38 datasets found
  1. n

    Data from: A ten-year (2009–2018) database of cancer mortality rates in...

    • data.niaid.nih.gov
    • datadryad.org
    zip
    Updated Oct 24, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Arianna Di Paola; Roberto Cazzolla Gatti; Alfonso Monaco; Alena Velichevskaya; Nicola Amoroso; Roberto Bellotti (2022). A ten-year (2009–2018) database of cancer mortality rates in Italy [Dataset]. http://doi.org/10.5061/dryad.ns1rn8pvg
    Explore at:
    zipAvailable download formats
    Dataset updated
    Oct 24, 2022
    Dataset provided by
    Italian National Research Council
    National Research Tomsk State University
    Istituto Nazionale di Fisica Nucleare, Sezione di Bari
    University of Bologna
    University of Bari Aldo Moro
    Authors
    Arianna Di Paola; Roberto Cazzolla Gatti; Alfonso Monaco; Alena Velichevskaya; Nicola Amoroso; Roberto Bellotti
    License

    https://spdx.org/licenses/CC0-1.0.htmlhttps://spdx.org/licenses/CC0-1.0.html

    Area covered
    Italy
    Description

    AbstractIn Italy, approximately 400.000 new cases of malignant tumors are recorded every year. The average of annual deaths caused by tumors, according to the Italian Cancer Registers, is about 3.5 deaths and about 2.5 per 1,000 men and women respectively, for a total of about 3 deaths every 1,000 people. Long-term (at least a decade) and spatially detailed data (up to the municipality scale) are neither easily accessible nor fully available for public consultation by the citizens, scientists, research groups, and associations. Therefore, here we present a ten-year (2009–2018) database on cancer mortality rates (in the form of Standardized Mortality Ratios, SMR) for 23 cancer macro-types in Italy on municipal, provincial, and regional scales. We aim to make easily accessible a comprehensive, ready-to-use, and openly accessible source of data on the most updated status of cancer mortality in Italy for local and national stakeholders, researchers, and policymakers and to provide researchers with ready-to-use data to perform specific studies. Methods For a given locality, year, and cause of death, the SMR is the ratio between the observed number of deaths (Om) and the number of expected deaths (Em): SMR = Om/Em (1) where Om should be an available observational data and Em is estimated as the weighted sum of age-specific population size for the given locality (ni) per age-specific death rates of the reference population (MRi): Em = sum(MRi x ni) (2) MRi could be provided by a public health organization or be estimated as the ratio between the age-specific number of deaths of reference population (Mi) to the age-specific reference population size (Ni): MRi = Mi/Ni (3) Thus, the value of Em is weighted by the age distribution of deaths and population size. SMR assumes value 1 when the number of observed and expected deaths are equal. Following eqns. (1-3), the SMR was computed for single years of the period 2009-2018 and for single cause of death as defined by the International ICD-10 classification system by using the following data: age-specific number of deaths by cause of reference population (i.e., Mi) from the Italian National Institute of Statistics (ISTAT, (http://www.istat.it/en/, last access: 26/01/2022)); age-specific census data on reference population (i.e., Ni) from ISTAT; the observed number of deaths by cause (i.e., Om) from ISTAT; the age-specific census data on population (ni); the SMR was estimated at three different level of aggregation: municipal, provincial (equivalent to the European classification NUTS 3) and regional (i.e., NUTS2). The SMR was also computed for the broad category of malignant tumors (i.e. C00-C979, hereinafter cancer macro-type C), and for the broad category of malignant tumor plus non-malignant tumors (i.e. C00-C979 plus D0-D489, hereinafter cancer macro-type CD). Lower 90% and 95% confidence intervals of 10-year average values were computed according to the Byar method.

  2. Number and rates of new cases of primary cancer, by cancer type, age group...

    • www150.statcan.gc.ca
    • datasets.ai
    • +2more
    Updated May 19, 2021
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Government of Canada, Statistics Canada (2021). Number and rates of new cases of primary cancer, by cancer type, age group and sex [Dataset]. http://doi.org/10.25318/1310011101-eng
    Explore at:
    Dataset updated
    May 19, 2021
    Dataset provided by
    Statistics Canadahttps://statcan.gc.ca/en
    Area covered
    Canada
    Description

    Number and rate of new cancer cases diagnosed annually from 1992 to the most recent diagnosis year available. Included are all invasive cancers and in situ bladder cancer with cases defined using the Surveillance, Epidemiology and End Results (SEER) Groups for Primary Site based on the World Health Organization International Classification of Diseases for Oncology, Third Edition (ICD-O-3). Random rounding of case counts to the nearest multiple of 5 is used to prevent inappropriate disclosure of health-related information.

  3. a

    PHIDU - Premature Mortality - Cause (LGA) 2014-2018 - Dataset - AURIN

    • data.aurin.org.au
    Updated Mar 6, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2025). PHIDU - Premature Mortality - Cause (LGA) 2014-2018 - Dataset - AURIN [Dataset]. https://data.aurin.org.au/dataset/tua-phidu-phidu-premature-mortality-by-cause-lga-2014-18-lga2016
    Explore at:
    Dataset updated
    Mar 6, 2025
    License

    Attribution-NonCommercial-ShareAlike 3.0 (CC BY-NC-SA 3.0)https://creativecommons.org/licenses/by-nc-sa/3.0/
    License information was derived automatically

    Description

    This dataset, released February 2021, contains the statistics of premature mortality by various causes for people below 75 years, over the years 2014 to 2018. Causes for death include cancer (colorectal, lung, breast), diabetes, circulatory system diseases (ischaemic heart disease, cerebrovascular disease), respiratory system diseases (chronic obstructive pulmonary disease), and external causes (road traffic injuries, suicide and self-inflicted injuries) The data is by Local Government Area (LGA) 2016 geographic boundaries. For more information please see the data source notes on the data. Source: Data compiled by PHIDU from deaths data based on the 2014 to 2018 Cause of Death Unit Record Files supplied by the Australian Coordinating Registry and the Victorian Department of Justice, on behalf of the Registries of Births, Deaths and Marriages and the National Coronial Information System. The population is the ABS Estimated Resident Population (ERP) for Australia, 30 June 2014 to 30 June 2018. AURIN has spatially enabled the original data. Data that was not shown/not applicable/not published/not available for the specific area ('#', '..', '^', 'np, 'n.a.', 'n.y.a.' in original PHIDU data) was removed.It has been replaced by by Blank cells. For other keys and abbreviations refer to PHIDU Keys.

  4. c

    COVID-19 Cases and Deaths by Race/Ethnicity - ARCHIVE

    • s.cnmilf.com
    • data.ct.gov
    • +1more
    Updated Aug 12, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    data.ct.gov (2023). COVID-19 Cases and Deaths by Race/Ethnicity - ARCHIVE [Dataset]. https://s.cnmilf.com/user74170196/https/catalog.data.gov/dataset/covid-19-cases-and-deaths-by-race-ethnicity
    Explore at:
    Dataset updated
    Aug 12, 2023
    Dataset provided by
    data.ct.gov
    Description

    Note: DPH is updating and streamlining the COVID-19 cases, deaths, and testing data. As of 6/27/2022, the data will be published in four tables instead of twelve. The COVID-19 Cases, Deaths, and Tests by Day dataset contains cases and test data by date of sample submission. The death data are by date of death. This dataset is updated daily and contains information back to the beginning of the pandemic. The data can be found at https://data.ct.gov/Health-and-Human-Services/COVID-19-Cases-Deaths-and-Tests-by-Day/g9vi-2ahj. The COVID-19 State Metrics dataset contains over 93 columns of data. This dataset is updated daily and currently contains information starting June 21, 2022 to the present. The data can be found at https://data.ct.gov/Health-and-Human-Services/COVID-19-State-Level-Data/qmgw-5kp6 . The COVID-19 County Metrics dataset contains 25 columns of data. This dataset is updated daily and currently contains information starting June 16, 2022 to the present. The data can be found at https://data.ct.gov/Health-and-Human-Services/COVID-19-County-Level-Data/ujiq-dy22 . The COVID-19 Town Metrics dataset contains 16 columns of data. This dataset is updated daily and currently contains information starting June 16, 2022 to the present. The data can be found at https://data.ct.gov/Health-and-Human-Services/COVID-19-Town-Level-Data/icxw-cada . To protect confidentiality, if a town has fewer than 5 cases or positive NAAT tests over the past 7 days, those data will be suppressed. COVID-19 cases and associated deaths that have been reported among Connecticut residents, broken down by race and ethnicity. All data in this report are preliminary; data for previous dates will be updated as new reports are received and data errors are corrected. Deaths reported to the either the Office of the Chief Medical Examiner (OCME) or Department of Public Health (DPH) are included in the COVID-19 update. The following data show the number of COVID-19 cases and associated deaths per 100,000 population by race and ethnicity. Crude rates represent the total cases or deaths per 100,000 people. Age-adjusted rates consider the age of the person at diagnosis or death when estimating the rate and use a standardized population to provide a fair comparison between population groups with different age distributions. Age-adjustment is important in Connecticut as the median age of among the non-Hispanic white population is 47 years, whereas it is 34 years among non-Hispanic blacks, and 29 years among Hispanics. Because most non-Hispanic white residents who died were over 75 years of age, the age-adjusted rates are lower than the unadjusted rates. In contrast, Hispanic residents who died tend to be younger than 75 years of age which results in higher age-adjusted rates. The population data used to calculate rates is based on the CT DPH population statistics for 2019, which is available online here: https://portal.ct.gov/DPH/Health-Information-Systems--Reporting/Population/Population-Statistics. Prior to 5/10/2021, the population estimates from 2018 were used. Rates are standardized to the 2000 US Millions Standard population (data available here: https://seer.cancer.gov/stdpopulations/). Standardization was done using 19 age groups (0, 1-4, 5-9, 10-14, ..., 80-84, 85 years and older). More information about direct standardization for age adjustment is available here: https://www.cdc.gov/nchs/data/statnt/statnt06rv.pdf Categories are mutually exclusive. The category “multiracial” includes people who answered ‘yes’ to more than one race category. Counts may not add up to total case counts as data on race and ethnicity may be missing. Age adjusted rates calculated only for groups with more than 20 deaths. Abbreviation: NH=Non-Hispanic. Data on Connecticut deaths were obtained from the Connecticut Deaths Registry maintained by the DPH Office of Vital Records. Cause of death was determined by a death certifier (e.g., physician, APRN, medical

  5. Breast Cancer India Statewise 2016-2021

    • kaggle.com
    Updated Apr 26, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    NITISH SINGHAL (2022). Breast Cancer India Statewise 2016-2021 [Dataset]. https://www.kaggle.com/datasets/nitishsinghal/breast-cancer-india-statewise-20162021
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Apr 26, 2022
    Dataset provided by
    Kaggle
    Authors
    NITISH SINGHAL
    License

    https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/

    Area covered
    India
    Description

    Breast cancer is the most frequently diagnosed cancer and the most frequent cause for cancer-related deaths in women worldwide. Globally, breast cancer accounted for 2.08 million out of 18.08 million new cancer cases (incidence rate of 11.6%) and 626,679 out of 9.55 million cancer-related deaths (6.6% of all cancer-related deaths) in 2018. 1,2 In India, breast cancer has surpassed cancers of the cervix and the oral cavity to be the most common cancer and the leading cause of cancer deaths. In 2018, 159,500 new cases of breast cancer were diagnosed, representing 27.7% of all new cancers among Indian women and 11.1% of all cancer deaths.

    In india breast cancer cases reporting and diagnotics have increased 10 times in past 3 years . All thanks to the various cancer awareness initiatives by both private and govt. organisations.

  6. A

    ‘COVID-19 Cases and Deaths by Race/Ethnicity’ analyzed by Analyst-2

    • analyst-2.ai
    Updated Sep 29, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Analyst-2 (analyst-2.ai) / Inspirient GmbH (inspirient.com) (2021). ‘COVID-19 Cases and Deaths by Race/Ethnicity’ analyzed by Analyst-2 [Dataset]. https://analyst-2.ai/analysis/data-gov-covid-19-cases-and-deaths-by-race-ethnicity-3781/f0753de3/?iid=004-538&v=presentation
    Explore at:
    Dataset updated
    Sep 29, 2021
    Dataset authored and provided by
    Analyst-2 (analyst-2.ai) / Inspirient GmbH (inspirient.com)
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Analysis of ‘COVID-19 Cases and Deaths by Race/Ethnicity’ provided by Analyst-2 (analyst-2.ai), based on source dataset retrieved from https://catalog.data.gov/dataset/3fdc6593-c708-4a6a-8073-5ca862caa279 on 27 January 2022.

    --- Dataset description provided by original source is as follows ---

    COVID-19 cases and associated deaths that have been reported among Connecticut residents, broken down by race and ethnicity. All data in this report are preliminary; data for previous dates will be updated as new reports are received and data errors are corrected. Deaths reported to the either the Office of the Chief Medical Examiner (OCME) or Department of Public Health (DPH) are included in the COVID-19 update.

    The following data show the number of COVID-19 cases and associated deaths per 100,000 population by race and ethnicity. Crude rates represent the total cases or deaths per 100,000 people. Age-adjusted rates consider the age of the person at diagnosis or death when estimating the rate and use a standardized population to provide a fair comparison between population groups with different age distributions. Age-adjustment is important in Connecticut as the median age of among the non-Hispanic white population is 47 years, whereas it is 34 years among non-Hispanic blacks, and 29 years among Hispanics. Because most non-Hispanic white residents who died were over 75 years of age, the age-adjusted rates are lower than the unadjusted rates. In contrast, Hispanic residents who died tend to be younger than 75 years of age which results in higher age-adjusted rates.

    The population data used to calculate rates is based on the CT DPH population statistics for 2019, which is available online here: https://portal.ct.gov/DPH/Health-Information-Systems--Reporting/Population/Population-Statistics. Prior to 5/10/2021, the population estimates from 2018 were used.

    Rates are standardized to the 2000 US Millions Standard population (data available here: https://seer.cancer.gov/stdpopulations/). Standardization was done using 19 age groups (0, 1-4, 5-9, 10-14, ..., 80-84, 85 years and older). More information about direct standardization for age adjustment is available here: https://www.cdc.gov/nchs/data/statnt/statnt06rv.pdf

    Categories are mutually exclusive. The category “multiracial” includes people who answered ‘yes’ to more than one race category. Counts may not add up to total case counts as data on race and ethnicity may be missing. Age adjusted rates calculated only for groups with more than 20 deaths. Abbreviation: NH=Non-Hispanic.

    Data on Connecticut deaths were obtained from the Connecticut Deaths Registry maintained by the DPH Office of Vital Records. Cause of death was determined by a death certifier (e.g., physician, APRN, medical examiner) using their best clinical judgment. Additionally, all COVID-19 deaths, including suspected or related, are required to be reported to OCME. On April 4, 2020, CT DPH and OCME released a joint memo to providers and facilities within Connecticut providing guidelines for certifying deaths due to COVID-19 that were consistent with the CDC’s guidelines and a reminder of the required reporting to OCME.25,26 As of July 1, 2021, OCME had reviewed every case reported and performed additional investigation on about one-third of reported deaths to better ascertain if COVID-19 did or did not cause or contribute to the death. Some of these investigations resulted in the OCME performing postmortem swabs for PCR testing on individuals whose deaths were suspected to be due to COVID-19, but antemortem diagnosis was unable to be made.31 The OCME issued or re-issued about 10% of COVID-19 death certificates and, when appropriate, removed COVID-19 from the death certificate. For standardization and tabulation of mortality statistics, written cause of death statements made by the certifiers on death certificates are sent to the National Center for Health Statistics (NCHS) at the CDC which assigns cause of death codes according to the International Causes of Disease 10th Revision (ICD-10) classification system.25,26 COVID-19 deaths in this report are defined as those for which the death certificate has an ICD-10 code of U07.1 as either a primary (underlying) or a contributing cause of death. More infor

    --- Original source retains full ownership of the source dataset ---

  7. f

    Table_1_Real-world landscape transition of death causes in the immunotherapy...

    • frontiersin.figshare.com
    xlsx
    Updated Jun 16, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Yijun Wu; Zhuoran Yao; Jianhui Zhang; Chang Han; Kai Kang; Ailin Zhao (2023). Table_1_Real-world landscape transition of death causes in the immunotherapy era for metastatic non-small cell lung cancer.xlsx [Dataset]. http://doi.org/10.3389/fimmu.2022.1058819.s002
    Explore at:
    xlsxAvailable download formats
    Dataset updated
    Jun 16, 2023
    Dataset provided by
    Frontiers
    Authors
    Yijun Wu; Zhuoran Yao; Jianhui Zhang; Chang Han; Kai Kang; Ailin Zhao
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    BackgroundWith approval of anti-PD-1/PD-L1, metastatic non-small cell lung cancer (NSCLC) has entered the era of immunotherapy. Since immune-related adverse events (irAEs) occur commonly in patients receiving anti-PD-1/PD-L1, the landscape of death causes may have changed in metastatic NSCLC. We aim to compare patterns of death causes in metastatic NSCLC between the pre-immunotherapy and immunotherapy era to identify the consequent landscape transition of death causes.MethodsIn this cohort study, 298,48patients with metastatic NSCLC diagnosed between 2000 and 2018 were identified from the Surveillance, Epidemiology, and End Results Program. Unsupervised clustering with Bayesian inference method was performed for all patients’ death causes, which separated them into two death patterns: the pre-immunotherapy era group and the immunotherapy era group. Relative risk (RR) of each death cause between two groups was estimated using Poisson regression. Reduced death risk as survival time was calculated with locally weighted scatterplot smooth (Lowess) regression.ResultsTwo patterns of death causes were identified by unsupervised clustering for all patients. Thus, we separated them into two groups, the immunotherapy era (2015-2017, N=40,172) and the pre-immunotherapy era (2000-2011, N=166,321), in consideration of obscure availability to immunotherapy for patients diagnosed in 2012-2014, when the follow-up cutoff was set as three years. Although all-cause death risk had reduced (29.2%, 13.7% and 27.8% for death risks of lung cancer, non-cancer and other cancers), non-cancer deaths in the immunotherapy era (N=2,100, 5.2%; RR=1.155, 95%CI: 1.101-1.211, P

  8. Leading causes of death, total population, by age group

    • www150.statcan.gc.ca
    • ouvert.canada.ca
    • +1more
    Updated Feb 19, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Government of Canada, Statistics Canada (2025). Leading causes of death, total population, by age group [Dataset]. http://doi.org/10.25318/1310039401-eng
    Explore at:
    Dataset updated
    Feb 19, 2025
    Dataset provided by
    Statistics Canadahttps://statcan.gc.ca/en
    Area covered
    Canada
    Description

    Rank, number of deaths, percentage of deaths, and age-specific mortality rates for the leading causes of death, by age group and sex, 2000 to most recent year.

  9. f

    Data for Prayer, Politics, and Policy Related to Age-Adjusted Cancer, Heart...

    • figshare.com
    csv
    Updated Jun 17, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Leon Robertson (2025). Data for Prayer, Politics, and Policy Related to Age-Adjusted Cancer, Heart Disease, Infant Mortality, and COVID-19 Death Rates, U.S. States 2018-2021 [Dataset]. http://doi.org/10.6084/m9.figshare.29344994.v2
    Explore at:
    csvAvailable download formats
    Dataset updated
    Jun 17, 2025
    Dataset provided by
    figshare
    Authors
    Leon Robertson
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    The role of religion and politics in the responses to the coronavirus pandemic raises the question of their influence on the risk of other diseases. This study focuses on age-adjusted death rates of cancer, heart disease, and infant mortality per 1000 live births before the pandemic (2018-2019) and COVID-19 in 2020-2021. Eight hypothesized predictors of health effects were analyzed by examining their correlation to age-adjusted death rates among U.S. states, percentage who pray once or more daily, Republican influence on state health policies as indicated by the percentage vote for Trump in 2016, percent of household incomes below poverty, median family income divided by a cost-of-living index, the Gini income inequality index, urban concentration of the population, physicians per capita, and public health expenditures per capita. Since prayer for divine intervention is common to otherwise diverse religious beliefs and practices, the percentage of people claiming to pray daily in each state was used to indicate potential religious influence. All of the death rates were higher in states where more people claimed to pray daily, and where Trump received a larger percentage of the vote. Except for COVID-19, the death rates were consistently lower in states with higher public health expenditures per capita. Only COVID-19 was correlated to physicians per capita, lower where there were more physicians. Corrected statistically for the other factors, income per cost of living explains no variance. Heart disease and COVID-19 death rates were higher in areas with more income inequality. All of the disease rates were in correlation with more rural populations. Correlation of daily prayer with smoking cigarettes, and neglect of public health recommendations for fruit and vegetable consumption and COVID-19 vaccination suggests that prayer may be substituted for preventive practices.

  10. Deaths by cancer in the U.S. 1950-2023

    • statista.com
    Updated Jun 24, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). Deaths by cancer in the U.S. 1950-2023 [Dataset]. https://www.statista.com/statistics/184566/deaths-by-cancer-in-the-us-since-1950/
    Explore at:
    Dataset updated
    Jun 24, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Area covered
    United States
    Description

    Cancer was responsible for around *** deaths per 100,000 population in the United States in 2023. The death rate for cancer has steadily decreased since the 1990’s, but cancer still remains the second leading cause of death in the United States. The deadliest type of cancer for both men and women is cancer of the lung and bronchus which will account for an estimated ****** deaths among men alone in 2025. Probability of surviving Survival rates for cancer vary significantly depending on the type of cancer. The cancers with the highest rates of survival include cancers of the thyroid, prostate, and testis, with five-year survival rates as high as ** percent for thyroid cancer. The cancers with the lowest five-year survival rates include cancers of the pancreas, liver, and esophagus. Risk factors It is difficult to determine why one person develops cancer while another does not, but certain risk factors have been shown to increase a person’s chance of developing cancer. For example, cigarette smoking has been proven to increase the risk of developing various cancers. In fact, around ** percent of cancers of the lung, bronchus and trachea among adults aged 30 years and older can be attributed to cigarette smoking. Other modifiable risk factors for cancer include being obese, drinking alcohol, and sun exposure.

  11. Death rate by age and sex in the U.S. 2021

    • statista.com
    • ai-chatbox.pro
    Updated Oct 25, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2024). Death rate by age and sex in the U.S. 2021 [Dataset]. https://www.statista.com/statistics/241572/death-rate-by-age-and-sex-in-the-us/
    Explore at:
    Dataset updated
    Oct 25, 2024
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    2021
    Area covered
    United States
    Description

    In the United States in 2021, the death rate was highest among those aged 85 and over, with about 17,190.5 men and 14,914.5 women per 100,000 of the population passing away. For all ages, the death rate was at 1,118.2 per 100,000 of the population for males, and 970.8 per 100,000 of the population for women. The death rate Death rates generally are counted as the number of deaths per 1,000 or 100,000 of the population and include both deaths of natural and unnatural causes. The death rate in the United States had pretty much held steady since 1990 until it started to increase over the last decade, with the highest death rates recorded in recent years. While the birth rate in the United States has been decreasing, it is still currently higher than the death rate. Causes of death There are a myriad number of causes of death in the United States, but the most recent data shows the top three leading causes of death to be heart disease, cancers, and accidents. Heart disease was also the leading cause of death worldwide.

  12. COVID-19 Cases and Deaths by Race/Ethnicity

    • kaggle.com
    Updated Jul 10, 2020
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Mukharbek Organokov (2020). COVID-19 Cases and Deaths by Race/Ethnicity [Dataset]. https://www.kaggle.com/muhakabartay/covid19-cases-and-deaths-by-raceethnicity/metadata
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Jul 10, 2020
    Dataset provided by
    Kaggle
    Authors
    Mukharbek Organokov
    License

    https://www.usa.gov/government-works/https://www.usa.gov/government-works/

    Description

    Context

    COVID-19 Cases and Deaths by Race/Ethnicity

    Content

    COVID-19 cases and associated deaths that have been reported among Connecticut residents, broken down by race and ethnicity. All data in this report are preliminary; data for previous dates will be updated as new reports are received and data errors are corrected. Deaths reported to either the Office of the Chief Medical Examiner (OCME) or Department of Public Health (DPH) are included in the COVID-19 update.

    The following data show the number of COVID-19 cases and associated deaths per 100,000 population by race and ethnicity. Crude rates represent the total cases or deaths per 100,000 people. Age-adjusted rates consider the age of the person at diagnosis or death when estimating the rate and use a standardized population to provide a fair comparison between population groups with different age distributions. Age-adjustment is important in Connecticut as the median age of among the non-Hispanic white population is 47 years, whereas it is 34 years among non-Hispanic blacks, and 29 years among Hispanics. Because most non-Hispanic white residents who died were over 75 years of age, the age-adjusted rates are lower than the unadjusted rates. In contrast, Hispanic residents who died tend to be younger than 75 years of age which results in higher age-adjusted rates.

    The age-adjusted rates are directly standardized using the 2018 ASRH Connecticut population estimate denominators (available here: https://portal.ct.gov/DPH/Health-Information-Systems--Reporting/Population/Annual-State--County-Population-with-Demographics).

    Rates are standardized to the 2000 US Millions Standard population (data available here: https://seer.cancer.gov/stdpopulations/). Standardization was done using 19 age groups (0, 1-4, 5-9, 10-14, ..., 80-84, 85 years and older). More information about direct standardization for age adjustment is available here: https://www.cdc.gov/nchs/data/statnt/statnt06rv.pdf Categories are mutually exclusive. The category “multiracial” includes people who answered ‘yes’ to more than one race category. Counts may not add up to total case counts as data on race and ethnicity may be missing. Age-adjusted rates calculated only for groups with more than 20 deaths. Abbreviation: NH=Non-Hispanic.

    This dataset will be updated on a daily basis. Data are subject to future revision as reporting changes.

    Starting in July 2020, this dataset will be updated every weekday.

    Additional notes: A delay in the data pull schedule occurred on 06/23/2020. Data from 06/22/2020 was processed on 06/23/2020 at 3:30 PM. The normal data cycle resumed with the data for 06/23/2020.

    A network outage on 05/19/2020 resulted in a change in the data pull schedule. Data from 5/19/2020 was processed on 05/20/2020 at 12:00 PM. Data from 5/20/2020 was processed on 5/20/2020 8:30 PM. The normal data cycle resumed on 05/20/2020 with the 8:30 PM data pull. As a result of the network outage, the timestamp on the datasets on the Open Data Portal differs from the timestamp in DPH's daily PDF reports.

    Acknowledgements

    Thanks to catalog.data.gov.

  13. Mortality and potential years of life lost, by selected causes of death and...

    • www150.statcan.gc.ca
    • datasets.ai
    • +2more
    Updated May 31, 2018
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Government of Canada, Statistics Canada (2018). Mortality and potential years of life lost, by selected causes of death and sex, five-year period, Canada and Inuit regions [Dataset]. http://doi.org/10.25318/1310015701-eng
    Explore at:
    Dataset updated
    May 31, 2018
    Dataset provided by
    Government of Canadahttp://www.gg.ca/
    Statistics Canadahttps://statcan.gc.ca/en
    Area covered
    Canada
    Description

    This table contains 4032 series, with data for years 1994/1998 - 2009/2013 (not all combinations necessarily have data for all years). This table contains data described by the following dimensions (Not all combinations are available): Geography (6 items: Canada; Inuit Nunangat; Inuvialuit Region; Nunavut; ...) Sex (3 items: Both sexes; Males; Females) Indicators (2 items: Mortality; Potential years of life lost) Selected causes of death (16 items: Total, all causes of death; All malignant neoplasms (cancers); Colorectal cancer; Lung cancer; ...) Characteristics (7 items: Number; Rate; Low 95% confidence interval, rate; High 95% confidence interval, rate; ...).

  14. A

    Armenia AM: Mortality from CVD, Cancer, Diabetes or CRD between Exact Ages...

    • ceicdata.com
    Updated Jan 15, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    CEICdata.com (2025). Armenia AM: Mortality from CVD, Cancer, Diabetes or CRD between Exact Ages 30 and 70 [Dataset]. https://www.ceicdata.com/en/armenia/social-health-statistics/am-mortality-from-cvd-cancer-diabetes-or-crd-between-exact-ages-30-and-70
    Explore at:
    Dataset updated
    Jan 15, 2025
    Dataset provided by
    CEICdata.com
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Dec 1, 2008 - Dec 1, 2019
    Area covered
    Armenia
    Description

    Armenia AM: Mortality from CVD, Cancer, Diabetes or CRD between Exact Ages 30 and 70 data was reported at 20.600 % in 2021. This records a decrease from the previous number of 21.300 % for 2020. Armenia AM: Mortality from CVD, Cancer, Diabetes or CRD between Exact Ages 30 and 70 data is updated yearly, averaging 24.250 % from Dec 2000 (Median) to 2021, with 22 observations. The data reached an all-time high of 27.500 % in 2000 and a record low of 20.100 % in 2018. Armenia AM: Mortality from CVD, Cancer, Diabetes or CRD between Exact Ages 30 and 70 data remains active status in CEIC and is reported by World Bank. The data is categorized under Global Database’s Armenia – Table AM.World Bank.WDI: Social: Health Statistics. Mortality from CVD, cancer, diabetes or CRD is the percent of 30-year-old-people who would die before their 70th birthday from any of cardiovascular disease, cancer, diabetes, or chronic respiratory disease, assuming that s/he would experience current mortality rates at every age and s/he would not die from any other cause of death (e.g., injuries or HIV/AIDS).;World Health Organization, Global Health Observatory Data Repository (http://apps.who.int/ghodata/).;Weighted average;This is the Sustainable Development Goal indicator 3.4.1 [https://unstats.un.org/sdgs/metadata/].

  15. d

    1.20 Mortality from breast cancer in females

    • digital.nhs.uk
    csv, pdf, xls
    Updated Mar 31, 2022
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2022). 1.20 Mortality from breast cancer in females [Dataset]. https://digital.nhs.uk/data-and-information/publications/statistical/ccg-outcomes-indicator-set/march-2022
    Explore at:
    csv(48.3 kB), pdf(252.3 kB), xls(193.0 kB), xls(64.5 kB), pdf(180.2 kB)Available download formats
    Dataset updated
    Mar 31, 2022
    License

    https://digital.nhs.uk/about-nhs-digital/terms-and-conditionshttps://digital.nhs.uk/about-nhs-digital/terms-and-conditions

    Time period covered
    Jan 1, 2016 - Dec 31, 2020
    Area covered
    England
    Description

    Directly age standardised mortality rate from breast cancer for females in the respective time period per 100,000 registered female patients. March 2020: In addition to the changes in March 2019, the indicator production process has been fully automated. As a result there are two changes to this publication: 1) Data in this file are published for 2016-2018 only; all data is based on the most recent methodology. For the historic time series of this indicator please refer to the zip files in the June 2018 publication: https://digital.nhs.uk/data-and-information/publications/clinical-indicators/ccg-outcomes-indicator-set/archive/ccg-outcomes-indicator-set---june-2018 Please note, neither version of the file contains data for 2015-2017; changes in the data processing meant the 2015 data was not comparable to the 2016 and 2017 data processed under the new method. 2) Data are run against CCGs which were in existence at the time of processing. As of the March 2019 release the processing of the Primary Care Mortality Database (PCMD) and the standard population used to calculate the indicator for new data periods changed; this file now contains only those data periods processed under the new method. For the historic time series of this indicator please refer to the June 2018 publication referenced above. Legacy unique identifier: P01819

  16. Deaths from neoplasms diseases Philippines 2017-2024

    • statista.com
    Updated May 21, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). Deaths from neoplasms diseases Philippines 2017-2024 [Dataset]. https://www.statista.com/statistics/1367305/philippines-deaths-from-cancer/
    Explore at:
    Dataset updated
    May 21, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Area covered
    Philippines
    Description

    According to preliminary data between January and October 2024, ** percent of deaths were caused by neoplasms or cancer diseases in the Philippines. Deaths from such illness were lowest in 2021 across the country, amounting to *** percent.

  17. C

    Colombia No. of Deaths: Caused by: Malignant Tumor of Other Parts of the...

    • ceicdata.com
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    CEICdata.com, Colombia No. of Deaths: Caused by: Malignant Tumor of Other Parts of the Uterus [Dataset]. https://www.ceicdata.com/en/colombia/number-of-deaths-cause-of-death
    Explore at:
    Dataset provided by
    CEICdata.com
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Dec 1, 2021 - Sep 1, 2024
    Area covered
    Colombia
    Description

    No. of Deaths: Caused by: Malignant Tumor of Other Parts of the Uterus data was reported at 248.000 Person in Sep 2024. This records an increase from the previous number of 213.000 Person for Jun 2024. No. of Deaths: Caused by: Malignant Tumor of Other Parts of the Uterus data is updated quarterly, averaging 181.000 Person from Mar 2017 (Median) to Sep 2024, with 30 observations. The data reached an all-time high of 248.000 Person in Sep 2024 and a record low of 135.000 Person in Mar 2018. No. of Deaths: Caused by: Malignant Tumor of Other Parts of the Uterus data remains active status in CEIC and is reported by National Administrative Department of Statistics. The data is categorized under Global Database’s Colombia – Table CO.G012: Number of Deaths: Cause of Death.

  18. Number of deaths in Spain 2006-2024

    • statista.com
    Updated Mar 4, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). Number of deaths in Spain 2006-2024 [Dataset]. https://www.statista.com/statistics/450171/number-of-deaths-in-spain/
    Explore at:
    Dataset updated
    Mar 4, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Area covered
    Spain
    Description

    According to the latest reports, more people died in Spain than were being born, with figures reaching over 439,000 deaths versus 322,000 newborns. The number of deaths experienced an upward trend over the 11-year period, presumably due to Spain’s aging population and in more recent years, the spread of COVID-19. Circulatory system diseases and cancer ranked as the most common causes of death in SpainThe cause of death can vary significantly across the globe and depends highly on economic development, presence of a competent healthcare system and one’s choices in lifestyle. In Spain, diseases related to the circulatory system and certain infectious and parasitic diseases ranked as the main causes of death, amounting to nearly 50,000 cases in the 2022. The annual number of deaths as a result of a disease of the circulatory system maintained steadily over the most recent years, with the illness being more common among female than male individuals. Cancer numbers in SpainThe number of deaths as a result of a cancer grew steadily in Spain for both women and men, although the disease seems to affect more male individuals than female, with about 68,000 cases occurring in men and 45,000 in women according to the most recent data. Furthermore, of the total 276,260 new cases of cancer in Spain in 2023, roughly 158,500 were diagnosed among male individuals.

  19. f

    Table 1_Trends in cervical cancer incidence and mortality in the United...

    • frontiersin.figshare.com
    docx
    Updated Apr 30, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Xianying Cheng; Ping Wang; Li Cheng; Feng Zhao; Jiangang Liu (2025). Table 1_Trends in cervical cancer incidence and mortality in the United States, 1975–2018: a population-based study.docx [Dataset]. http://doi.org/10.3389/fmed.2025.1579446.s001
    Explore at:
    docxAvailable download formats
    Dataset updated
    Apr 30, 2025
    Dataset provided by
    Frontiers
    Authors
    Xianying Cheng; Ping Wang; Li Cheng; Feng Zhao; Jiangang Liu
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    BackgroundCervical cancer incidence and mortality rates in the United States have substantially declined over recent decades, primarily driven by reductions in squamous cell carcinoma cases. However, the trend in recent years remains unclear. This study aimed to explore the trends in cervical cancer incidence and mortality, stratified by demographic and tumor characteristics from 1975 to 2018.MethodsThe age-adjusted incidence, incidence-based mortality, and relative survival of cervical cancer were calculated using the Surveillance, Epidemiology, and End Results (SEER)-9 database. Trend analyses with annual percent change (APC) and average annual percent change (AAPC) calculations were performed using Joinpoint Regression Software (Version 4.9.1.0, National Cancer Institute).ResultsDuring 1975–2018, 49,658 cervical cancer cases were diagnosed, with 17,099 recorded deaths occurring between 1995 and 2018. Squamous cell carcinoma was the most common histological type, with 34,169 cases and 11,859 deaths. Over the study period, the cervical cancer incidence rate decreased by an average of 1.9% (95% CI: −2.3% to −1.6%) per year, with the APCs decreased in recent years (−0.5% [95% CI: −1.1 to 0.1%] in 2006–2018). Squamous cell carcinoma incidence trends closely paralleled overall cervical cancer patterns, but the incidence of squamous cell carcinoma in the distant stage increased significantly (1.1% [95% CI: 0.4 to 1.8%] in 1990–2018). From 1995 to 2018, the overall cervical cancer mortality rate decreased by 1.0% (95% CI: −1.2% to −0.8%) per year. But for distant-stage squamous cell carcinoma, the mortality rate increased by 1.2% (95% CI: 0.3 to 2.1%) per year.ConclusionFor cervical cancer cases diagnosed in the United States from 1975 to 2018, the overall incidence and mortality rates decreased significantly. However, there was an increase in the incidence and mortality of advanced-stage squamous cell carcinoma. These epidemiological patterns offer critical insights for refining cervical cancer screening protocols and developing targeted interventions for advanced-stage cases.

  20. d

    1.20 Mortality from breast cancer in females

    • digital.nhs.uk
    csv, pdf, xls
    Updated Oct 27, 2022
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2022). 1.20 Mortality from breast cancer in females [Dataset]. https://digital.nhs.uk/data-and-information/publications/statistical/ccg-outcomes-indicator-set/october-2022
    Explore at:
    pdf(180.4 kB), xls(163.8 kB), csv(60.3 kB), pdf(234.0 kB), xls(64.5 kB)Available download formats
    Dataset updated
    Oct 27, 2022
    License

    https://digital.nhs.uk/about-nhs-digital/terms-and-conditionshttps://digital.nhs.uk/about-nhs-digital/terms-and-conditions

    Time period covered
    Jan 1, 2016 - Dec 31, 2021
    Area covered
    England
    Description

    Directly age standardised mortality rate from breast cancer for females in the respective time period per 100,000 registered female patients. October 2022: This is the last CCGOIS publication. All Clinical Commissioning Groups (CCGs) were statutorily abolished on the 1 July 2022, and from this point all statutory obligations are managed by the Integrated Care Boards (ICBs). ICBs were established as statutory bodies from July 2022 and succeed Sustainability and Transformation Partnerships (STPs). These came into effect on 1 July 2022. A transition phase has been implemented from 1 July 2022, during which the 106 Organisation Data Service (ODS) codes that identified CCGs will be temporarily retained, but the names will be changed to identify the ‘Sub ICB Location’. March 2020: In addition to the changes in March 2019, the indicator production process has been fully automated. As a result there are two changes to this publication: 1) Data in this file are published for 2016-2018 only; all data is based on the most recent methodology. For the historic time series of this indicator please refer to the zip files in the June 2018 publication: https://digital.nhs.uk/data-and-information/publications/clinical-indicators/ccg-outcomes-indicator-set/archive/ccg-outcomes-indicator-set---june-2018 Please note, neither version of the file contains data for 2015-2017; changes in the data processing meant the 2015 data was not comparable to the 2016 and 2017 data processed under the new method. 2) Data are run against CCGs which were in existence at the time of processing. As of the March 2019 release the processing of the Primary Care Mortality Database (PCMD) and the standard population used to calculate the indicator for new data periods changed; this file now contains only those data periods processed under the new method. For the historic time series of this indicator please refer to the June 2018 publication referenced above. Legacy unique identifier: P01819

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Arianna Di Paola; Roberto Cazzolla Gatti; Alfonso Monaco; Alena Velichevskaya; Nicola Amoroso; Roberto Bellotti (2022). A ten-year (2009–2018) database of cancer mortality rates in Italy [Dataset]. http://doi.org/10.5061/dryad.ns1rn8pvg

Data from: A ten-year (2009–2018) database of cancer mortality rates in Italy

Related Article
Explore at:
zipAvailable download formats
Dataset updated
Oct 24, 2022
Dataset provided by
Italian National Research Council
National Research Tomsk State University
Istituto Nazionale di Fisica Nucleare, Sezione di Bari
University of Bologna
University of Bari Aldo Moro
Authors
Arianna Di Paola; Roberto Cazzolla Gatti; Alfonso Monaco; Alena Velichevskaya; Nicola Amoroso; Roberto Bellotti
License

https://spdx.org/licenses/CC0-1.0.htmlhttps://spdx.org/licenses/CC0-1.0.html

Area covered
Italy
Description

AbstractIn Italy, approximately 400.000 new cases of malignant tumors are recorded every year. The average of annual deaths caused by tumors, according to the Italian Cancer Registers, is about 3.5 deaths and about 2.5 per 1,000 men and women respectively, for a total of about 3 deaths every 1,000 people. Long-term (at least a decade) and spatially detailed data (up to the municipality scale) are neither easily accessible nor fully available for public consultation by the citizens, scientists, research groups, and associations. Therefore, here we present a ten-year (2009–2018) database on cancer mortality rates (in the form of Standardized Mortality Ratios, SMR) for 23 cancer macro-types in Italy on municipal, provincial, and regional scales. We aim to make easily accessible a comprehensive, ready-to-use, and openly accessible source of data on the most updated status of cancer mortality in Italy for local and national stakeholders, researchers, and policymakers and to provide researchers with ready-to-use data to perform specific studies. Methods For a given locality, year, and cause of death, the SMR is the ratio between the observed number of deaths (Om) and the number of expected deaths (Em): SMR = Om/Em (1) where Om should be an available observational data and Em is estimated as the weighted sum of age-specific population size for the given locality (ni) per age-specific death rates of the reference population (MRi): Em = sum(MRi x ni) (2) MRi could be provided by a public health organization or be estimated as the ratio between the age-specific number of deaths of reference population (Mi) to the age-specific reference population size (Ni): MRi = Mi/Ni (3) Thus, the value of Em is weighted by the age distribution of deaths and population size. SMR assumes value 1 when the number of observed and expected deaths are equal. Following eqns. (1-3), the SMR was computed for single years of the period 2009-2018 and for single cause of death as defined by the International ICD-10 classification system by using the following data: age-specific number of deaths by cause of reference population (i.e., Mi) from the Italian National Institute of Statistics (ISTAT, (http://www.istat.it/en/, last access: 26/01/2022)); age-specific census data on reference population (i.e., Ni) from ISTAT; the observed number of deaths by cause (i.e., Om) from ISTAT; the age-specific census data on population (ni); the SMR was estimated at three different level of aggregation: municipal, provincial (equivalent to the European classification NUTS 3) and regional (i.e., NUTS2). The SMR was also computed for the broad category of malignant tumors (i.e. C00-C979, hereinafter cancer macro-type C), and for the broad category of malignant tumor plus non-malignant tumors (i.e. C00-C979 plus D0-D489, hereinafter cancer macro-type CD). Lower 90% and 95% confidence intervals of 10-year average values were computed according to the Byar method.

Search
Clear search
Close search
Google apps
Main menu