Facebook
Twitterhttps://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
In the following maps, the U.S. states are divided into groups based on the rates at which people developed or died from cancer in 2013, the most recent year for which incidence data are available.
The rates are the numbers out of 100,000 people who developed or died from cancer each year.
Incidence Rates by State The number of people who get cancer is called cancer incidence. In the United States, the rate of getting cancer varies from state to state.
*Rates are per 100,000 and are age-adjusted to the 2000 U.S. standard population.
‡Rates are not shown if the state did not meet USCS publication criteria or if the state did not submit data to CDC.
†Source: U.S. Cancer Statistics Working Group. United States Cancer Statistics: 1999–2013 Incidence and Mortality Web-based Report. Atlanta (GA): Department of Health and Human Services, Centers for Disease Control and Prevention, and National Cancer Institute; 2016. Available at: http://www.cdc.gov/uscs.
Death Rates by State Rates of dying from cancer also vary from state to state.
*Rates are per 100,000 and are age-adjusted to the 2000 U.S. standard population.
†Source: U.S. Cancer Statistics Working Group. United States Cancer Statistics: 1999–2013 Incidence and Mortality Web-based Report. Atlanta (GA): Department of Health and Human Services, Centers for Disease Control and Prevention, and National Cancer Institute; 2016. Available at: http://www.cdc.gov/uscs.
Facebook
TwitterBy Data Exercises [source]
This dataset is a comprehensive collection of data from county-level cancer mortality and incidence rates in the United States between 2000-2014. This data provides an unprecedented level of detail into cancer cases, deaths, and trends at a local level. The included columns include County, FIPS, age-adjusted death rate, average death rate per year, recent trend (2) in death rates, recent 5-year trend (2) in death rates and average annual count for each county. This dataset can be used to provide deep insight into the patterns and effects of cancer on communities as well as help inform policy decisions related to mitigating risk factors or increasing preventive measures such as screenings. With this comprehensive set of records from across the United States over 15 years, you will be able to make informed decisions regarding individual patient care or policy development within your own community!
For more datasets, click here.
- 🚨 Your notebook can be here! 🚨!
This dataset provides comprehensive US county-level cancer mortality and incidence rates from 2000 to 2014. It includes the mortality and incidence rate for each county, as well as whether the county met the objective of 45.5 deaths per 100,000 people. It also provides information on recent trends in death rates and average annual counts of cases over the five year period studied.
This dataset can be extremely useful to researchers looking to study trends in cancer death rates across counties. By using this data, researchers will be able to gain valuable insight into how different counties are performing in terms of providing treatment and prevention services for cancer patients and whether preventative measures and healthcare access are having an effect on reducing cancer mortality rates over time. This data can also be used to inform policy makers about counties needing more target prevention efforts or additional resources for providing better healthcare access within at risk communities.
When using this dataset, it is important to pay close attention to any qualitative columns such as “Recent Trend” or “Recent 5-Year Trend (2)” that may provide insights into long term changes that may not be readily apparent when using quantitative variables such as age-adjusted death rate or average deaths per year over shorter periods of time like one year or five years respectively. Additionally, when studying differences between different counties it is important to take note of any standard FIPS code differences that may indicate that data was collected by a different source with a difference methodology than what was used in other areas studied
- Using this dataset, we can identify patterns in cancer mortality and incidence rates that are statistically significant to create treatment regimens or preventive measures specifically targeting those areas.
- This data can be useful for policymakers to target areas with elevated cancer mortality and incidence rates so they can allocate financial resources to these areas more efficiently.
- This dataset can be used to investigate which factors (such as pollution levels, access to medical care, genetic make up) may have an influence on the cancer mortality and incidence rates in different US counties
If you use this dataset in your research, please credit the original authors. Data Source
License: Dataset copyright by authors - You are free to: - Share - copy and redistribute the material in any medium or format for any purpose, even commercially. - Adapt - remix, transform, and build upon the material for any purpose, even commercially. - You must: - Give appropriate credit - Provide a link to the license, and indicate if changes were made. - ShareAlike - You must distribute your contributions under the same license as the original. - Keep intact - all notices that refer to this license, including copyright notices.
File: death .csv | Column name | Description | |:-------------------------------------------|:-------------------------------------------------------------------...
Facebook
TwitterMortality Rates for Lake County, Illinois. Explanation of field attributes: Average Age of Death – The average age at which a people in the given zip code die. Cancer Deaths – Cancer deaths refers to individuals who have died of cancer as the underlying cause. This is a rate per 100,000. Heart Disease Related Deaths – Heart Disease Related Deaths refers to individuals who have died of heart disease as the underlying cause. This is a rate per 100,000. COPD Related Deaths – COPD Related Deaths refers to individuals who have died of chronic obstructive pulmonary disease (COPD) as the underlying cause. This is a rate per 100,000.
Facebook
TwitterOpen Government Licence 3.0http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
License information was derived automatically
This dataset presents the mortality rate from cancer among individuals under the age of 75 within the Birmingham and Solihull area. It captures the number of deaths attributed to all cancers (classified under ICD-10 codes C00 to C97) and expresses this as a directly age-standardised rate per 100,000 population. The data is structured in quinary age bands and is available for both single-year and three-year rolling averages, providing a comprehensive view of premature cancer mortality trends in the region.
Rationale Reducing premature mortality from cancer is a key public health priority. This indicator helps track progress in lowering the number of cancer-related deaths among people under 75, supporting efforts to improve early diagnosis, treatment, and prevention strategies.
Numerator The numerator is the number of deaths from all cancers (ICD-10 codes C00 to C97) registered in the respective calendar years, for individuals aged under 75. These figures are aggregated into quinary age bands and sourced from the Death Register.
Denominator The denominator is the population of individuals under 75 years of age, also aggregated into quinary age bands. For single-year rates, the population for that year is used. For three-year rolling averages, the population-years are aggregated across the three years. The source of this data is the 2021 Census.
Caveats Data may not align exactly with published Office for National Statistics (ONS) figures due to differences in postcode lookup versions and the application of comparability ratios in Office for Health Improvement and Disparities (OHID) data. Users should be cautious when comparing this dataset with other national statistics.
External references Further information and related indicators can be found on the OHID Fingertips platform.
Localities ExplainedThis dataset contains data based on either the resident locality or registered locality of the patient, a distinction is made between resident locality and registered locality populations:Resident Locality refers to individuals who live within the defined geographic boundaries of the locality. These boundaries are aligned with official administrative areas such as wards and Lower Layer Super Output Areas (LSOAs).Registered Locality refers to individuals who are registered with GP practices that are assigned to a locality based on the Primary Care Network (PCN) they belong to. These assignments are approximate—PCNs are mapped to a locality based on the location of most of their GP surgeries. As a result, locality-registered patients may live outside the locality, sometimes even in different towns or cities.This distinction is important because some health indicators are only available at GP practice level, without information on where patients actually reside. In such cases, data is attributed to the locality based on GP registration, not residential address.
Click here to explore more from the Birmingham and Solihull Integrated Care Partnerships Outcome Framework.
Facebook
Twitterhttps://max-website20-images.s3.ap-south-1.amazonaws.com/MHC_Digital_Treatments_Available_For_Blood_Cancer_Part_13_925x389pix_150322n_01_dc4d07f20e.jpg" alt="Is Blood Cancer Curable - Types, Diagnosis & Cure | Max Hospital">
The dataset is an excellent resource for researchers, healthcare professionals, and policymakers who are interested in understanding the global burden of cancer and its impact on populations.
>In 2017, 9.6 million people are estimated to have died from the various forms of cancer. Every sixth death in the world is due to cancer, making it the second leading cause of death – second only to cardiovascular diseases.1
Progress against many other causes of deaths and demographic drivers of increasing population size, life expectancy and — particularly in higher-income countries — aging populations mean that the total number of cancer deaths continues to increase. This is a very personal topic to many: nearly everyone knows or has lost someone dear to them from this collection of diseases.
## Data vastness of this dataset: 01. annual-number-of-deaths-by-cause data. 02. total-cancer-deaths-by-type data. 03. cancer-death-rates-by-age data. 04. share-of-population-with-cancer-types data. 05. share-of-population-with-cancer data. 06. number-of-people-with-cancer-by-age data. 07. share-of-population-with-cancer-by-age data. 08. disease-burden-rates-by-cancer-types data. 09. cancer-deaths-rate-and-age-standardized-rate-index data.
Facebook
TwitterNumber and rate of new cancer cases diagnosed annually from 1992 to the most recent diagnosis year available. Included are all invasive cancers and in situ bladder cancer with cases defined using the Surveillance, Epidemiology and End Results (SEER) Groups for Primary Site based on the World Health Organization International Classification of Diseases for Oncology, Third Edition (ICD-O-3). Random rounding of case counts to the nearest multiple of 5 is used to prevent inappropriate disclosure of health-related information.
Facebook
TwitterApache License, v2.0https://www.apache.org/licenses/LICENSE-2.0
License information was derived automatically
** Description**
This dataset contains data about lung cancer Mortality and is a comprehensive collection of patient information, specifically focused on individuals diagnosed with cancer. This dataset contains comprehensive information on 800,000 individuals related to lung cancer diagnosis, treatment, and outcomes. With 16 well-structured columns. This large-scale dataset is designed to aid researchers, data scientists, and healthcare professionals in studying patterns, building predictive models, and enhancing early detection and treatment strategies.
🌍 The Societal Impact of Lung Cancer
Lung cancer is not just a disease — it's a global crisis that steals time, health, and hope from millions of people every year. As the #1 cause of cancer deaths worldwide, it takes more lives annually than breast, colon, and prostate cancer combined.
But behind every statistic is a story:
A parent who never saw their child graduate.
A worker who had to leave their job too soon.
A community that lost a leader, a friend, a neighbor.
Why does this matter? Lung cancer often goes undetected until it's too late. It’s aggressive, silent, and devastating — especially in underserved areas where early detection is rare and treatment options are limited. It doesn’t just affect patients. It affects families, economies, and healthcare systems on a massive scale.
This dataset represents more than numbers. It represents 800,000 real-world stories — people who can help us unlock patterns, train models, and advance life-saving research.
By working with this data, you're not just analyzing a dataset — you're stepping into the fight against one of humanity’s deadliest diseases.
Let’s turn insight into impact. (😊The above descriptions is generated with the help of AI, Just wanted to share this dataset That all. Thank you)
Facebook
TwitterOpen Government Licence 3.0http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
License information was derived automatically
Age-standardised rate of mortality from oral cancer (ICD-10 codes C00-C14) in persons of all ages and sexes per 100,000 population.RationaleOver the last decade in the UK (between 2003-2005 and 2012-2014), oral cancer mortality rates have increased by 20% for males and 19% for females1Five year survival rates are 56%. Most oral cancers are triggered by tobacco and alcohol, which together account for 75% of cases2. Cigarette smoking is associated with an increased risk of the more common forms of oral cancer. The risk among cigarette smokers is estimated to be 10 times that for non-smokers. More intense use of tobacco increases the risk, while ceasing to smoke for 10 years or more reduces it to almost the same as that of non-smokers3. Oral cancer mortality rates can be used in conjunction with registration data to inform service planning as well as comparing survival rates across areas of England to assess the impact of public health prevention policies such as smoking cessation.References:(1) Cancer Research Campaign. Cancer Statistics: Oral – UK. London: CRC, 2000.(2) Blot WJ, McLaughlin JK, Winn DM et al. Smoking and drinking in relation to oral and pharyngeal cancer. Cancer Res 1988; 48: 3282-7. (3) La Vecchia C, Tavani A, Franceschi S et al. Epidemiology and prevention of oral cancer. Oral Oncology 1997; 33: 302-12.Definition of numeratorAll cancer mortality for lip, oral cavity and pharynx (ICD-10 C00-C14) in the respective calendar years aggregated into quinary age bands (0-4, 5-9,…, 85-89, 90+). This does not include secondary cancers or recurrences. Data are reported according to the calendar year in which the cancer was diagnosed.Counts of deaths for years up to and including 2019 have been adjusted where needed to take account of the MUSE ICD-10 coding change introduced in 2020. Detailed guidance on the MUSE implementation is available at: https://www.ons.gov.uk/peoplepopulationandcommunity/birthsdeathsandmarriages/deaths/articles/causeofdeathcodinginmortalitystatisticssoftwarechanges/january2020Counts of deaths for years up to and including 2013 have been double adjusted by applying comparability ratios from both the IRIS coding change and the MUSE coding change where needed to take account of both the MUSE ICD-10 coding change and the IRIS ICD-10 coding change introduced in 2014. The detailed guidance on the IRIS implementation is available at: https://www.ons.gov.uk/peoplepopulationandcommunity/birthsdeathsandmarriages/deaths/bulletins/impactoftheimplementationofirissoftwareforicd10causeofdeathcodingonmortalitystatisticsenglandandwales/2014-08-08Counts of deaths for years up to and including 2010 have been triple adjusted by applying comparability ratios from the 2011 coding change, the IRIS coding change and the MUSE coding change where needed to take account of the MUSE ICD-10 coding change, the IRIS ICD-10 coding change and the ICD-10 coding change introduced in 2011. The detailed guidance on the 2011 implementation is available at https://webarchive.nationalarchives.gov.uk/ukgwa/20160108084125/http://www.ons.gov.uk/ons/guide-method/classifications/international-standard-classifications/icd-10-for-mortality/comparability-ratios/index.htmlDefinition of denominatorPopulation-years (aggregated populations for the three years) for people of all ages, aggregated into quinary age bands (0-4, 5-9, …, 85-89, 90+)
Facebook
TwitterDeath rate has been age-adjusted by the 2000 U.S. standard population. Single-year data are only available for Los Angeles County overall, Service Planning Areas, Supervisorial Districts, City of Los Angeles overall, and City of Los Angeles Council Districts.Lung cancer is a leading cause of cancer-related death in the US. People who smoke have the greatest risk of lung cancer, though lung cancer can also occur in people who have never smoked. Most cases are due to long-term tobacco smoking or exposure to secondhand tobacco smoke. Cities and communities can take an active role in curbing tobacco use and reducing lung cancer by adopting policies to regulate tobacco retail; reducing exposure to secondhand smoke in outdoor public spaces, such as parks, restaurants, or in multi-unit housing; and improving access to tobacco cessation programs and other preventive services.For more information about the Community Health Profiles Data Initiative, please see the initiative homepage.
Facebook
TwitterMortality from CVD, cancer, diabetes or CRD is the percent of 30-year-old-people who would die before their 70th birthday from any of cardiovascular disease, cancer, diabetes, or chronic respiratory disease, assuming that s/he would experience current mortality rates at every age and s/he would not die from any other cause of death (e.g., injuries or HIV/AIDS).
Facebook
TwitterOpen Government Licence 3.0http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
License information was derived automatically
A measure of the number of adults diagnosed with any type of cancer in a year who are still alive one year after diagnosis. Purpose This indicator attempts to capture the success of the NHS in preventing people from dying once they have been diagnosed with any type of cancer. Current version updated: Feb-17 Next version due: Feb-18
Facebook
TwitterOpen Government Licence 3.0http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
License information was derived automatically
A measure of the number of adults diagnosed with any type of cancer in a year who are still alive five years after diagnosis. Purpose This indicator attempts to capture the success of the NHS in preventing people from dying once they have been diagnosed with any type of cancer. Current version updated: Feb-17 Next version due: Feb-18
Facebook
Twitterhttps://digital.nhs.uk/about-nhs-digital/terms-and-conditionshttps://digital.nhs.uk/about-nhs-digital/terms-and-conditions
Rapid Cancer Registration Data (RCRD) provides a quick, indicative source of cancer data. It is provided to support the planning and provision of cancer services. The data is based on a rapid processing of cancer registration data sources, in particular on Cancer Outcomes and Services Dataset (COSD) information. In comparison, National Cancer Registration Data (NCRD) relies on additional data sources, enhanced follow-up with trusts and expert processing by cancer registration officers. The Rapid Cancer Registration Data (RCRD) may be useful for service improvement projects including healthcare planning and prioritisation. However, it is poorly suited for epidemiological research due to limitations in the data quality and completeness.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Description: Breast cancer is the most common cancer amongst women in the world. It accounts for 25% of all cancer cases, and affected over 2.1 Million people in 2015 alone. It starts when cells in the breast begin to grow out of control. These cells usually form tumors that can be seen via X-ray or felt as lumps in the breast area. The key challenges against it’s detection is how to classify tumors into malignant (cancerous) or benign(non cancerous). We ask you to complete the analysis of classifying these tumors using machine learning (with SVMs) and the Breast Cancer Wisconsin (Diagnostic) Dataset. Acknowledgements: This dataset has been referred from Kaggle. Objective: Understand the Dataset & cleanup (if required). Build classification models to predict whether the cancer type is Malignant or Benign. Also fine-tune the hyperparameters & compare the evaluation metrics of various classification algorithms.
Facebook
TwitterOpen Government Licence 3.0http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
License information was derived automatically
Directly standardised mortality rate from cancer for people aged under 75, per 100,000 population. Purpose To ensure that the NHS is held to account for doing all that it can to prevent deaths from cancer in people under 75. Current version updated: Feb-17 Next version due: Nov-17
Facebook
TwitterOpen Government Licence 3.0http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
License information was derived automatically
One-year and five-year net survival for adults (15-99) in England diagnosed with one of 29 common cancers, by age and sex.
Facebook
Twitterhttps://digital.nhs.uk/about-nhs-digital/terms-and-conditionshttps://digital.nhs.uk/about-nhs-digital/terms-and-conditions
Update 2 March 2023: Following the merger of NHS Digital and NHS England on 1st February 2023 we are reviewing the future presentation of the NHS Outcomes Framework indicators. As part of this review, the annual publication which was due to be released in March 2023 has been delayed. Further announcements about this dataset will be made on this page in due course. Directly standardised mortality rate from cancer for people aged under 75, per 100,000 population. To ensure that the NHS is held to account for doing all that it can to prevent deaths from cancer in people under 75. Some different patterns have been observed in the 2020 mortality data which are likely to have been impacted by the coronavirus (COVID-19) pandemic. Statistics from this period should also be interpreted with care. Legacy unique identifier: P01733
Facebook
TwitterOpen Government Licence 3.0http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
License information was derived automatically
A measure of the number of adults diagnosed with breast, lung or colorectal cancer in a year who are still alive five years after diagnosis. ONS still publish survival percentages for individual types of cancers. These can be found at: http://www.ons.gov.uk/ons/rel/cancer-unit/cancer-survival/cancer-survival-in-england--patients-diagnosed-2007-2011-and-followed-up-to-2012/index.html A time series for five-year survival figures for breast, lung and colorectal cancer individually (previous NHS Outcomes Framework indicators 1.4.ii, 1.4.iv and 1.4.vi) is still published and can be found under the link 'Indicator data - previous methodology (.xls)' below. Purpose This indicator attempts to capture the success of the NHS in preventing people from dying once they have been diagnosed with breast, lung or colorectal cancer. Current version updated: May-14 Next version due: To be confirmed
Facebook
TwitterThis dataset contains counts of deaths for California residents by ZIP Code based on information entered on death certificates. Final counts are derived from static data and include out-of-state deaths of California residents. The data tables include deaths of residents of California by ZIP Code of residence (by residence). The data are reported as totals, as well as stratified by age and gender. Deaths due to all causes (ALL) and selected underlying cause of death categories are provided. See temporal coverage for more information on which combinations are available for which years.
The cause of death categories are based solely on the underlying cause of death as coded by the International Classification of Diseases. The underlying cause of death is defined by the World Health Organization (WHO) as "the disease or injury which initiated the train of events leading directly to death, or the circumstances of the accident or violence which produced the fatal injury." It is a single value assigned to each death based on the details as entered on the death certificate. When more than one cause is listed, the order in which they are listed can affect which cause is coded as the underlying cause. This means that similar events could be coded with different underlying causes of death depending on variations in how they were entered. Consequently, while underlying cause of death provides a convenient comparison between cause of death categories, it may not capture the full impact of each cause of death as it does not always take into account all conditions contributing to the death.
Facebook
TwitterOpen Government Licence 3.0http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
License information was derived automatically
Directly age and sex standardised mortality rate from cancer for people aged under 75 in the respective calendar year per 100,000 registered patients. Current version updated: Sep-16 Next version due: Dec-17
Facebook
Twitterhttps://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
In the following maps, the U.S. states are divided into groups based on the rates at which people developed or died from cancer in 2013, the most recent year for which incidence data are available.
The rates are the numbers out of 100,000 people who developed or died from cancer each year.
Incidence Rates by State The number of people who get cancer is called cancer incidence. In the United States, the rate of getting cancer varies from state to state.
*Rates are per 100,000 and are age-adjusted to the 2000 U.S. standard population.
‡Rates are not shown if the state did not meet USCS publication criteria or if the state did not submit data to CDC.
†Source: U.S. Cancer Statistics Working Group. United States Cancer Statistics: 1999–2013 Incidence and Mortality Web-based Report. Atlanta (GA): Department of Health and Human Services, Centers for Disease Control and Prevention, and National Cancer Institute; 2016. Available at: http://www.cdc.gov/uscs.
Death Rates by State Rates of dying from cancer also vary from state to state.
*Rates are per 100,000 and are age-adjusted to the 2000 U.S. standard population.
†Source: U.S. Cancer Statistics Working Group. United States Cancer Statistics: 1999–2013 Incidence and Mortality Web-based Report. Atlanta (GA): Department of Health and Human Services, Centers for Disease Control and Prevention, and National Cancer Institute; 2016. Available at: http://www.cdc.gov/uscs.