report projects food availability and access for 76 low- and middle-income countries over a 10-year period. Countries (Spatial Description, continued): Democratic Republic of the Congo, Ecuador, Egypt, El Salvador, Eritrea, Ethiopia, Gambia, Georgia, Ghana, Guatemala, Guinea, Guinea-Bissau, Haiti, Honduras, India, Indonesia, Jamaica, Kenya, Kyrgyzstan, Laos, Lesotho, Liberia, Madagascar, Malawi, Mali, Mauritania, Moldova, Mongolia, Morocco, Mozambique, Namibia, Nepal, Nicaragua, Niger, Nigeria, North Korea, Pakistan, Peru, Philippines, Rwanda, Senegal, Sierra Leone, Somalia, Sri Lanka, Sudan, Swaziland, Tajikistan, Tanzania, Togo, Tunisia, Turkmenistan, Uganda, Uzbekistan, Vietnam, Yemen, Zambia, and Zimbabwe. Resources in this dataset:Resource Title: CSV File for all years and all countries. File Name: gfa25.csvResource Title: International Food Security country data. File Name: GrainDemandProduction.xlsxResource Description: Excel files of individual country data. Please note that these files provide the data in a different layout from the CSV file. This version of the data files was updated 9-2-2021
More up-to-date files may be found at: https://www.ers.usda.gov/data-products/international-food-security.aspx
Facebook
TwitterThe Global Hunger Index (GHI) is a comprehensive tool used to assess and rank the state of hunger worldwide. It provides valuable insights into the severity of hunger and malnutrition in various countries, highlighting the challenges faced by populations in accessing sufficient and nutritious food.
By analyzing multiple factors such as undernourishment, child wasting, child stunting, and child mortality, the Global Hunger Index presents a holistic picture of the hunger situation globally. The index takes into account both the prevalence and intensity of hunger, considering not only the lack of food but also the quality of nutrition and health outcomes.
Through its rankings, the Global Hunger Index aims to draw attention to regions and countries where hunger is most prevalent and urgent. It serves as a crucial tool for policymakers, organizations, and governments to identify areas requiring immediate intervention and to formulate effective strategies for combating hunger and improving food security.
Moreover, the Global Hunger Index plays a significant role in monitoring progress and identifying trends over time, enabling stakeholders to track improvements or setbacks in the fight against hunger. By regularly updating the index, it provides an objective measure to evaluate the effectiveness of policies and interventions implemented to address hunger-related challenges.
Ultimately, the Global Hunger Index serves as a call to action, urging global cooperation and collective efforts to eliminate hunger, promote sustainable agricultural practices, and ensure access to nutritious food for all.
Facebook
TwitterA straightforward way to assess the health status of a population is to focus on mortality – or concepts like child mortality or life expectancy, which are based on mortality estimates. A focus on mortality, however, does not take into account that the burden of diseases is not only that they kill people, but that they cause suffering to people who live with them. Assessing health outcomes by both mortality and morbidity (the prevalent diseases) provides a more encompassing view on health outcomes. This is the topic of this entry. The sum of mortality and morbidity is referred to as the ‘burden of disease’ and can be measured by a metric called ‘Disability Adjusted Life Years‘ (DALYs). DALYs are measuring lost health and are a standardized metric that allow for direct comparisons of disease burdens of different diseases across countries, between different populations, and over time. Conceptually, one DALY is the equivalent of losing one year in good health because of either premature death or disease or disability. One DALY represents one lost year of healthy life. The first ‘Global Burden of Disease’ (GBD) was GBD 1990 and the DALY metric was prominently featured in the World Bank’s 1993 World Development Report. Today it is published by both the researchers at the Institute of Health Metrics and Evaluation (IHME) and the ‘Disease Burden Unit’ at the World Health Organization (WHO), which was created in 1998. The IHME continues the work that was started in the early 1990s and publishes the Global Burden of Disease study.
In this Dataset, we have Historical Data of different cause of deaths for all ages around the World. The key features of this Dataset are: Meningitis, Alzheimer's Disease and Other Dementias, Parkinson's Disease, Nutritional Deficiencies, Malaria, Drowning, Interpersonal Violence, Maternal Disorders, HIV/AIDS, Drug Use Disorders, Tuberculosis, Cardiovascular Diseases, Lower Respiratory Infections, Neonatal Disorders, Alcohol Use Disorders, Self-harm, Exposure to Forces of Nature, Diarrheal Diseases, Environmental Heat and Cold Exposure, Neoplasms, Conflict and Terrorism, Diabetes Mellitus, Chronic Kidney Disease, Poisonings, Protein-Energy Malnutrition, Road Injuries, Chronic Respiratory Diseases, Cirrhosis and Other Chronic Liver Diseases, Digestive Diseases, Fire, Heat, and Hot Substances, Acute Hepatitis.
Facebook
Twitterhttps://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
A straightforward way to assess the health status of a population is to focus on mortality – or concepts like child mortality or life expectancy, which are based on mortality estimates. A focus on mortality, however, does not take into account that the burden of diseases is not only that they kill people, but that they cause suffering to people who live with them. Assessing health outcomes by both mortality and morbidity (the prevalent diseases) provides a more encompassing view on health outcomes. This is the topic of this entry. The sum of mortality and morbidity is referred to as the ‘burden of disease’ and can be measured by a metric called ‘Disability Adjusted Life Years‘ (DALYs).
DALYs are measuring lost health and are a standardized metric that allow for direct comparisons of disease burdens of different diseases across countries, between different populations, and over time. Conceptually, one DALY is the equivalent of losing one year in good health because of either premature death or disease or disability. One DALY represents one lost year of healthy life. The first ‘Global Burden of Disease’ (GBD) was GBD 1990 and the DALY metric was prominently featured in the World Bank’s 1993 World Development Report. Today it is published by both the researchers at the Institute of Health Metrics and Evaluation (IHME) and the ‘Disease Burden Unit’ at the World Health Organization (WHO), which was created in 1998. The IHME continues the work that was started in the early 1990s and publishes the Global Burden of Disease study.
In this Dataset, we have Historical Data of different cause of deaths for all ages around the World. The key features of this Dataset are: Meningitis, Alzheimer's Disease and Other Dementias, Parkinson's Disease, Nutritional Deficiencies, Malaria, Drowning, Interpersonal Violence, Maternal Disorders, HIV/AIDS, Drug Use Disorders, Tuberculosis, Cardiovascular Diseases, Lower Respiratory Infections, Neonatal Disorders, Alcohol Use Disorders, Self-harm, Exposure to Forces of Nature, Diarrheal Diseases, Environmental Heat and Cold Exposure, Neoplasms, Conflict and Terrorism, Diabetes Mellitus, Chronic Kidney Disease, Poisonings, Protein-Energy Malnutrition, Road Injuries, Chronic Respiratory Diseases, Cirrhosis and Other Chronic Liver Diseases, Digestive Diseases, Fire, Heat, and Hot Substances, Acute Hepatitis.
This Dataset is created from Our World in Data. This Dataset falls under open access under the Creative Commons BY license. You can check the FAQ for more informa...
Facebook
TwitterAttribution-NoDerivs 4.0 (CC BY-ND 4.0)https://creativecommons.org/licenses/by-nd/4.0/
License information was derived automatically
🔗 Check out my notebook here: Link
This dataset includes malnutrition indicators and some of the features that might impact malnutrition. The detailed description of the dataset is given below:
Percentage-of-underweight-children-data: Percentage of children aged 5 years or below who are underweight by country.
Prevalence of Underweight among Female Adults (Age Standardized Estimate): Percentage of female adults whos BMI is less than 18.
GDP per capita (constant 2015 US$): GDP per capita is gross domestic product divided by midyear population. GDP is the sum of gross value added by all resident producers in the economy plus any product taxes and minus any subsidies not included in the value of the products. It is calculated without making deductions for depreciation of fabricated assets or for depletion and degradation of natural resources. Data are in constant 2015 U.S. dollars.
Domestic general government health expenditure (% of GDP): Public expenditure on health from domestic sources as a share of the economy as measured by GDP.
Maternal mortality ratio (modeled estimate, per 100,000 live births): Maternal mortality ratio is the number of women who die from pregnancy-related causes while pregnant or within 42 days of pregnancy termination per 100,000 live births. The data are estimated with a regression model using information on the proportion of maternal deaths among non-AIDS deaths in women ages 15-49, fertility, birth attendants, and GDP measured using purchasing power parities (PPPs).
Mean-age-at-first-birth-of-women-aged-20-50-data: Average age at which women of age 20-50 years have their first child.
School enrollment, secondary, female (% gross): Gross enrollment ratio is the ratio of total enrollment, regardless of age, to the population of the age group that officially corresponds to the level of education shown. Secondary education completes the provision of basic education that began at the primary level, and aims at laying the foundations for lifelong learning and human development, by offering more subject- or skill-oriented instruction using more specialized teachers.
Facebook
TwitterU.S. Government Workshttps://www.usa.gov/government-works
License information was derived automatically
"Food deserts" are defined as areas where residents do not live near supermarkets or other food retailers that carry affordable and nutritious food.
This dataset describes the total and percentage of people in relation to their relative distance to a major grocery store and their poverty level in the San Diego County. The dataset is curated from multiple sources, such as the Census ACS and the California Economic Development Department, using methodology from the Economic Research Service (ERS) in the U.S. Department of Agriculture.
Facebook
TwitterOpen Database License (ODbL) v1.0https://www.opendatacommons.org/licenses/odbl/1.0/
License information was derived automatically
This year’s Global Hunger Index (GHI) brings us face to face with a grim reality. The toxic cocktail of conflict, climate change, and the COVID-19 pandemic had already left millions exposed to food price shocks and vulnerable to further crises. Now the war in Ukraine, with its knock-on effects on global supplies of and prices for food, fertilizer, and fuel is turning a crisis into a catastrophe. The 2022 global GHI score shows that progress in tackling hunger has largely halted. Other indicators reveal the tragic scale of the unfolding crisis. The State of Food Security and Nutrition in the World 2022 reported that in 2021 the number of undernourished people, an indicator of chronic hunger, rose to as many as 828 million. Further, according to the Global Report on Food Crises 2022, the number of people facing acute hunger also rose from 2020, reaching nearly 193 million in 2021. These impacts are now playing out across Africa South of the Sahara, South Asia, Central and South America, and beyond. As we face the third global food price crisis in 15 years, it is clearer than ever that our food systems in their current form are inadequate to the task of sustainably ending poverty and hunger. The global food crisis underway now is widely presented as an aftershock caused by the war in Ukraine. The severity and speed of the impacts on hunger have occurred largely, however, because millions of people were already living on the precarious edge of hunger, a legacy of past failures to build more just, sustainable, and resilient food systems. While it is urgent that the international community respond to these escalating humanitarian crises, it must not lose sight of the need for a long-term transformation of food systems. The shocks we have experienced reveal chronic vulnerabilities that will continue to put millions at risk of hunger. Past and current GHI reports highlight these persistent vulnerabilities and shows what actions can address immediate humanitarian needs and kick-start food system transformation. Rather than operating reactively, the international community must take proactive steps to actually make good on its international commitments and pledges, scaling them up and directing them toward emergency measures. Political attention and funding must be targeted toward evidence-based policies and investments that address structural obstacles to food and nutrition security. More high-quality and timely data are also needed so that we can monitor progress in these areas. This year’s GHI report considers one important avenue for food systems transformation: community action that engages local leaders and citizens in improving governance and accountability. The essay by Danielle Resnick provides promising examples from a variety of settings where citizens are finding innovative ways to amplify their voices in food system debates, including by tracking government performance and by engaging in multistakeholder platforms, and keeping decision-makers accountable for addressing food and nutrition insecurity and hunger. Encouragingly, examples of empowerment are just as visible in fragile contexts with high levels of societal fractionalization as they are in more stable settings with longer traditions of local democracy. It is critical to act now to rebuild food security on a new and lasting basis. Failure to do so means sleepwalking into the catastrophic and systematic food crises of the future. Much more can be done to ward off the worst impacts of the current crisis and set deep changes in motion rather than reinforcing the dangerous and unsustainable arrangements we now live with. We must ensure rights-based food systems governance at all levels, building on the initial steps taken at the 2021 United Nations Food Systems Summit. Governments and development partners must harness local voices, match local governance efforts to conditions and capacities on the ground, and support local leadership through capacity building and funding. Governments must enable citizens to participate fully in developing and monitoring public policies affecting food security while upholding a legal right to food. Prevention pays off. Investments made today can avert future crises that may be even more costly and tragic than what we now face. It has been said that the saddest words are “If only.” We may find ourselves saying, “If only past generations had used their time and resources to do what was needed to end hunger and ensure the right to food for all.” May the next generation not say the same of us.
Facebook
TwitterU.S. Government Workshttps://www.usa.gov/government-works
License information was derived automatically
"Food deserts" are defined as areas where residents do not live near supermarkets or other food retailers that carry affordable and nutritious food.
This dataset describes the total and percentage of people in relation to their relative distance to a major grocery store and their poverty level within block groups of the San Diego County. The dataset is curated from multiple sources, such as the Census ACS and the California Economic Development Department, using methodology from the Economic Research Service (ERS) in the U.S. Department of Agriculture.
Facebook
TwitterSustainable Development Goal (SDG) target 2.1 commits countries to end hunger, ensure access by all people to safe, nutritious and sufficient food all year around. Indicator 2.1.2, “Prevalence of moderate or severe food insecurity based on the Food Insecurity Experience Scale (FIES)”, provides internationally-comparable estimates of the proportion of the population facing difficulties in accessing food. More detailed background information is available at http://www.fao.org/in-action/voices-of-the-hungry/fies/en/.
The FIES-based indicators are compiled using the FIES survey module, containing 8 questions. Two indicators can be computed:
1. The proportion of the population experiencing moderate or severe food insecurity (SDG indicator 2.1.2).
2. The proportion of the population experiencing severe food insecurity.
These data were collected by FAO through GeoPoll. National institutions can also collect FIES data by including the FIES survey module in nationally representative surveys.
Microdata can be used to calculate the indicator 2.1.2 at national level. Instructions for computing this indicator are described in the methodological document available in the documentations tab. Disaggregating results at sub-national level is not encouraged because estimates will suffer from substantial sampling and measurement error.
National coverage
Individuals
Individuals of 15 years or older.
Sample survey data [ssd]
A sampling quota of at least 200 observations per each Administrative 1 areas is set Exclusions: NA Design effect: NA
Computer Assisted Personal Interview [capi]
Statistical validation assesses the quality of the FIES data collected by testing their consistency with the assumptions of the Rasch model. This analysis involves the interpretation of several statistics that reveal 1) items that do not perform well in a given context, 2) cases with highly erratic response patterns, 3) pairs of items that may be redundant, and 4) the proportion of total variance in the population that is accounted for by the measurement model.
The margin of error is estimated as NA. This is calculated around a proportion at the 95% confidence level. The maximum margin of error was calculated assuming a reported percentage of 50% and takes into account the design effect.
Since the population with access to mobile telephones is likely to differ from the rest of the population with respect to their access to food, post-hoc adjustments were made to control for the potential resulting bias. Post-stratification weights were built to adjust the sample distribution by gender and education of the respondent at admin-1 level, to match the same distribution in the total population. However, an additional step was needed to try to ascertain the food insecurity condition of those with access to phones compared to that of the total population.
Using FIES data collected by FAO through the GWP between 2014 and 2019, and a variable on access to mobile telephones that was also in the dataset, it was possible to compare the prevalence of food insecurity at moderate or severe level, and severe level only, of respondents with access to a mobile phone to that of the total population at national level.
Facebook
TwitterSustainable Development Goal (SDG) target 2.1 commits countries to end hunger, ensure access by all people to safe, nutritious and sufficient food all year around. Indicator 2.1.2, “Prevalence of moderate or severe food insecurity based on the Food Insecurity Experience Scale (FIES)”, provides internationally-comparable estimates of the proportion of the population facing difficulties in accessing food. More detailed background information is available at http://www.fao.org/in-action/voices-of-the-hungry/fies/en/.
The FIES-based indicators are compiled using the FIES survey module, containing 8 questions. Two indicators can be computed:
1. The proportion of the population experiencing moderate or severe food insecurity (SDG indicator 2.1.2).
2. The proportion of the population experiencing severe food insecurity.
These data were collected by FAO through GeoPoll. National institutions can also collect FIES data by including the FIES survey module in nationally representative surveys.
Microdata can be used to calculate the indicator 2.1.2 at national level. Instructions for computing this indicator are described in the methodological document available in the documentations tab. Disaggregating results at sub-national level is not encouraged because estimates will suffer from substantial sampling and measurement error.
National coverage
Individuals
Individuals of 15 years or older.
Sample survey data [ssd]
A sampling quota of at least 200 observations per each Administrative 1 areas is set Exclusions: NA Design effect: NA
Computer Assisted Telephone Interview [cati]
Statistical validation assesses the quality of the FIES data collected by testing their consistency with the assumptions of the Rasch model. This analysis involves the interpretation of several statistics that reveal 1) items that do not perform well in a given context, 2) cases with highly erratic response patterns, 3) pairs of items that may be redundant, and 4) the proportion of total variance in the population that is accounted for by the measurement model.
The margin of error is estimated as NA. This is calculated around a proportion at the 95% confidence level. The maximum margin of error was calculated assuming a reported percentage of 50% and takes into account the design effect.
Since the population with access to mobile telephones is likely to differ from the rest of the population with respect to their access to food, post-hoc adjustments were made to control for the potential resulting bias. Post-stratification weights were built to adjust the sample distribution by gender and education of the respondent at admin-1 level, to match the same distribution in the total population. However, an additional step was needed to try to ascertain the food insecurity condition of those with access to phones compared to that of the total population.
Using FIES data collected by FAO through the GWP between 2014 and 2019, and a variable on access to mobile telephones that was also in the dataset, it was possible to compare the prevalence of food insecurity at moderate or severe level, and severe level only, of respondents with access to a mobile phone to that of the total population at national level.
Facebook
TwitterGoal 2End hunger, achieve food security and improved nutrition and promote sustainable agricultureTarget 2.1: By 2030, end hunger and ensure access by all people, in particular the poor and people in vulnerable situations, including infants, to safe, nutritious and sufficient food all year roundIndicator 2.1.1: Prevalence of undernourishmentSN_ITK_DEFC: Prevalence of undernourishment (%)SN_ITK_DEFCN: Number of undernourish people (millions)Indicator 2.1.2: Prevalence of moderate or severe food insecurity in the population, based on the Food Insecurity Experience Scale (FIES)AG_PRD_FIESMS: Prevalence of moderate or severe food insecurity in the adult population (%)AG_PRD_FIESMSN: Total population in moderate or severe food insecurity (thousands of people)AG_PRD_FIESS: Prevalence of severe food insecurity in the adult population (%)AG_PRD_FIESSN: Total population in severe food insecurity (thousands of people)Target 2.2: By 2030, end all forms of malnutrition, including achieving, by 2025, the internationally agreed targets on stunting and wasting in children under 5 years of age, and address the nutritional needs of adolescent girls, pregnant and lactating women and older personsIndicator 2.2.1: Prevalence of stunting (height for age SH_STA_STNT: Proportion of children moderately or severely stunted (%)SH_STA_STNTN: Children moderately or severely stunted (thousands)+2 or SH_STA_WAST: Proportion of children moderately or severely wasted (%)SH_STA_WASTN: Children moderately or severely wasted (thousands)SN_STA_OVWGT: Proportion of children moderately or severely overweight (%)SN_STA_OVWGTN: Children moderately or severely overweight (thousands)Indicator 2.2.3: Prevalence of anaemia in women aged 15 to 49 years, by pregnancy status (percentage)SH_STA_ANEM: Proportion of women aged 15-49 years with anaemia (%)SH_STA_ANEM_PREG: Proportion of women aged 15-49 years with anaemia, pregnant (%)SH_STA_ANEM_NPRG: Proportion of women aged 15-49 years with anaemia, non-pregnant (%)Target 2.3: By 2030, double the agricultural productivity and incomes of small-scale food producers, in particular women, indigenous peoples, family farmers, pastoralists and fishers, including through secure and equal access to land, other productive resources and inputs, knowledge, financial services, markets and opportunities for value addition and non-farm employmentIndicator 2.3.1: Volume of production per labour unit by classes of farming/pastoral/forestry enterprise sizePD_AGR_SSFP: Productivity of small-scale food producers (agricultural output per labour day, PPP) (constant 2011 international $)PD_AGR_LSFP: Productivity of large-scale food producers (agricultural output per labour day, PPP) (constant 2011 international $)Indicator 2.3.2: Average income of small-scale food producers, by sex and indigenous statusSI_AGR_SSFP: Average income of small-scale food producers, PPP (constant 2011 international $)SI_AGR_LSFP: Average income of large-scale food producers, PPP (constant 2011 international $)Target 2.4: By 2030, ensure sustainable food production systems and implement resilient agricultural practices that increase productivity and production, that help maintain ecosystems, that strengthen capacity for adaptation to climate change, extreme weather, drought, flooding and other disasters and that progressively improve land and soil qualityIndicator 2.4.1: Proportion of agricultural area under productive and sustainable agricultureTarget 2.5: By 2020, maintain the genetic diversity of seeds, cultivated plants and farmed and domesticated animals and their related wild species, including through soundly managed and diversified seed and plant banks at the national, regional and international levels, and promote access to and fair and equitable sharing of benefits arising from the utilization of genetic resources and associated traditional knowledge, as internationally agreedIndicator 2.5.1: Number of plant and animal genetic resources for food and agriculture secured in either medium- or long-term conservation facilitiesER_GRF_ANIMRCNTN: Number of local breeds for which sufficient genetic resources are stored for reconstitutionER_GRF_PLNTSTOR: Plant breeds for which sufficient genetic resources are stored (number)Indicator 2.5.2: Proportion of local breeds classified as being at risk of extinctionER_RSK_LBREDS: Proportion of local breeds classified as being at risk as a share of local breeds with known level of extinction risk (%)Target 2.a: Increase investment, including through enhanced international cooperation, in rural infrastructure, agricultural research and extension services, technology development and plant and livestock gene banks in order to enhance agricultural productive capacity in developing countries, in particular least developed countriesIndicator 2.a.1: The agriculture orientation index for government expendituresAG_PRD_ORTIND: Agriculture orientation index for government expendituresAG_PRD_AGVAS: Agriculture value added share of GDP (%)AG_XPD_AGSGB: Agriculture share of Government Expenditure (%)Indicator 2.a.2: Total official flows (official development assistance plus other official flows) to the agriculture sectorDC_TOF_AGRL: Total official flows (disbursements) for agriculture, by recipient countries (millions of constant 2018 United States dollars)Target 2.b: Correct and prevent trade restrictions and distortions in world agricultural markets, including through the parallel elimination of all forms of agricultural export subsidies and all export measures with equivalent effect, in accordance with the mandate of the Doha Development RoundIndicator 2.b.1: Agricultural export subsidiesAG_PRD_XSUBDY: Agricultural export subsidies (millions of current United States dollars)Target 2.c: Adopt measures to ensure the proper functioning of food commodity markets and their derivatives and facilitate timely access to market information, including on food reserves, in order to help limit extreme food price volatilityIndicator 2.c.1: Indicator of food price anomaliesAG_FPA_COMM: Indicator of Food Price Anomalies (IFPA), by type of productAG_FPA_CFPI: Consumer Food Price IndexAG_FPA_HMFP: Proportion of countries recording abnormally high or moderately high food prices, according to the Indicator of Food Price Anomalies (%)
Facebook
TwitterSustainable Development Goal (SDG) target 2.1 commits countries to end hunger, ensure access by all people to safe, nutritious and sufficient food all year around. Indicator 2.1.2, “Prevalence of moderate or severe food insecurity based on the Food Insecurity Experience Scale (FIES)”, provides internationally-comparable estimates of the proportion of the population facing difficulties in accessing food. More detailed background information is available at http://www.fao.org/in-action/voices-of-the-hungry/fies/en/.
The FIES-based indicators are compiled using the FIES survey module, containing 8 questions. Two indicators can be computed:
1. The proportion of the population experiencing moderate or severe food insecurity (SDG indicator 2.1.2).
2. The proportion of the population experiencing severe food insecurity.
These data were collected by FAO through GeoPoll. National institutions can also collect FIES data by including the FIES survey module in nationally representative surveys.
Microdata can be used to calculate the indicator 2.1.2 at national level. Instructions for computing this indicator are described in the methodological document available in the documentations tab. Disaggregating results at sub-national level is not encouraged because estimates will suffer from substantial sampling and measurement error.
National
Individuals
Individuals of 15 years or older.
Sample survey data [ssd]
A sampling quota of at least 200 observations per each Administrative 1 areas is set Exclusions: NA Design effect: NA
Computer Assisted Telephone Interview [CATI]
Statistical validation assesses the quality of the FIES data collected by testing their consistency with the assumptions of the Rasch model. This analysis involves the interpretation of several statistics that reveal 1) items that do not perform well in a given context, 2) cases with highly erratic response patterns, 3) pairs of items that may be redundant, and 4) the proportion of total variance in the population that is accounted for by the measurement model.
The margin of error is estimated as NA. This is calculated around a proportion at the 95% confidence level. The maximum margin of error was calculated assuming a reported percentage of 50% and takes into account the design effect.
Since the population with access to mobile telephones is likely to differ from the rest of the population with respect to their access to food, post-hoc adjustments were made to control for the potential resulting bias. Post-stratification weights were built to adjust the sample distribution by gender and education of the respondent at admin-1 level, to match the same distribution in the total population. However, an additional step was needed to try to ascertain the food insecurity condition of those with access to phones compared to that of the total population.
Using FIES data collected by FAO through the GWP between 2014 and 2019, and a variable on access to mobile telephones that was also in the dataset, it was possible to compare the prevalence of food insecurity at moderate or severe level, and severe level only, of respondents with access to a mobile phone to that of the total population at national level.
Facebook
Twitterhttps://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
Famines are still a major global problem. From 2020 to 2023 alone, they caused over a million deaths.
Yet the long-term trend shows significant progress. In the late 1800s and the first half of the 1900s, it was common for famines to kill over 10 million people per decade. This was true as recently as the 1960s, when China’s Great Leap Forward became the deadliest famine in history.
But as you can see in the chart, that number has dropped sharply, to about one to two million per decade.
This improvement is even more striking given that the world’s population has grown substantially. Despite many more people living on Earth, far fewer die from famines than before.
Facebook
TwitterSustainable Development Goal (SDG) target 2.1 commits countries to end hunger, ensure access by all people to safe, nutritious and sufficient food all year around. Indicator 2.1.2, “Prevalence of moderate or severe food insecurity based on the Food Insecurity Experience Scale (FIES)”, provides internationally-comparable estimates of the proportion of the population facing difficulties in accessing food. More detailed background information is available at http://www.fao.org/in-action/voices-of-the-hungry/fies/en/.
The FIES-based indicators are compiled using the FIES survey module, containing 8 questions. Two indicators can be computed:
1. The proportion of the population experiencing moderate or severe food insecurity (SDG indicator 2.1.2).
2. The proportion of the population experiencing severe food insecurity.
These data were collected by FAO through GeoPoll. National institutions can also collect FIES data by including the FIES survey module in nationally representative surveys.
Microdata can be used to calculate the indicator 2.1.2 at national level. Instructions for computing this indicator are described in the methodological document available in the documentations tab. Disaggregating results at sub-national level is not encouraged because estimates will suffer from substantial sampling and measurement error.
National
Individuals
Individuals of 15 years or older.
Sample survey data [ssd]
A Random Digit Dialling (RDD) approach was used to form a random sample of telephone numbers. Stratified phone numbers made available from telephone service providers or administrative registers were also used to integrate RDD when needed. Socio-demographic characteristics collected in the survey were then compared with the available information from recent national surveys to verify the extent to which the sample mirrored the total population structure. In case of discrepancies, post-stratification sampling weights were computed to adjust for the under-represented populations, typically using sex and education level. Exclusions: NA Design effect: NA
Computer Assisted Telephone Interview [CATI]
Statistical validation assesses the quality of the FIES data collected by testing their consistency with the assumptions of the Rasch model. This analysis involves the interpretation of several statistics that reveal 1) items that do not perform well in a given context, 2) cases with highly erratic response patterns, 3) pairs of items that may be redundant, and 4) the proportion of total variance in the population that is accounted for by the measurement model.
Not Available.
Since the population with access to mobile telephones is likely to differ from the rest of the population with respect to their access to food, post-hoc adjustments were made to control for the potential resulting bias. Post-stratification weights were built to adjust the sample distribution by gender and education of the respondent at admin-1 level, to match the same distribution in the total population. However, an additional step was needed to try to ascertain the food insecurity condition of those with access to phones compared to that of the total population.
Using FIES data collected by FAO through the GWP between 2014 and 2019, and a variable on access to mobile telephones that was also in the dataset, it was possible to compare the prevalence of food insecurity at moderate or severe level, and severe level only, of respondents with access to a mobile phone to that of the total population at national level.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
JP: Prevalence of Severe Wasting: Weight for Height: Male: % of Children under 5 data was reported at 0.300 % in 2010. JP: Prevalence of Severe Wasting: Weight for Height: Male: % of Children under 5 data is updated yearly, averaging 0.300 % from Dec 2010 (Median) to 2010, with 1 observations. JP: Prevalence of Severe Wasting: Weight for Height: Male: % of Children under 5 data remains active status in CEIC and is reported by World Bank. The data is categorized under Global Database’s Japan – Table JP.World Bank: Health Statistics. Prevalence of severe wasting, male, is the proportion of boys under age 5 whose weight for height is more than three standard deviations below the median for the international reference population ages 0-59.; ; World Health Organization, Global Database on Child Growth and Malnutrition. Country-level data are unadjusted data from national surveys, and thus may not be comparable across countries.; Linear mixed-effect model estimates; Undernourished children have lower resistance to infection and are more likely to die from common childhood ailments such as diarrheal diseases and respiratory infections. Frequent illness saps the nutritional status of those who survive, locking them into a vicious cycle of recurring sickness and faltering growth (UNICEF, www.childinfo.org). Estimates of child malnutrition, based on prevalence of underweight and stunting, are from national survey data. The proportion of underweight children is the most common malnutrition indicator. Being even mildly underweight increases the risk of death and inhibits cognitive development in children. And it perpetuates the problem across generations, as malnourished women are more likely to have low-birth-weight babies. Stunting, or being below median height for age, is often used as a proxy for multifaceted deprivation and as an indicator of long-term changes in malnutrition.
Facebook
TwitterSustainable Development Goal (SDG) target 2.1 commits countries to end hunger, ensure access by all people to safe, nutritious and sufficient food all year around. Indicator 2.1.2, “Prevalence of moderate or severe food insecurity based on the Food Insecurity Experience Scale (FIES)”, provides internationally-comparable estimates of the proportion of the population facing difficulties in accessing food. More detailed background information is available at http://www.fao.org/in-action/voices-of-the-hungry/fies/en/.
The FIES-based indicators are compiled using the FIES survey module, containing 8 questions. Two indicators can be computed:
1. The proportion of the population experiencing moderate or severe food insecurity (SDG indicator 2.1.2).
2. The proportion of the population experiencing severe food insecurity.
These data were collected by FAO through GeoPoll. National institutions can also collect FIES data by including the FIES survey module in nationally representative surveys.
Microdata can be used to calculate the indicator 2.1.2 at national level. Instructions for computing this indicator are described in the methodological document available in the documentations tab. Disaggregating results at sub-national level is not encouraged because estimates will suffer from substantial sampling and measurement error.
National
Individuals
Individuals of 15 years or older.
Sample survey data [ssd]
A Random Digit Dialling (RDD) approach was used to form a random sample of telephone numbers. Stratified phone numbers made available from telephone service providers or administrative registers were also used to integrate RDD when needed. Socio-demographic characteristics collected in the survey were then compared with the available information from recent national surveys to verify the extent to which the sample mirrored the total population structure. In case of discrepancies, post-stratification sampling weights were computed to adjust for the under-represented populations, typically using sex and education level. Exclusions: None Design effect: NA
Computer Assisted Telephone Interview [CATI]
Statistical validation assesses the quality of the FIES data collected by testing their consistency with the assumptions of the Rasch model. This analysis involves the interpretation of several statistics that reveal 1) items that do not perform well in a given context, 2) cases with highly erratic response patterns, 3) pairs of items that may be redundant, and 4) the proportion of total variance in the population that is accounted for by the measurement model.
The margin of error is estimated as NA. This is calculated around a proportion at the 95% confidence level. The maximum margin of error was calculated assuming a reported percentage of 50% and takes into account the design effect.
Since the population with access to mobile telephones is likely to differ from the rest of the population with respect to their access to food, post-hoc adjustments were made to control for the potential resulting bias. Post-stratification weights were built to adjust the sample distribution by gender and education of the respondent at admin-1 level, to match the same distribution in the total population. However, an additional step was needed to try to ascertain the food insecurity condition of those with access to phones compared to that of the total population.
Using FIES data collected by FAO through the GWP between 2014 and 2019, and a variable on access to mobile telephones that was also in the dataset, it was possible to compare the prevalence of food insecurity at moderate or severe level, and severe level only, of respondents with access to a mobile phone to that of the total population at national level. The variable HEALTHY was not considered in the computation of the published FAO food insecurity indicator based on FIES due to the results of the validation process.
Facebook
Twitterhttps://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
By Humanitarian Data Exchange [source]
This dataset provides comprehensive insights into critical health conditions around the world, such as mortality rate, malnutrition levels, and frequency of preventable diseases. It documents the prevalence of life-threatening diseases like malaria and tuberculosis, and are tracked alongside key health indicators like adult mortality rates, HIV prevalence, physicians per 10,000 people ratio and public health expenditures. Such metrics provide us with an accurate picture of how developed healthcare systems are in certain countries which ultimately leads to improvements in public policy formation and awareness amongst decision-makers. With this data it is possible to observe disparities between different regions of the world which can help inform global strategies for providing equitable care globally. This dataset is a valuable source for researchers interested in understanding global health trends over time or seeking to evaluate regional differences within countries
For more datasets, click here.
- 🚨 Your notebook can be here! 🚨!
This dataset provides comprehensive global health outcome data for countries around the world. It includes vital information such as infant mortality rates, child malnutrition rates, adult mortality rates, deaths due to malaria and tuberculosis, HIV prevalence rates, life expectancy at age 60 and public health expenditure. This dataset can be used to gain valuable insight into the challenges faced by different countries in providing a good quality of life for their citizens.
To use this dataset, first identify what questions you need answered and what outcomes you are looking to measure. You may want to look at specific disease-based indicators (e.g. malaria or tuberculosis), health-related indicators (e.g., nutrition), or overall population markers (e.g., life expectancy).
Then decide which data points from the provided fields will help answer your questions and provide the results needed - e.g,. infant mortality rate or HIV prevalence rate - extracting these values from relevant columns like “Infants lacking immunization (% of one-year-olds) Measles 2013” or “HIV prevalence, adult (% ages 15Ð49) 2013” respectively
Next extract other columnwise relevant information - e.g., country name — that could also aid your analysis using tools like Excel or Python's Pandas library; sorting through them based on any metric desired — e..g,, physicians per 10k people — while being mindful that some data points are missing in some cases (denoted by NA).
Finally perform basic analyses with either your own scripting language, like R/Python libraries' numerical functions with accompanying visuals/graphs etc if elucidating trends is desired; drawing meaningful conclusions about overall state of global health outcomes accordingly before making informed decisions thereafter if needed too!
- Create a world health map to visualize the differences in health outcomes across different countries and regions.
- Develop an AI-based decision support tool that identifies optimal public health policies or interventions based on these metrics for different countries.
- Design a dashboard or web app that displays and updates this data in real-time, to allow users to compare the current state of global health indicators and benchmark them against historical figures
If you use this dataset in your research, please credit the original authors. Data Source
License: CC0 1.0 Universal (CC0 1.0) - Public Domain Dedication No Copyright - You can copy, modify, distribute and perform the work, even for commercial purposes, all without asking permission. See Other Information.
File: health-outcomes-csv-1.csv | Column name | Description | |:-------------------------------------------------------------------------------|:--------------------------------------------------------------------------------------------------------------------| | Country | The name of the country. (String) ...