100+ datasets found
  1. Annual cause death numbers

    • kaggle.com
    zip
    Updated Mar 17, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    willian oliveira (2024). Annual cause death numbers [Dataset]. https://www.kaggle.com/datasets/willianoliveiragibin/annual-cause-death-numbers
    Explore at:
    zip(405869 bytes)Available download formats
    Dataset updated
    Mar 17, 2024
    Authors
    willian oliveira
    License

    https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/

    Description

    this graph was created in Tableu and Ourdataworld :

    https://www.googleapis.com/download/storage/v1/b/kaggle-user-content/o/inbox%2F16731800%2Fc5bb0b21c8b3a126eca89160e1d25d03%2Fgraph1.png?generation=1710708871099084&alt=media" alt="">

    https://www.googleapis.com/download/storage/v1/b/kaggle-user-content/o/inbox%2F16731800%2Ff81fcfa72e97f08202ba1cb06fe138da%2Fgraph2.png?generation=1710708877558039&alt=media" alt="">

    https://www.googleapis.com/download/storage/v1/b/kaggle-user-content/o/inbox%2F16731800%2Fabbdfd146844a7e8d19e277c2eecb83b%2Fgraph3.png?generation=1710708883608541&alt=media" alt="">

    Understanding the Global Distribution of HIV/AIDS Deaths

    Introduction:

    HIV/AIDS remains one of the most significant public health challenges globally, with its impact varying widely across countries and regions. While the overall share of deaths attributed to HIV/AIDS stands at around 1.5% globally, this statistic belies the stark disparities observed on a country-by-country basis. This essay delves into the global distribution of deaths from HIV/AIDS, examining both the overarching trends and the localized impacts across different regions, particularly focusing on Southern Sub-Saharan Africa.

    Understanding Global Trends:

    At a global level, HIV/AIDS accounts for approximately 1.5% of all deaths. This figure, though relatively low in comparison to other causes of mortality, represents a significant burden on public health systems and communities worldwide. However, when zooming in on specific regions, such as Europe, the share of deaths attributable to HIV/AIDS drops significantly, often comprising less than 0.1% of total mortality. This pattern suggests varying levels of prevalence and effectiveness of HIV/AIDS prevention and treatment strategies across different parts of the world.

    Regional Disparities:

    The distribution of HIV/AIDS deaths is not uniform across the globe, with certain regions experiencing disproportionately high burdens. Southern Sub-Saharan Africa emerges as a focal point of the HIV/AIDS epidemic, with a significant portion of deaths attributed to the virus occurring in this region. Factors such as limited access to healthcare, socio-economic disparities, cultural stigmatization, and insufficient education about HIV/AIDS contribute to the heightened prevalence and impact of the disease in this area.

    Southern Sub-Saharan Africa: A Hotspot for HIV/AIDS Deaths:

    Within Southern Sub-Saharan Africa, countries such as South Africa, Botswana, and Swaziland stand out for their exceptionally high rates of HIV/AIDS-related mortality. In these nations, HIV/AIDS can account for up to a quarter of all deaths, highlighting the acute nature of the epidemic in these regions. The reasons behind this disproportionate burden are multifaceted, encompassing issues ranging from inadequate healthcare infrastructure to socio-cultural barriers inhibiting prevention and treatment efforts.

    Challenges and Responses:

    Addressing the unequal distribution of HIV/AIDS deaths necessitates a multi-faceted approach that encompasses both prevention and treatment strategies tailored to the specific needs of affected communities. Efforts to expand access to antiretroviral therapy (ART), promote comprehensive sexual education, combat stigma, and strengthen healthcare systems are crucial components of an effective response. Moreover, fostering partnerships between governments, civil society organizations, and international entities is essential for coordinating resources and expertise to tackle the HIV/AIDS epidemic comprehensively.

    Lessons Learned and Future Directions:

    The global distribution of deaths from HIV/AIDS underscores the importance of context-specific interventions that take into account the unique social, economic, and cultural factors influencing the spread and impact of the disease. While progress has been made in reducing HIV/AIDS-related mortality in some regions, much work remains to be done, particularly in areas where the burden of the epidemic remains disproportionately high. Going forward, sustained investment in research, healthcare infrastructure, and community empowerment initiatives will be vital for achieving meaningful reductions in HIV/AIDS deaths worldwide.

    Conclusion:

    In conclusion, the global distribution of deaths from HIV/AIDS reveals a complex landscape characterized by both overarching trends and localized disparities. While the overall share of deaths attributable to HIV/AIDS may seem relatively modest on a global scale, the stark contrasts observed across different countries and regions underscore the need for targeted interventions tailored to the specific contexts in which the epidemic is most pronounced. By addressing the underlying social, economic, and healthcare-related factors driving the unequal distribution of HIV/AIDS deaths, the global co...

  2. C

    Death Profiles by County

    • data.chhs.ca.gov
    • data.ca.gov
    • +3more
    csv, zip
    Updated Nov 26, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    California Department of Public Health (2025). Death Profiles by County [Dataset]. https://data.chhs.ca.gov/dataset/death-profiles-by-county
    Explore at:
    csv(74351424), csv(75015194), csv(11738570), csv(1128641), csv(15127221), csv(60517511), csv(73906266), csv(60201673), csv(60676655), csv(28125832), csv(60023260), csv(51592721), csv(74689382), csv(52019564), csv(5095), csv(74043128), csv(24235858), csv(74497014), zip, csv(29775349)Available download formats
    Dataset updated
    Nov 26, 2025
    Dataset authored and provided by
    California Department of Public Health
    Description

    This dataset contains counts of deaths for California counties based on information entered on death certificates. Final counts are derived from static data and include out-of-state deaths to California residents, whereas provisional counts are derived from incomplete and dynamic data. Provisional counts are based on the records available when the data was retrieved and may not represent all deaths that occurred during the time period. Deaths involving injuries from external or environmental forces, such as accidents, homicide and suicide, often require additional investigation that tends to delay certification of the cause and manner of death. This can result in significant under-reporting of these deaths in provisional data.

    The final data tables include both deaths that occurred in each California county regardless of the place of residence (by occurrence) and deaths to residents of each California county (by residence), whereas the provisional data table only includes deaths that occurred in each county regardless of the place of residence (by occurrence). The data are reported as totals, as well as stratified by age, gender, race-ethnicity, and death place type. Deaths due to all causes (ALL) and selected underlying cause of death categories are provided. See temporal coverage for more information on which combinations are available for which years.

    The cause of death categories are based solely on the underlying cause of death as coded by the International Classification of Diseases. The underlying cause of death is defined by the World Health Organization (WHO) as "the disease or injury which initiated the train of events leading directly to death, or the circumstances of the accident or violence which produced the fatal injury." It is a single value assigned to each death based on the details as entered on the death certificate. When more than one cause is listed, the order in which they are listed can affect which cause is coded as the underlying cause. This means that similar events could be coded with different underlying causes of death depending on variations in how they were entered. Consequently, while underlying cause of death provides a convenient comparison between cause of death categories, it may not capture the full impact of each cause of death as it does not always take into account all conditions contributing to the death.

  3. Causes of Death - Our World In Data

    • kaggle.com
    zip
    Updated Mar 29, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    IVAN CHAVEZ (2022). Causes of Death - Our World In Data [Dataset]. https://www.kaggle.com/ivanchvez/causes-of-death-our-world-in-data
    Explore at:
    zip(1553815 bytes)Available download formats
    Dataset updated
    Mar 29, 2022
    Authors
    IVAN CHAVEZ
    License

    https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/

    Description

    56 million people died in 2017. What did they die from?

    The Global Burden of Disease is a major global study on the causes of death and disease published in the medical journal The Lancet. These estimates of the annual number of deaths dataset are shown here.

    Downloaded https://ourworldindata.org/causes-of-death dataset from first chart as CSV. Loaded the raw file in tableau prep for exploratory data distribution and applying some pivoting and cleaning. The output were uploaded in this dataset as well the original raw file.

    Please notice the raw file have some country agrupations by region, but there is no data indicating it's an aggregation, so be careful analyzing the whole dataset guessing there are just countries as level of detail data. In order to be more accurate, I begin to analyze countries using the ISO Country code ("Code" named column). If you have no clue as me what country ZAF is, Google is your best friend (South Africa) 😉.

  4. Mortality Statistics in US Cities

    • kaggle.com
    zip
    Updated Jan 23, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    The Devastator (2023). Mortality Statistics in US Cities [Dataset]. https://www.kaggle.com/datasets/thedevastator/mortality-statistics-in-us-cities
    Explore at:
    zip(96624 bytes)Available download formats
    Dataset updated
    Jan 23, 2023
    Authors
    The Devastator
    Area covered
    United States
    Description

    Mortality Statistics in US Cities

    Deaths by Age and Cause of Death in 2016

    By Health [source]

    About this dataset

    This dataset contains mortality statistics for 122 U.S. cities in 2016, providing detailed information about all deaths that occurred due to any cause, including pneumonia and influenza. The data is voluntarily reported from cities with populations of 100,000 or more, and it includes the place of death and the week during which the death certificate was filed. Data is provided broken down by age group and includes a flag indicating the reliability of each data set to help inform analysis. Each row also provides longitude and latitude information for each reporting area in order to make further analysis easier. These comprehensive mortality statistics are invaluable resources for tracking disease trends as well as making comparisons between different areas across the country in order to identify public health risks quickly and effectively

    More Datasets

    For more datasets, click here.

    Featured Notebooks

    • 🚨 Your notebook can be here! 🚨!

    How to use the dataset

    This dataset contains mortality rates for 122 U.S. cities in 2016, including deaths by age group and cause of death. The data can be used to study various trends in mortality and contribute to the understanding of how different diseases impact different age groups across the country.

    In order to use the data, firstly one has to identify which variables they would like to use from this dataset. These include: reporting area; MMWR week; All causes by age greater than 65 years; All causes by age 45-64 years; All causes by age 25-44 years; All causes by age 1-24 years; All causes less than 1 year old; Pneumonia and Influenza total fatalities; Location (1 & 2); flag indicating reliability of data.

    Once you have identified the variables that you are interested in,you will need to filter the dataset so that it only includes relevant information for your analysis or research purposes. For example, if you are looking at trends between different ages, then all you would need is information on those 3 specific cause groups (greater than 65, 45-64 and 25-44). You can do this using a selection tool that allows you to pick only certain columns from your data set or an excel filter tool if your data is stored as a csv file type .

    Next step is preparing your data - it’s important for efficient analysis also helpful when there are too many variables/columns which can confuse our analysis process – eliminate unnecessary columns, rename column labels where needed etc ... In addition , make sure we clean up any missing values / outliers / incorrect entries before further investigation .Remember , outliers or corrupt entries may lead us into incorrect conclusions upon analyzing our set ! Once we complete the cleaning steps , now its safe enough transit into drawing insights !

    The last step involves using statistical methods such as linear regression with multiple predictors or descriptive statistical measures such as mean/median etc ..to draw key insights based on analysis done so far and generate some actionable points !

    With these steps taken care off , now its easier for anyone who decides dive into another project involving this particular dataset with added advantage formulated out of existing work done over our previous investigations!

    Research Ideas

    • Creating population health profiles for cities in the U.S.
    • Tracking public health trends across different age groups
    • Analyzing correlations between mortality and geographical locations

    Acknowledgements

    If you use this dataset in your research, please credit the original authors. Data Source

    License

    License: Dataset copyright by authors - You are free to: - Share - copy and redistribute the material in any medium or format for any purpose, even commercially. - Adapt - remix, transform, and build upon the material for any purpose, even commercially. - You must: - Give appropriate credit - Provide a link to the license, and indicate if changes were made. - ShareAlike - You must distribute your contributions under the same license as the original. - Keep intact - all notices that refer to this license, including copyright notices.

    Columns

    File: rows.csv | Column name | Description | |:--------------------------------------------|:-----------------------------------...

  5. M

    World Death Rate | Historical Data | Chart | 1950-2025

    • macrotrends.net
    csv
    Updated Oct 31, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    MACROTRENDS (2025). World Death Rate | Historical Data | Chart | 1950-2025 [Dataset]. https://www.macrotrends.net/datasets/global-metrics/countries/wld/world/death-rate
    Explore at:
    csvAvailable download formats
    Dataset updated
    Oct 31, 2025
    Dataset authored and provided by
    MACROTRENDS
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Jan 1, 1950 - Dec 31, 2025
    Area covered
    World
    Description

    Historical dataset showing World death rate by year from 1950 to 2025.

  6. Global Mortality Data

    • kaggle.com
    zip
    Updated May 31, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    hrterhrter (2024). Global Mortality Data [Dataset]. https://www.kaggle.com/datasets/programmerrdai/who-mortality-database
    Explore at:
    zip(78820618 bytes)Available download formats
    Dataset updated
    May 31, 2024
    Authors
    hrterhrter
    License

    MIT Licensehttps://opensource.org/licenses/MIT
    License information was derived automatically

    Description

    This dataset offers a detailed compilation of mortality data reported annually by WHO Member States, spanning from 1950 to the present. The data is derived from national civil registration and vital statistics systems, providing an invaluable resource for comparative epidemiological studies.

    Key Features: - Detailed cause-of-death information categorized by ICD-7, ICD-8, ICD-9, and ICD-10 revisions. - Mortality data from over 190 countries, updated to reflect the latest available year. - Population and live birth reference data included to facilitate demographic analyses. - Comprehensive coverage estimates and completeness data for vital registration systems across Member States. - Provided in CSV format for ease of import into database management systems, ensuring accessibility for large-scale data analyses.

    This dataset is intended for research purposes and requires adequate IT resources for use. It includes the necessary documentation, file structures, and code reference tables to facilitate detailed analyses. Users are advised to consult the "documentation.zip" file for further instructions on data handling and system requirements.

    Important Considerations: - Data use is restricted to non-commercial purposes. - Users must acknowledge WHO as the source and attribute any analyses, interpretations, or conclusions to the author of the published data, not WHO. - Adherence to WHO guidelines for data use and dissemination is required.

    Unlock the potential of this rich dataset for your research on global health trends, mortality rates, and cause-of-death analyses.

  7. w

    Dataset of country full name and death rate of countries per year in...

    • workwithdata.com
    Updated Apr 9, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Work With Data (2025). Dataset of country full name and death rate of countries per year in Trinidad and Tobago (Historical) [Dataset]. https://www.workwithdata.com/datasets/countries-yearly?col=country%2Ccountry_long%2Cdate%2Cdeath_rate&f=1&fcol0=country&fop0=%3D&fval0=Trinidad+and+Tobago
    Explore at:
    Dataset updated
    Apr 9, 2025
    Dataset authored and provided by
    Work With Data
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Trinidad and Tobago
    Description

    This dataset is about countries per year in Trinidad and Tobago. It has 64 rows. It features 4 columns: country, country full name, and death rate.

  8. T

    CORONAVIRUS DEATHS by Country Dataset

    • tradingeconomics.com
    csv, excel, json, xml
    Updated Mar 4, 2020
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    TRADING ECONOMICS (2020). CORONAVIRUS DEATHS by Country Dataset [Dataset]. https://tradingeconomics.com/country-list/coronavirus-deaths
    Explore at:
    csv, excel, xml, jsonAvailable download formats
    Dataset updated
    Mar 4, 2020
    Dataset authored and provided by
    TRADING ECONOMICS
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    2025
    Area covered
    World
    Description

    This dataset provides values for CORONAVIRUS DEATHS reported in several countries. The data includes current values, previous releases, historical highs and record lows, release frequency, reported unit and currency.

  9. T

    World Death Rate Crude Per 1 000 People

    • tradingeconomics.com
    csv, excel, json, xml
    Updated May 28, 2017
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    TRADING ECONOMICS (2017). World Death Rate Crude Per 1 000 People [Dataset]. https://tradingeconomics.com/world/death-rate-crude-per-1-000-people-wb-data.html
    Explore at:
    excel, xml, csv, jsonAvailable download formats
    Dataset updated
    May 28, 2017
    Dataset authored and provided by
    TRADING ECONOMICS
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Jan 1, 1976 - Dec 31, 2025
    Area covered
    World
    Description

    Actual value and historical data chart for World Death Rate Crude Per 1 000 People

  10. d

    Death Profiles by Leading Causes of Death

    • catalog.data.gov
    • data.chhs.ca.gov
    • +4more
    Updated Nov 23, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    California Department of Public Health (2025). Death Profiles by Leading Causes of Death [Dataset]. https://catalog.data.gov/dataset/death-profiles-by-leading-causes-of-death-35077
    Explore at:
    Dataset updated
    Nov 23, 2025
    Dataset provided by
    California Department of Public Health
    Description

    Data for deaths by leading cause of death categories are now available in the death profiles dataset for each geographic granularity. The cause of death categories are based solely on the underlying cause of death as coded by the International Classification of Diseases. The underlying cause of death is defined by the World Health Organization (WHO) as "the disease or injury which initiated the train of events leading directly to death, or the circumstances of the accident or violence which produced the fatal injury." It is a single value assigned to each death based on the details as entered on the death certificate. When more than one cause is listed, the order in which they are listed can affect which cause is coded as the underlying cause. This means that similar events could be coded with different underlying causes of death depending on variations in how they were entered. Consequently, while underlying cause of death provides a convenient comparison between cause of death categories, it may not capture the full impact of each cause of death as it does not always take into account all conditions contributing to the death. Cause of death categories for years 1999 and later are based on tenth revision of International Classification of Diseases (ICD-10) codes. Comparable categories are provided for years 1979 through 1998 based on ninth revision (ICD-9) codes. For more information on the comparability of cause of death classification between ICD revisions see Comparability of Cause-of-death Between ICD Revisions.

  11. w

    Dataset of country full name and death rate of countries per year in Angola...

    • workwithdata.com
    Updated Apr 9, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Work With Data (2025). Dataset of country full name and death rate of countries per year in Angola (Historical) [Dataset]. https://www.workwithdata.com/datasets/countries-yearly?col=country%2Ccountry_long%2Cdate%2Cdeath_rate&f=1&fcol0=country&fop0=%3D&fval0=Angola
    Explore at:
    Dataset updated
    Apr 9, 2025
    Dataset authored and provided by
    Work With Data
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Angola
    Description

    This dataset is about countries per year in Angola. It has 64 rows. It features 4 columns: country, country full name, and death rate.

  12. Statewide Death Profiles

    • data.chhs.ca.gov
    • data.ca.gov
    • +3more
    csv, zip
    Updated Dec 2, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    California Department of Public Health (2025). Statewide Death Profiles [Dataset]. https://data.chhs.ca.gov/dataset/statewide-death-profiles
    Explore at:
    csv(4689434), csv(164006), csv(5034), csv(476576), csv(2026589), csv(5401561), csv(463460), csv(419332), csv(200270), csv(16301), zipAvailable download formats
    Dataset updated
    Dec 2, 2025
    Dataset authored and provided by
    California Department of Public Healthhttps://www.cdph.ca.gov/
    Description

    This dataset contains counts of deaths for California as a whole based on information entered on death certificates. Final counts are derived from static data and include out-of-state deaths to California residents, whereas provisional counts are derived from incomplete and dynamic data. Provisional counts are based on the records available when the data was retrieved and may not represent all deaths that occurred during the time period. Deaths involving injuries from external or environmental forces, such as accidents, homicide and suicide, often require additional investigation that tends to delay certification of the cause and manner of death. This can result in significant under-reporting of these deaths in provisional data.

    The final data tables include both deaths that occurred in California regardless of the place of residence (by occurrence) and deaths to California residents (by residence), whereas the provisional data table only includes deaths that occurred in California regardless of the place of residence (by occurrence). The data are reported as totals, as well as stratified by age, gender, race-ethnicity, and death place type. Deaths due to all causes (ALL) and selected underlying cause of death categories are provided. See temporal coverage for more information on which combinations are available for which years.

    The cause of death categories are based solely on the underlying cause of death as coded by the International Classification of Diseases. The underlying cause of death is defined by the World Health Organization (WHO) as "the disease or injury which initiated the train of events leading directly to death, or the circumstances of the accident or violence which produced the fatal injury." It is a single value assigned to each death based on the details as entered on the death certificate. When more than one cause is listed, the order in which they are listed can affect which cause is coded as the underlying cause. This means that similar events could be coded with different underlying causes of death depending on variations in how they were entered. Consequently, while underlying cause of death provides a convenient comparison between cause of death categories, it may not capture the full impact of each cause of death as it does not always take into account all conditions contributing to the death.

  13. COVID-19 cases and deaths per million in 210 countries as of July 13, 2022

    • statista.com
    Updated Jul 13, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2022). COVID-19 cases and deaths per million in 210 countries as of July 13, 2022 [Dataset]. https://www.statista.com/statistics/1104709/coronavirus-deaths-worldwide-per-million-inhabitants/
    Explore at:
    Dataset updated
    Jul 13, 2022
    Dataset authored and provided by
    Statistahttp://statista.com/
    Area covered
    Worldwide
    Description

    Based on a comparison of coronavirus deaths in 210 countries relative to their population, Peru had the most losses to COVID-19 up until July 13, 2022. As of the same date, the virus had infected over 557.8 million people worldwide, and the number of deaths had totaled more than 6.3 million. Note, however, that COVID-19 test rates can vary per country. Additionally, big differences show up between countries when combining the number of deaths against confirmed COVID-19 cases. The source seemingly does not differentiate between "the Wuhan strain" (2019-nCOV) of COVID-19, "the Kent mutation" (B.1.1.7) that appeared in the UK in late 2020, the 2021 Delta variant (B.1.617.2) from India or the Omicron variant (B.1.1.529) from South Africa.

    The difficulties of death figures

    This table aims to provide a complete picture on the topic, but it very much relies on data that has become more difficult to compare. As the coronavirus pandemic developed across the world, countries already used different methods to count fatalities, and they sometimes changed them during the course of the pandemic. On April 16, for example, the Chinese city of Wuhan added a 50 percent increase in their death figures to account for community deaths. These deaths occurred outside of hospitals and went unaccounted for so far. The state of New York did something similar two days before, revising their figures with 3,700 new deaths as they started to include “assumed” coronavirus victims. The United Kingdom started counting deaths in care homes and private households on April 29, adjusting their number with about 5,000 new deaths (which were corrected lowered again by the same amount on August 18). This makes an already difficult comparison even more difficult. Belgium, for example, counts suspected coronavirus deaths in their figures, whereas other countries have not done that (yet). This means two things. First, it could have a big impact on both current as well as future figures. On April 16 already, UK health experts stated that if their numbers were corrected for community deaths like in Wuhan, the UK number would change from 205 to “above 300”. This is exactly what happened two weeks later. Second, it is difficult to pinpoint exactly which countries already have “revised” numbers (like Belgium, Wuhan or New York) and which ones do not. One work-around could be to look at (freely accessible) timelines that track the reported daily increase of deaths in certain countries. Several of these are available on our platform, such as for Belgium, Italy and Sweden. A sudden large increase might be an indicator that the domestic sources changed their methodology.

    Where are these numbers coming from?

    The numbers shown here were collected by Johns Hopkins University, a source that manually checks the data with domestic health authorities. For the majority of countries, this is from national authorities. In some cases, like China, the United States, Canada or Australia, city reports or other various state authorities were consulted. In this statistic, these separately reported numbers were put together. For more information or other freely accessible content, please visit our dedicated Facts and Figures page.

  14. Effect of suicide rates on life expectancy dataset

    • zenodo.org
    • data.niaid.nih.gov
    csv
    Updated Apr 16, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Filip Zoubek; Filip Zoubek (2021). Effect of suicide rates on life expectancy dataset [Dataset]. http://doi.org/10.5281/zenodo.4694270
    Explore at:
    csvAvailable download formats
    Dataset updated
    Apr 16, 2021
    Dataset provided by
    Zenodohttp://zenodo.org/
    Authors
    Filip Zoubek; Filip Zoubek
    License

    Attribution-NonCommercial-ShareAlike 3.0 (CC BY-NC-SA 3.0)https://creativecommons.org/licenses/by-nc-sa/3.0/
    License information was derived automatically

    Description

    Effect of suicide rates on life expectancy dataset

    Abstract
    In 2015, approximately 55 million people died worldwide, of which 8 million committed suicide. In the USA, one of the main causes of death is the aforementioned suicide, therefore, this experiment is dealing with the question of how much suicide rates affects the statistics of average life expectancy.
    The experiment takes two datasets, one with the number of suicides and life expectancy in the second one and combine data into one dataset. Subsequently, I try to find any patterns and correlations among the variables and perform statistical test using simple regression to confirm my assumptions.

    Data

    The experiment uses two datasets - WHO Suicide Statistics[1] and WHO Life Expectancy[2], which were firstly appropriately preprocessed. The final merged dataset to the experiment has 13 variables, where country and year are used as index: Country, Year, Suicides number, Life expectancy, Adult Mortality, which is probability of dying between 15 and 60 years per 1000 population, Infant deaths, which is number of Infant Deaths per 1000 population, Alcohol, which is alcohol, recorded per capita (15+) consumption, Under-five deaths, which is number of under-five deaths per 1000 population, HIV/AIDS, which is deaths per 1 000 live births HIV/AIDS, GDP, which is Gross Domestic Product per capita, Population, Income composition of resources, which is Human Development Index in terms of income composition of resources, and Schooling, which is number of years of schooling.

    LICENSE

    THE EXPERIMENT USES TWO DATASET - WHO SUICIDE STATISTICS AND WHO LIFE EXPECTANCY, WHICH WERE COLLEECTED FROM WHO AND UNITED NATIONS WEBSITE. THEREFORE, ALL DATASETS ARE UNDER THE LICENSE ATTRIBUTION-NONCOMMERCIAL-SHAREALIKE 3.0 IGO (https://creativecommons.org/licenses/by-nc-sa/3.0/igo/).

    [1] https://www.kaggle.com/szamil/who-suicide-statistics

    [2] https://www.kaggle.com/kumarajarshi/life-expectancy-who

  15. T

    World Coronavirus COVID-19 Deaths

    • tradingeconomics.com
    csv, excel, json, xml
    Updated Mar 9, 2020
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    TRADING ECONOMICS (2020). World Coronavirus COVID-19 Deaths [Dataset]. https://tradingeconomics.com/world/coronavirus-deaths
    Explore at:
    excel, csv, xml, jsonAvailable download formats
    Dataset updated
    Mar 9, 2020
    Dataset authored and provided by
    TRADING ECONOMICS
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Jan 4, 2020 - May 17, 2023
    Area covered
    World
    Description

    The World Health Organization reported 6932591 Coronavirus Deaths since the epidemic began. In addition, countries reported 766440796 Coronavirus Cases. This dataset provides - World Coronavirus Deaths- actual values, historical data, forecast, chart, statistics, economic calendar and news.

  16. U

    United States US: Death Rate: Crude: per 1000 People

    • ceicdata.com
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    CEICdata.com, United States US: Death Rate: Crude: per 1000 People [Dataset]. https://www.ceicdata.com/en/united-states/population-and-urbanization-statistics/us-death-rate-crude-per-1000-people
    Explore at:
    Dataset provided by
    CEICdata.com
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Dec 1, 2005 - Dec 1, 2016
    Area covered
    United States
    Variables measured
    Population
    Description

    United States US: Death Rate: Crude: per 1000 People data was reported at 8.400 Ratio in 2016. This records a decrease from the previous number of 8.440 Ratio for 2015. United States US: Death Rate: Crude: per 1000 People data is updated yearly, averaging 8.700 Ratio from Dec 1960 (Median) to 2016, with 57 observations. The data reached an all-time high of 9.800 Ratio in 1968 and a record low of 7.900 Ratio in 2009. United States US: Death Rate: Crude: per 1000 People data remains active status in CEIC and is reported by World Bank. The data is categorized under Global Database’s United States – Table US.World Bank.WDI: Population and Urbanization Statistics. Crude death rate indicates the number of deaths occurring during the year, per 1,000 population estimated at midyear. Subtracting the crude death rate from the crude birth rate provides the rate of natural increase, which is equal to the rate of population change in the absence of migration.; ; (1) United Nations Population Division. World Population Prospects: 2017 Revision. (2) Census reports and other statistical publications from national statistical offices, (3) Eurostat: Demographic Statistics, (4) United Nations Statistical Division. Population and Vital Statistics Reprot (various years), (5) U.S. Census Bureau: International Database, and (6) Secretariat of the Pacific Community: Statistics and Demography Programme.; Weighted average;

  17. C

    Death Profiles by ZIP Code

    • data.chhs.ca.gov
    • data.ca.gov
    • +2more
    csv, zip
    Updated Nov 7, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    California Department of Public Health (2025). Death Profiles by ZIP Code [Dataset]. https://data.chhs.ca.gov/dataset/death-profiles-by-zip-code
    Explore at:
    csv(4571), csv(78958555), csv(80055974), csv(80054609), csv(40627562), zipAvailable download formats
    Dataset updated
    Nov 7, 2025
    Dataset authored and provided by
    California Department of Public Health
    Description

    This dataset contains counts of deaths for California residents by ZIP Code based on information entered on death certificates. Final counts are derived from static data and include out-of-state deaths of California residents. The data tables include deaths of residents of California by ZIP Code of residence (by residence). The data are reported as totals, as well as stratified by age and gender. Deaths due to all causes (ALL) and selected underlying cause of death categories are provided. See temporal coverage for more information on which combinations are available for which years.

    The cause of death categories are based solely on the underlying cause of death as coded by the International Classification of Diseases. The underlying cause of death is defined by the World Health Organization (WHO) as "the disease or injury which initiated the train of events leading directly to death, or the circumstances of the accident or violence which produced the fatal injury." It is a single value assigned to each death based on the details as entered on the death certificate. When more than one cause is listed, the order in which they are listed can affect which cause is coded as the underlying cause. This means that similar events could be coded with different underlying causes of death depending on variations in how they were entered. Consequently, while underlying cause of death provides a convenient comparison between cause of death categories, it may not capture the full impact of each cause of death as it does not always take into account all conditions contributing to the death.

  18. World Deaths and Causes (1990 - 2019)

    • kaggle.com
    zip
    Updated Nov 29, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Madhur Pant (2022). World Deaths and Causes (1990 - 2019) [Dataset]. https://www.kaggle.com/datasets/madhurpant/world-deaths-and-causes-1990-2019
    Explore at:
    zip(452267 bytes)Available download formats
    Dataset updated
    Nov 29, 2022
    Authors
    Madhur Pant
    License

    https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/

    Area covered
    World
    Description

    Around 56 million people die each year.

    This Dataset contains the causes of death and how the causes of death changed over time between different countries and world regions.

  19. N

    Norway NO: Death Rate: Crude: per 1000 People

    • ceicdata.com
    Updated May 15, 2018
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    CEICdata.com (2018). Norway NO: Death Rate: Crude: per 1000 People [Dataset]. https://www.ceicdata.com/en/norway/population-and-urbanization-statistics/no-death-rate-crude-per-1000-people
    Explore at:
    Dataset updated
    May 15, 2018
    Dataset provided by
    CEICdata.com
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Dec 1, 2005 - Dec 1, 2016
    Area covered
    Norway
    Variables measured
    Population
    Description

    Norway NO: Death Rate: Crude: per 1000 People data was reported at 7.800 Ratio in 2016. This stayed constant from the previous number of 7.800 Ratio for 2015. Norway NO: Death Rate: Crude: per 1000 People data is updated yearly, averaging 10.000 Ratio from Dec 1960 (Median) to 2016, with 57 observations. The data reached an all-time high of 10.900 Ratio in 1990 and a record low of 7.800 Ratio in 2016. Norway NO: Death Rate: Crude: per 1000 People data remains active status in CEIC and is reported by World Bank. The data is categorized under Global Database’s Norway – Table NO.World Bank.WDI: Population and Urbanization Statistics. Crude death rate indicates the number of deaths occurring during the year, per 1,000 population estimated at midyear. Subtracting the crude death rate from the crude birth rate provides the rate of natural increase, which is equal to the rate of population change in the absence of migration.; ; (1) United Nations Population Division. World Population Prospects: 2017 Revision. (2) Census reports and other statistical publications from national statistical offices, (3) Eurostat: Demographic Statistics, (4) United Nations Statistical Division. Population and Vital Statistics Reprot (various years), (5) U.S. Census Bureau: International Database, and (6) Secretariat of the Pacific Community: Statistics and Demography Programme.; Weighted average;

  20. G

    Death rate by country, around the world | TheGlobalEconomy.com

    • theglobaleconomy.com
    csv, excel, xml
    Updated Jan 13, 2015
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Globalen LLC (2015). Death rate by country, around the world | TheGlobalEconomy.com [Dataset]. www.theglobaleconomy.com/rankings/Death_rate/
    Explore at:
    xml, csv, excelAvailable download formats
    Dataset updated
    Jan 13, 2015
    Dataset authored and provided by
    Globalen LLC
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Dec 31, 1960 - Dec 31, 2023
    Area covered
    World
    Description

    The average for 2022 based on 196 countries was 8.24 deaths per 1000 people. The highest value was in the Central African Republic: 55.13 deaths per 1000 people and the lowest value was in Qatar: 0.93 deaths per 1000 people. The indicator is available from 1960 to 2023. Below is a chart for all countries where data are available.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
willian oliveira (2024). Annual cause death numbers [Dataset]. https://www.kaggle.com/datasets/willianoliveiragibin/annual-cause-death-numbers
Organization logo

Annual cause death numbers

A global epidemic and the leading cause of death in some countries.

Explore at:
zip(405869 bytes)Available download formats
Dataset updated
Mar 17, 2024
Authors
willian oliveira
License

https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/

Description

this graph was created in Tableu and Ourdataworld :

https://www.googleapis.com/download/storage/v1/b/kaggle-user-content/o/inbox%2F16731800%2Fc5bb0b21c8b3a126eca89160e1d25d03%2Fgraph1.png?generation=1710708871099084&alt=media" alt="">

https://www.googleapis.com/download/storage/v1/b/kaggle-user-content/o/inbox%2F16731800%2Ff81fcfa72e97f08202ba1cb06fe138da%2Fgraph2.png?generation=1710708877558039&alt=media" alt="">

https://www.googleapis.com/download/storage/v1/b/kaggle-user-content/o/inbox%2F16731800%2Fabbdfd146844a7e8d19e277c2eecb83b%2Fgraph3.png?generation=1710708883608541&alt=media" alt="">

Understanding the Global Distribution of HIV/AIDS Deaths

Introduction:

HIV/AIDS remains one of the most significant public health challenges globally, with its impact varying widely across countries and regions. While the overall share of deaths attributed to HIV/AIDS stands at around 1.5% globally, this statistic belies the stark disparities observed on a country-by-country basis. This essay delves into the global distribution of deaths from HIV/AIDS, examining both the overarching trends and the localized impacts across different regions, particularly focusing on Southern Sub-Saharan Africa.

Understanding Global Trends:

At a global level, HIV/AIDS accounts for approximately 1.5% of all deaths. This figure, though relatively low in comparison to other causes of mortality, represents a significant burden on public health systems and communities worldwide. However, when zooming in on specific regions, such as Europe, the share of deaths attributable to HIV/AIDS drops significantly, often comprising less than 0.1% of total mortality. This pattern suggests varying levels of prevalence and effectiveness of HIV/AIDS prevention and treatment strategies across different parts of the world.

Regional Disparities:

The distribution of HIV/AIDS deaths is not uniform across the globe, with certain regions experiencing disproportionately high burdens. Southern Sub-Saharan Africa emerges as a focal point of the HIV/AIDS epidemic, with a significant portion of deaths attributed to the virus occurring in this region. Factors such as limited access to healthcare, socio-economic disparities, cultural stigmatization, and insufficient education about HIV/AIDS contribute to the heightened prevalence and impact of the disease in this area.

Southern Sub-Saharan Africa: A Hotspot for HIV/AIDS Deaths:

Within Southern Sub-Saharan Africa, countries such as South Africa, Botswana, and Swaziland stand out for their exceptionally high rates of HIV/AIDS-related mortality. In these nations, HIV/AIDS can account for up to a quarter of all deaths, highlighting the acute nature of the epidemic in these regions. The reasons behind this disproportionate burden are multifaceted, encompassing issues ranging from inadequate healthcare infrastructure to socio-cultural barriers inhibiting prevention and treatment efforts.

Challenges and Responses:

Addressing the unequal distribution of HIV/AIDS deaths necessitates a multi-faceted approach that encompasses both prevention and treatment strategies tailored to the specific needs of affected communities. Efforts to expand access to antiretroviral therapy (ART), promote comprehensive sexual education, combat stigma, and strengthen healthcare systems are crucial components of an effective response. Moreover, fostering partnerships between governments, civil society organizations, and international entities is essential for coordinating resources and expertise to tackle the HIV/AIDS epidemic comprehensively.

Lessons Learned and Future Directions:

The global distribution of deaths from HIV/AIDS underscores the importance of context-specific interventions that take into account the unique social, economic, and cultural factors influencing the spread and impact of the disease. While progress has been made in reducing HIV/AIDS-related mortality in some regions, much work remains to be done, particularly in areas where the burden of the epidemic remains disproportionately high. Going forward, sustained investment in research, healthcare infrastructure, and community empowerment initiatives will be vital for achieving meaningful reductions in HIV/AIDS deaths worldwide.

Conclusion:

In conclusion, the global distribution of deaths from HIV/AIDS reveals a complex landscape characterized by both overarching trends and localized disparities. While the overall share of deaths attributable to HIV/AIDS may seem relatively modest on a global scale, the stark contrasts observed across different countries and regions underscore the need for targeted interventions tailored to the specific contexts in which the epidemic is most pronounced. By addressing the underlying social, economic, and healthcare-related factors driving the unequal distribution of HIV/AIDS deaths, the global co...

Search
Clear search
Close search
Google apps
Main menu