23 datasets found
  1. COVID-19 and Influenza | New York Datasets

    • kaggle.com
    zip
    Updated May 9, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Angel Henriquez (2020). COVID-19 and Influenza | New York Datasets [Dataset]. https://www.kaggle.com/datasets/angelhenriquez1/covid19-influenza-newyorkdatasets/discussion
    Explore at:
    zip(648794 bytes)Available download formats
    Dataset updated
    May 9, 2020
    Authors
    Angel Henriquez
    Description

    Context

    New York has presented the most cases compared to all states across the U.S..There have also been critiques regarding how much more unnoticed impact the flu has caused. My dataset allows us to compare whether or not this is true according to the most recent data.

    Content

    This COVID-19 data is from Kaggle whereas the New York influenza data comes from the U.S. government health data website. I merged the two datasets by county and FIPS code and listed the most recent reports of 2020 COVID-19 cases and deaths alongside the 2019 known influenza cases for comparison.

    Acknowledgements

    I am thankful to Kaggle and the U.S. government for making the data that made this possible openly available.

    Inspiration

    This data can be extended to answer the common misconceptions of the scale of the COVID-19 and common flu. My inspiration stems from supporting conclusions with data rather than simply intuition.

    I would like my data to help answer how we can make U.S. citizens realize what diseases are most impactful.

  2. D

    Provisional Death Counts for Influenza, Pneumonia, and COVID-19

    • data.cdc.gov
    • data.virginia.gov
    • +4more
    csv, xlsx, xml
    Updated Nov 2, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    NCHS/DVS (2023). Provisional Death Counts for Influenza, Pneumonia, and COVID-19 [Dataset]. https://data.cdc.gov/National-Center-for-Health-Statistics/Provisional-Death-Counts-for-Influenza-Pneumonia-a/ynw2-4viq
    Explore at:
    xml, xlsx, csvAvailable download formats
    Dataset updated
    Nov 2, 2023
    Dataset authored and provided by
    NCHS/DVS
    License

    https://www.usa.gov/government-workshttps://www.usa.gov/government-works

    Description

    Deaths counts for influenza, pneumonia, and COVID-19 reported to NCHS by week ending date, by state and HHS region, and age group.

  3. z

    Counts of Influenza reported in UNITED STATES OF AMERICA: 1919-1951

    • zenodo.org
    • data.niaid.nih.gov
    • +1more
    json, xml, zip
    Updated Jun 3, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Willem Van Panhuis; Willem Van Panhuis; Anne Cross; Anne Cross; Donald Burke; Donald Burke (2024). Counts of Influenza reported in UNITED STATES OF AMERICA: 1919-1951 [Dataset]. http://doi.org/10.25337/t7/ptycho.v2.0/us.6142004
    Explore at:
    json, xml, zipAvailable download formats
    Dataset updated
    Jun 3, 2024
    Dataset provided by
    Project Tycho
    Authors
    Willem Van Panhuis; Willem Van Panhuis; Anne Cross; Anne Cross; Donald Burke; Donald Burke
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Oct 26, 1919 - Dec 8, 1951
    Area covered
    United States
    Description

    Project Tycho datasets contain case counts for reported disease conditions for countries around the world. The Project Tycho data curation team extracts these case counts from various reputable sources, typically from national or international health authorities, such as the US Centers for Disease Control or the World Health Organization. These original data sources include both open- and restricted-access sources. For restricted-access sources, the Project Tycho team has obtained permission for redistribution from data contributors. All datasets contain case count data that are identical to counts published in the original source and no counts have been modified in any way by the Project Tycho team. The Project Tycho team has pre-processed datasets by adding new variables, such as standard disease and location identifiers, that improve data interpretabilty. We also formatted the data into a standard data format.

    Each Project Tycho dataset contains case counts for a specific condition (e.g. measles) and for a specific country (e.g. The United States). Case counts are reported per time interval. In addition to case counts, datsets include information about these counts (attributes), such as the location, age group, subpopulation, diagnostic certainty, place of aquisition, and the source from which we extracted case counts. One dataset can include many series of case count time intervals, such as "US measles cases as reported by CDC", or "US measles cases reported by WHO", or "US measles cases that originated abroad", etc.

    Depending on the intended use of a dataset, we recommend a few data processing steps before analysis:

    • Analyze missing data: Project Tycho datasets do not inlcude time intervals for which no case count was reported (for many datasets, time series of case counts are incomplete, due to incompleteness of source documents) and users will need to add time intervals for which no count value is available. Project Tycho datasets do include time intervals for which a case count value of zero was reported.
    • Separate cumulative from non-cumulative time interval series. Case count time series in Project Tycho datasets can be "cumulative" or "fixed-intervals". Cumulative case count time series consist of overlapping case count intervals starting on the same date, but ending on different dates. For example, each interval in a cumulative count time series can start on January 1st, but end on January 7th, 14th, 21st, etc. It is common practice among public health agencies to report cases for cumulative time intervals. Case count series with fixed time intervals consist of mutually exxclusive time intervals that all start and end on different dates and all have identical length (day, week, month, year). Given the different nature of these two types of case count data, we indicated this with an attribute for each count value, named "PartOfCumulativeCountSeries".

  4. u

    Influenza death rates by county, 2019-2023 - Dataset - Healthy Communities...

    • midb.uspatial.umn.edu
    Updated Oct 24, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2025). Influenza death rates by county, 2019-2023 - Dataset - Healthy Communities Data Portal [Dataset]. https://midb.uspatial.umn.edu/hcdp/dataset/influenza-death-rates-by-county-2019-2023
    Explore at:
    Dataset updated
    Oct 24, 2025
    Description

    Influenza death rates by county, all races (includes Hispanic/Latino), all sexes, all ages, 2019-2023. Death data were provided by the National Vital Statistics System. Death rates (deaths per 100,000 population per year) are age-adjusted to the 2000 US standard population (20 age groups: <1, 1-4, 5-9, ... , 80-84, 85-89, 90+). Rates calculated using SEER*Stat. Population counts for denominators are based on Census populations as modified by the National Cancer Institute. The US Population Data File is used for mortality data. The Average Annual Percent Change is based onthe APCs calculated by the Joinpoint Regression Program (Version 4.9.0.0). Due to data availability issues, the time period used in the calculation of the joinpoint regression model may differ for selected counties. Counties with a (3) after their name may have their joinpoint regresssion model calculated using a different time period due to data availability issues.

  5. Respiratory Virus Dashboard Metrics

    • data.ca.gov
    • data.chhs.ca.gov
    • +2more
    csv, xlsx, zip
    Updated Nov 7, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    California Department of Public Health (2025). Respiratory Virus Dashboard Metrics [Dataset]. https://data.ca.gov/dataset/respiratory-virus-dashboard-metrics
    Explore at:
    xlsx, csv, zipAvailable download formats
    Dataset updated
    Nov 7, 2025
    Dataset authored and provided by
    California Department of Public Healthhttps://www.cdph.ca.gov/
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Note: On April 30, 2024, the Federal mandate for COVID-19 and influenza associated hospitalization data to be reported to CDC’s National Healthcare Safety Network (NHSN) expired. Hospitalization data beyond April 30, 2024, will not be updated on the Open Data Portal. Hospitalization and ICU admission data collected from summer 2020 to May 10, 2023, are sourced from the California Hospital Association (CHA) Survey. Data collected on or after May 11, 2023, are sourced from CDC's National Healthcare Safety Network (NHSN).

    Data is from the California Department of Public Health (CDPH) Respiratory Virus State Dashboard at https://www.cdph.ca.gov/Programs/CID/DCDC/Pages/Respiratory-Viruses/RespiratoryDashboard.aspx.

    Data are updated each Friday around 2 pm.

    For COVID-19 death data: As of January 1, 2023, data was sourced from the California Department of Public Health, California Comprehensive Death File (Dynamic), 2023–Present. Prior to January 1, 2023, death data was sourced from the COVID-19 case registry. The change in data source occurred in July 2023 and was applied retroactively to all 2023 data to provide a consistent source of death data for the year of 2023. Influenza death data was sourced from the California Department of Public Health, California Comprehensive Death File (Dynamic), 2020–Present.

    COVID-19 testing data represent data received by CDPH through electronic laboratory reporting of test results for COVID-19 among residents of California. Testing date is the date the test was administered, and tests have a 1-day lag (except for the Los Angeles County, which has an additional 7-day lag). Influenza testing data represent data received by CDPH from clinical sentinel laboratories in California. These laboratories report the aggregate number of laboratory-confirmed influenza virus detections and total tests performed on a weekly basis. These data do not represent all influenza testing occurring in California and are available only at the state level.

  6. Preliminary 2024-2025 U.S. COVID-19 Burden Estimates

    • data.cdc.gov
    • data.virginia.gov
    • +1more
    csv, xlsx, xml
    Updated Sep 26, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Coronavirus and Other Respiratory Viruses Division (CORVD), National Center for Immunization and Respiratory Diseases (NCIRD). (2025). Preliminary 2024-2025 U.S. COVID-19 Burden Estimates [Dataset]. https://data.cdc.gov/Public-Health-Surveillance/Preliminary-2024-2025-U-S-COVID-19-Burden-Estimate/ahrf-yqdt
    Explore at:
    xlsx, csv, xmlAvailable download formats
    Dataset updated
    Sep 26, 2025
    Dataset provided by
    National Center for Immunization and Respiratory Diseases
    Authors
    Coronavirus and Other Respiratory Viruses Division (CORVD), National Center for Immunization and Respiratory Diseases (NCIRD).
    License

    https://www.usa.gov/government-workshttps://www.usa.gov/government-works

    Description

    This dataset represents preliminary estimates of cumulative U.S. COVID-19 disease burden for the 2024-2025 period, including illnesses, outpatient visits, hospitalizations, and deaths. The weekly COVID-19-associated burden estimates are preliminary and based on continuously collected surveillance data from patients hospitalized with laboratory-confirmed severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infections. The data come from the Coronavirus Disease 2019 (COVID-19)-Associated Hospitalization Surveillance Network (COVID-NET), a surveillance platform that captures data from hospitals that serve about 10% of the U.S. population. Each week CDC estimates a range (i.e., lower estimate and an upper estimate) of COVID-19 -associated burden that have occurred since October 1, 2024.

    Note: Data are preliminary and subject to change as more data become available. Rates for recent COVID-19-associated hospital admissions are subject to reporting delays; as new data are received each week, previous rates are updated accordingly.

    References

    1. Reed C, Chaves SS, Daily Kirley P, et al. Estimating influenza disease burden from population-based surveillance data in the United States. PLoS One. 2015;10(3):e0118369. https://doi.org/10.1371/journal.pone.0118369 
    2. Rolfes, MA, Foppa, IM, Garg, S, et al. Annual estimates of the burden of seasonal influenza in the United States: A tool for strengthening influenza surveillance and preparedness. Influenza Other Respi Viruses. 2018; 12: 132– 137. https://doi.org/10.1111/irv.12486
    3. Tokars JI, Rolfes MA, Foppa IM, Reed C. An evaluation and update of methods for estimating the number of influenza cases averted by vaccination in the United States. Vaccine. 2018;36(48):7331-7337. doi:10.1016/j.vaccine.2018.10.026 
    4. Collier SA, Deng L, Adam EA, Benedict KM, Beshearse EM, Blackstock AJ, Bruce BB, Derado G, Edens C, Fullerton KE, Gargano JW, Geissler AL, Hall AJ, Havelaar AH, Hill VR, Hoekstra RM, Reddy SC, Scallan E, Stokes EK, Yoder JS, Beach MJ. Estimate of Burden and Direct Healthcare Cost of Infectious Waterborne Disease in the United States. Emerg Infect Dis. 2021 Jan;27(1):140-149. doi: 10.3201/eid2701.190676. PMID: 33350905; PMCID: PMC7774540.
    5. Reed C, Kim IK, Singleton JA,  et al. Estimated influenza illnesses and hospitalizations averted by vaccination–United States, 2013-14 influenza season. MMWR Morb Mortal Wkly Rep. 2014 Dec 12;63(49):1151-4. https://www.cdc.gov/mmwr/preview/mmwrhtml/mm6349a2.htm 
    6. Reed C, Angulo FJ, Swerdlow DL, et al. Estimates of the Prevalence of Pandemic (H1N1) 2009, United States, April–July 2009. Emerg Infect Dis. 2009;15(12):2004-2007. https://dx.doi.org/10.3201/eid1512.091413
    7. Devine O, Pham H, Gunnels B, et al. Extrapolating Sentinel Surveillance Information to Estimate National COVID-19 Hospital Admission Rates: A Bayesian Modeling Approach. Influenza and Other Respiratory Viruses. https://onlinelibrary.wiley.com/doi/10.1111/irv.70026. Volume18, Issue10. October 2024.
    8. https://www.cdc.gov/covid/php/covid-net/index.html">COVID-NET | COVID-19 | CDC 
    9. https://www.cdc.gov/covid/hcp/clinical-care/systematic-review-process.html 
    10. https://academic.oup.com/pnasnexus/article/1/3/pgac079/6604394?login=false">Excess natural-cause deaths in California by cause and setting: March 2020 through February 2021 | PNAS Nexus | Oxford Academic (oup.com)
    11. Kruschke, J. K. 2011. Doing Bayesian data analysis: a tutorial with R and BUGS. Elsevier, Amsterdam, Section 3.3.5.

  7. Mortality Statistics in US Cities

    • kaggle.com
    zip
    Updated Jan 23, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    The Devastator (2023). Mortality Statistics in US Cities [Dataset]. https://www.kaggle.com/datasets/thedevastator/mortality-statistics-in-us-cities
    Explore at:
    zip(96624 bytes)Available download formats
    Dataset updated
    Jan 23, 2023
    Authors
    The Devastator
    Area covered
    United States
    Description

    Mortality Statistics in US Cities

    Deaths by Age and Cause of Death in 2016

    By Health [source]

    About this dataset

    This dataset contains mortality statistics for 122 U.S. cities in 2016, providing detailed information about all deaths that occurred due to any cause, including pneumonia and influenza. The data is voluntarily reported from cities with populations of 100,000 or more, and it includes the place of death and the week during which the death certificate was filed. Data is provided broken down by age group and includes a flag indicating the reliability of each data set to help inform analysis. Each row also provides longitude and latitude information for each reporting area in order to make further analysis easier. These comprehensive mortality statistics are invaluable resources for tracking disease trends as well as making comparisons between different areas across the country in order to identify public health risks quickly and effectively

    More Datasets

    For more datasets, click here.

    Featured Notebooks

    • 🚨 Your notebook can be here! 🚨!

    How to use the dataset

    This dataset contains mortality rates for 122 U.S. cities in 2016, including deaths by age group and cause of death. The data can be used to study various trends in mortality and contribute to the understanding of how different diseases impact different age groups across the country.

    In order to use the data, firstly one has to identify which variables they would like to use from this dataset. These include: reporting area; MMWR week; All causes by age greater than 65 years; All causes by age 45-64 years; All causes by age 25-44 years; All causes by age 1-24 years; All causes less than 1 year old; Pneumonia and Influenza total fatalities; Location (1 & 2); flag indicating reliability of data.

    Once you have identified the variables that you are interested in,you will need to filter the dataset so that it only includes relevant information for your analysis or research purposes. For example, if you are looking at trends between different ages, then all you would need is information on those 3 specific cause groups (greater than 65, 45-64 and 25-44). You can do this using a selection tool that allows you to pick only certain columns from your data set or an excel filter tool if your data is stored as a csv file type .

    Next step is preparing your data - it’s important for efficient analysis also helpful when there are too many variables/columns which can confuse our analysis process – eliminate unnecessary columns, rename column labels where needed etc ... In addition , make sure we clean up any missing values / outliers / incorrect entries before further investigation .Remember , outliers or corrupt entries may lead us into incorrect conclusions upon analyzing our set ! Once we complete the cleaning steps , now its safe enough transit into drawing insights !

    The last step involves using statistical methods such as linear regression with multiple predictors or descriptive statistical measures such as mean/median etc ..to draw key insights based on analysis done so far and generate some actionable points !

    With these steps taken care off , now its easier for anyone who decides dive into another project involving this particular dataset with added advantage formulated out of existing work done over our previous investigations!

    Research Ideas

    • Creating population health profiles for cities in the U.S.
    • Tracking public health trends across different age groups
    • Analyzing correlations between mortality and geographical locations

    Acknowledgements

    If you use this dataset in your research, please credit the original authors. Data Source

    License

    License: Dataset copyright by authors - You are free to: - Share - copy and redistribute the material in any medium or format for any purpose, even commercially. - Adapt - remix, transform, and build upon the material for any purpose, even commercially. - You must: - Give appropriate credit - Provide a link to the license, and indicate if changes were made. - ShareAlike - You must distribute your contributions under the same license as the original. - Keep intact - all notices that refer to this license, including copyright notices.

    Columns

    File: rows.csv | Column name | Description | |:--------------------------------------------|:-----------------------------------...

  8. Deaths due to COVID-19 compared with deaths from influenza and pneumonia

    • ons.gov.uk
    • cy.ons.gov.uk
    xlsx
    Updated Oct 8, 2020
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Office for National Statistics (2020). Deaths due to COVID-19 compared with deaths from influenza and pneumonia [Dataset]. https://www.ons.gov.uk/peoplepopulationandcommunity/birthsdeathsandmarriages/deaths/datasets/deathsduetocovid19comparedwithdeathsfrominfluenzaandpneumonia
    Explore at:
    xlsxAvailable download formats
    Dataset updated
    Oct 8, 2020
    Dataset provided by
    Office for National Statisticshttp://www.ons.gov.uk/
    License

    Open Government Licence 3.0http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
    License information was derived automatically

    Description

    Provisional counts of the number of death occurrences in England and Wales due to coronavirus (COVID-19) and influenza and pneumonia, by age, sex and place of death.

  9. Influenza_death

    • kaggle.com
    zip
    Updated Apr 1, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    willian oliveira (2024). Influenza_death [Dataset]. https://www.kaggle.com/willianoliveiragibin/influenza-death
    Explore at:
    zip(2814 bytes)Available download formats
    Dataset updated
    Apr 1, 2024
    Authors
    willian oliveira
    License

    https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/

    Description

    this graph was created in OurDataWorld, R , Loocker and Tableau

    https://www.googleapis.com/download/storage/v1/b/kaggle-user-content/o/inbox%2F16731800%2Fcae3bb501c71af31a491739671842d0d%2Fgraph1.png?generation=1712001396965624&alt=media" alt="">

    https://www.googleapis.com/download/storage/v1/b/kaggle-user-content/o/inbox%2F16731800%2Fb9bb57abd368d522f4f70edd77e44cd5%2Fgraph2.png?generation=1712001404173500&alt=media" alt="">

    https://www.googleapis.com/download/storage/v1/b/kaggle-user-content/o/inbox%2F16731800%2Ffcc4718729d85efd4fb21eb4cdfb1ee3%2Fgraph3.jpg?generation=1712001411161330&alt=media" alt="">

    https://www.googleapis.com/download/storage/v1/b/kaggle-user-content/o/inbox%2F16731800%2F3a1dd72755f5473cf5f9c0758edc1dd3%2Fgraph4.png?generation=1712001416526151&alt=media" alt="">

    Introduction: Seasonal influenza, often perceived as a common illness, carries a significant global burden, claiming hundreds of thousands of lives annually. Despite advancements in healthcare and vaccination efforts, the flu remains a formidable threat, particularly affecting vulnerable populations such as infants and the elderly. This article delves into the intricacies of influenza-related mortality, examining regional disparities, contributing factors, and the implications for public health.

    The Global Landscape of Influenza Mortality: Data from the Global Pandemic Mortality Project II sheds light on the magnitude of influenza-related deaths, drawing from surveillance metrics spanning from 2002 to 2011. These estimates, while informative, underscore the challenge of accurately gauging mortality rates, especially in low-income countries where testing and mortality records may be lacking.

    Respiratory Symptoms and Beyond: The conventional understanding of influenza-related fatalities primarily revolves around respiratory complications. Pneumonia and other respiratory ailments serve as prominent causes of death, contributing to the staggering toll of 400,000 lives claimed annually. However, it is imperative to acknowledge that the impact of influenza extends beyond respiratory symptoms. Complications such as strokes and heart attacks, though not explicitly captured in mortality estimates, further amplify the disease's lethality, warranting comprehensive preventive measures.

    Vulnerability Across Age Groups: Influenza's lethality is not uniform across age demographics. Infants and the elderly emerge as the most susceptible cohorts, bearing the brunt of severe complications and mortality. Among individuals aged over 65, the mortality rate stands at approximately 31 per 100,000 in Europe alone, reflecting the disproportionate impact on older populations. The interplay of age-related factors, including weakened immune responses and underlying health conditions, exacerbates the severity of influenza outcomes among these groups.

    Regional Disparities and Determinants: A notable aspect of influenza mortality lies in its disparate distribution across regions. While Europe and North America exhibit relatively lower death rates, countries in South America, Africa, and South Asia grapple with higher mortality burdens. This regional divide underscores the complex interplay of socio-economic factors, healthcare accessibility, and vaccination coverage. Poverty, inadequate healthcare infrastructure, and suboptimal vaccination rates converge to heighten vulnerability to influenza-related complications, amplifying mortality rates in resource-constrained settings.

    Implications for Public Health: The revelation of significant regional differentials in influenza mortality necessitates a tailored approach to public health interventions. Strengthening healthcare systems, particularly in low-income regions, is paramount to bolstering surveillance, enhancing diagnostic capabilities, and facilitating timely interventions. Furthermore, targeted vaccination campaigns, coupled with education initiatives, hold promise in mitigating influenza's toll, especially among vulnerable populations. Addressing socio-economic disparities and bolstering healthcare resilience emerge as pivotal strategies in fortifying global defenses against seasonal influenza.

    Conclusion: Seasonal influenza, often underestimated in its impact, exacts a substantial toll on global health each year. The multifaceted nature of influenza-related mortality underscores the need for a nuanced understanding and comprehensive mitigation strategies. By addressing regional disparities, prioritizing vulnerable populations, and fortifying healthcare systems, the global community can strive towards mitigating the burden of seasonal influenza, safeguarding lives, and fostering resilient health systems for generations to come.

  10. Deaths by vaccination status, England

    • ons.gov.uk
    • cy.ons.gov.uk
    xlsx
    Updated Aug 25, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Office for National Statistics (2023). Deaths by vaccination status, England [Dataset]. https://www.ons.gov.uk/peoplepopulationandcommunity/birthsdeathsandmarriages/deaths/datasets/deathsbyvaccinationstatusengland
    Explore at:
    xlsxAvailable download formats
    Dataset updated
    Aug 25, 2023
    Dataset provided by
    Office for National Statisticshttp://www.ons.gov.uk/
    License

    Open Government Licence 3.0http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
    License information was derived automatically

    Description

    Age-standardised mortality rates for deaths involving coronavirus (COVID-19), non-COVID-19 deaths and all deaths by vaccination status, broken down by age group.

  11. Leading causes of death, total population, by age group

    • www150.statcan.gc.ca
    • ouvert.canada.ca
    • +1more
    Updated Feb 19, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Government of Canada, Statistics Canada (2025). Leading causes of death, total population, by age group [Dataset]. http://doi.org/10.25318/1310039401-eng
    Explore at:
    Dataset updated
    Feb 19, 2025
    Dataset provided by
    Statistics Canadahttps://statcan.gc.ca/en
    Area covered
    Canada
    Description

    Rank, number of deaths, percentage of deaths, and age-specific mortality rates for the leading causes of death, by age group and sex, 2000 to most recent year.

  12. Preliminary 2024-2025 U.S. RSV Burden Estimates

    • data.cdc.gov
    • data.virginia.gov
    • +1more
    csv, xlsx, xml
    Updated May 30, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Coronavirus and Other Respiratory Viruses Division (CORVD), National Center for Immunization and Respiratory Diseases (NCIRD). (2025). Preliminary 2024-2025 U.S. RSV Burden Estimates [Dataset]. https://data.cdc.gov/Public-Health-Surveillance/Preliminary-2024-2025-U-S-RSV-Burden-Estimates/sumd-iwm8
    Explore at:
    xlsx, xml, csvAvailable download formats
    Dataset updated
    May 30, 2025
    Dataset provided by
    National Center for Immunization and Respiratory Diseases
    Authors
    Coronavirus and Other Respiratory Viruses Division (CORVD), National Center for Immunization and Respiratory Diseases (NCIRD).
    License

    https://www.usa.gov/government-workshttps://www.usa.gov/government-works

    Description

    This dataset represents preliminary estimates of cumulative U.S. RSV –associated disease burden estimates for the 2024-2025 season, including outpatient visits, hospitalizations, and deaths. Real-time estimates are preliminary and based on continuously collected surveillance data from patients hospitalized with laboratory-confirmed respiratory syncytial virus (RSV) infections. The data come from the Respiratory Syncytial Virus Hospitalization Surveillance Network (RSV-NET), a surveillance platform that captures data from hospitals that serve about 8% of the U.S. population. Each week CDC estimates a range (i.e., lower estimate and an upper estimate) of RSV-associated disease burden estimates that have occurred since October 1, 2024.

    Note: Data are preliminary and subject to change as more data become available. Rates for recent RSV-associated hospital admissions are subject to reporting delays; as new data are received each week, previous rates are updated accordingly.

    Note: Preliminary burden estimates are not inclusive of data from all RSV-NET sites. Due to model limitations, sites with small sample sizes can impact estimates in unpredictable ways and are excluded for the benefit of model stability. CDC is working to address model limitations and include data from all sites in final burden estimates.

    References

    1. Reed C, Chaves SS, Daily Kirley P, et al. Estimating influenza disease burden from population-based surveillance data in the United States. PLoS One. 2015;10(3):e0118369. https://doi.org/10.1371/journal.pone.0118369 
    2. Rolfes, MA, Foppa, IM, Garg, S, et al. Annual estimates of the burden of seasonal influenza in the United States: A tool for strengthening influenza surveillance and preparedness. Influenza Other Respi Viruses. 2018; 12: 132– 137. https://doi.org/10.1111/irv.12486
    3. Tokars JI, Rolfes MA, Foppa IM, Reed C. An evaluation and update of methods for estimating the number of influenza cases averted by vaccination in the United States. Vaccine. 2018;36(48):7331-7337. doi:10.1016/j.vaccine.2018.10.026 
    4. Collier SA, Deng L, Adam EA, Benedict KM, Beshearse EM, Blackstock AJ, Bruce BB, Derado G, Edens C, Fullerton KE, Gargano JW, Geissler AL, Hall AJ, Havelaar AH, Hill VR, Hoekstra RM, Reddy SC, Scallan E, Stokes EK, Yoder JS, Beach MJ. Estimate of Burden and Direct Healthcare Cost of Infectious Waterborne Disease in the United States. Emerg Infect Dis. 2021 Jan;27(1):140-149. doi: 10.3201/eid2701.190676. PMID: 33350905; PMCID: PMC7774540.
    5. Reed C, Kim IK, Singleton JA,  et al. Estimated influenza illnesses and hospitalizations averted by vaccination–United States, 2013-14 influenza season. MMWR Morb Mortal Wkly Rep. 2014 Dec 12;63(49):1151-4. https://www.cdc.gov/mmwr/preview/mmwrhtml/mm6349a2.htm 
    6. Reed C, Angulo FJ, Swerdlow DL, et al. Estimates of the Prevalence of Pandemic (H1N1) 2009, United States, April–July 2009. Emerg Infect Dis. 2009;15(12):2004-2007. https://dx.doi.org/10.3201/eid1512.091413
    7. Devine O, Pham H, Gunnels B, et al. Extrapolating Sentinel Surveillance Information to Estimate National COVID-19 Hospital Admission Rates: A Bayesian Modeling Approach. Influenza and Other Respiratory Viruses. https://onlinelibrary.wiley.com/doi/10.1111/irv.70026. Volume18, Issue10. October 2024.
    8. https://www.cdc.gov/covid/php/covid-net/index.html">COVID-NET | COVID-19 | CDC 
    9. https://www.cdc.gov/covid/hcp/clinical-care/systematic-review-process.html 
    10. https://academic.oup.com/pnasnexus/article/1/3/pgac079/6604394?login=false">Excess natural-cause deaths in California by cause and setting: March 2020 through February 2021 | PNAS Nexus | Oxford Academic (oup.com)
    11. Kruschke, J. K. 2011. Doing Bayesian data analysis: a tutorial with R and BUGS. Elsevier, Amsterdam, Section 3.3.5.

  13. C

    Provisional Deaths Due to Respiratory Illnesses

    • data.cityofchicago.org
    • healthdata.gov
    • +2more
    csv, xlsx, xml
    Updated Nov 28, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    City of Chicago (2025). Provisional Deaths Due to Respiratory Illnesses [Dataset]. https://data.cityofchicago.org/Health-Human-Services/Provisional-Deaths-Due-to-Respiratory-Illnesses/6ibj-qcjr
    Explore at:
    xlsx, xml, csvAvailable download formats
    Dataset updated
    Nov 28, 2025
    Dataset authored and provided by
    City of Chicago
    Description

    The Chicago Department of Public Health (CDPH) receives weekly deidentified provisional death certificate data for all deaths that occur in Chicago, which can include both Chicago and non-Chicago residents from the Illinois Department of Public Health (IDPH) Illinois Vital Records System (IVRS). CDPH scans for keywords to identify deaths with COVID-19, influenza, or respiratory syncytial virus (RSV) listed as an immediate cause of death, contributing factor, or other significant condition. The percentage of all reported deaths that are attributed to COVID-19, influenza, or RSV is calculated as the number of deaths for each respective disease divided by the number of deaths from all causes, multiplied by 100.

    This dataset reflects death certificates that have been submitted to IVRS at the time of transmission to CDPH each week – data from previous weeks are not updated with any new submissions to IVRS. As such, estimates in this dataset may differ from those reported through other sources. This dataset can be used to understand trends in COVID-19, influenza, and RSV mortality in Chicago but does not reflect official death statistics.

    Source: Provisional deaths from the Illinois Department of Public Health Illinois Vital Records System.

  14. Demographic Trends and Health Outcomes in the U.S

    • kaggle.com
    zip
    Updated Jan 12, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    The Devastator (2023). Demographic Trends and Health Outcomes in the U.S [Dataset]. https://www.kaggle.com/datasets/thedevastator/demographic-trends-and-health-outcomes-in-the-u
    Explore at:
    zip(1726637 bytes)Available download formats
    Dataset updated
    Jan 12, 2023
    Authors
    The Devastator
    Area covered
    United States
    Description

    Demographic Trends and Health Outcomes in the U.S

    Inequalities,Risk Factors and Access to Care

    By Data Society [source]

    About this dataset

    This dataset contains key demographic, health status indicators and leading cause of death data to help us understand the current trends and health outcomes in communities across the United States. By looking at this data, it can be seen how different states, counties and populations have changed over time. With this data we can analyze levels of national health services use such as vaccination rates or mammography rates; review leading causes of death to create public policy initiatives; as well as identify risk factors for specific conditions that may be associated with certain populations or regions. The information from these files includes State FIPS Code, County FIPS Code, CHSI County Name, CHSI State Name, CHSI State Abbreviation, Influenza B (FluB) report count & expected cases rate per 100K population , Hepatitis A (HepA) Report Count & expected cases rate per 100K population , Hepatitis B (HepB) Report Count & expected cases rate per 100K population , Measles (Meas) Report Count & expected cases rate per 100K population , Pertussis(Pert) Report Count & expected case rate per 100K population , CRS report count & expected case rate per 100K population , Syphilis report count and expected case rate per 100k popuation. We also look at measures related to preventive care services such as Pap smear screen among women aged 18-64 years old check lower/upper confidence intervals seperately ; Mammogram checks among women aged 40-64 years old specified lower/upper conifence intervals separetly ; Colonosopy/ Proctoscpushy among men aged 50+ measured in lower/upper limits ; Pneumonia Vaccination amongst 65+ with loewr/upper confidence level detail Additionally we have some interesting trend indicating variables like measures of birth adn death which includes general fertility ratye ; Teen Birth Rate by Mother's age group etc Summary Measures covers mortality trend following life expectancy by sex&age categories Vressionable populations access info gives us insight into disablilty ratio + access to envtiromental issues due to poor quality housing facilities Finally Risk Factors cover speicfic hoslitic condtiions suchs asthma diagnosis prevelance cancer diabetes alcholic abuse smoking trends All these information give a good understanding on Healthy People 2020 target setings demograpihcally speaking hence will aid is generating more evience backed policies

    More Datasets

    For more datasets, click here.

    Featured Notebooks

    • 🚨 Your notebook can be here! 🚨!

    How to use the dataset

    What the Dataset Contains

    This dataset contains valuable information about public health relevant to each county in the United States, broken down into 9 indicator domains: Demographics, Leading Causes of Death, Summary Measures of Health, Measures of Birth and Death Rates, Relative Health Importance, Vulnerable Populations and Environmental Health Conditions, Preventive Services Use Data from BRFSS Survey System Data , Risk Factors and Access to Care/Health Insurance Coverage & State Developed Types of Measurements such as CRS with Multiple Categories Identified for Each Type . The data includes indicators such as percentages or rates for influenza (FLU), hepatitis (HepA/B), measles(MEAS) pertussis(PERT), syphilis(Syphilis) , cervical cancer (CI_Min_Pap_Smear - CI_Max\Pap \Smear), breast cancer (CI\Min Mammogram - CI \Max \Mammogram ) proctoscopy (CI Min Proctoscopy - CI Max Proctoscopy ), pneumococcal vaccinations (Ci min Pneumo Vax - Ci max Pneumo Vax )and flu vaccinations (Ci min Flu Vac - Ci Max Flu Vac). Additionally , it provides information on leading causes of death at both county levels & national level including age-adjusted mortality rates due to suicide among teens aged between 15-19 yrs per 100000 population etc.. Furthermore , summary measures such as age adjusted percentage who consider their physical health fair or poor are provided; vulnerable populations related indicators like relative importance score for disabled adults ; preventive service use related ones ranging from self reported vaccination coverage among men40-64 yrs old against hepatitis B virus etc...

    Getting Started With The Dataset

    To get started with exploring this dataset first your need to understand what each column in the table represents: State FIPS Code identifies a unique identifier used by various US government agencies which denote states . County FIPS code denotes counties wi...

  15. Provisional COVID-19 Deaths by Sex and Age

    • catalog.data.gov
    • odgavaprod.ogopendata.com
    • +4more
    Updated Apr 23, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Centers for Disease Control and Prevention (2025). Provisional COVID-19 Deaths by Sex and Age [Dataset]. https://catalog.data.gov/dataset/provisional-covid-19-death-counts-by-sex-age-and-state
    Explore at:
    Dataset updated
    Apr 23, 2025
    Dataset provided by
    Centers for Disease Control and Preventionhttp://www.cdc.gov/
    Description

    Effective September 27, 2023, this dataset will no longer be updated. Similar data are accessible from wonder.cdc.gov. Deaths involving COVID-19, pneumonia, and influenza reported to NCHS by sex, age group, and jurisdiction of occurrence.

  16. H1N1 | 2009 | Swine Flu Pandemic

    • kaggle.com
    zip
    Updated Jul 16, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Devakumar K. P. (2020). H1N1 | 2009 | Swine Flu Pandemic [Dataset]. https://www.kaggle.com/datasets/imdevskp/h1n1-swine-flu-2009-pandemic-dataset/code
    Explore at:
    zip(17887 bytes)Available download formats
    Dataset updated
    Jul 16, 2020
    Authors
    Devakumar K. P.
    Description

    Context

    The 2009 swine flu pandemic was an influenza pandemic that lasted for about 19 months, from January 2009 to August 2010, and the second of two pandemics involving H1N1 influenza virus.

    Content

    1. data.csv - contains day by day country wise no. of cases & deaths from 4th April to 6th July 2009

    Note

    • Although the pandemic went on for more than 2 years the data is only from 24th April 2009 to 6th July 2009.
    • Because the countries were no longer required to test and report individual cases from 6th July 2009.
    • So that day by day data from 6th July 2009 is not available.

    Acknowledgements / Data Source

    https://www.who.int/csr/disease/swineflu/updates/en/

    Collection methodology

    https://github.com/imdevskp/h1n1_data_webscrapping

    Cover Photo

    Photo from CDC Blog https://blogs.cdc.gov/publichealthmatters/2019/04/h1n1/

    Similar Datasets

  17. f

    Data from: Designing new drug candidates as inhibitors against wild and...

    • datasetcatalog.nlm.nih.gov
    • tandf.figshare.com
    Updated Sep 25, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Kurt, Murat; Pirinccioglu, Necmettin; Ercan, Selami (2022). Designing new drug candidates as inhibitors against wild and mutant type neuraminidases: molecular docking, molecular dynamics and binding free energy calculations [Dataset]. https://datasetcatalog.nlm.nih.gov/dataset?q=0000220942
    Explore at:
    Dataset updated
    Sep 25, 2022
    Authors
    Kurt, Murat; Pirinccioglu, Necmettin; Ercan, Selami
    Description

    Influenza virus is the cause of the death of millions of people with about 3–4 pandemics every hundred years in history. It also turns into a seasonal disease, bringing about approximately 5–15% of the population to be infected and 290,000–650,000 people to die every year. These numbers reveal that it is necessary to be on the alert to work towards influenza in order to protect public health. There are FDA-approved antiviral drugs such as oseltamivir and zanamivir recommended by the World Center for Disease Prevention. However, after the recent outbreaks such as bird flu and swine flu, increasing studies have shown that the flu virus has gained resistance to these drugs. So, there is an urgent need to find new drugs effective against this virus. This study aims to investigate new drug candidates targeting neuraminidase (NA) for the treatment of influenza by using computer aided drug design approaches. They involve virtual scanning, de novo design, rational design, docking, MD, MMGB/PBSA. The investigation includes H1N1, H5N1, H2N2 and H3N2 neuraminidase proteins and their mutant variants possessing resistance to FDA-approved drugs. Virtual screening consists of approximately 30 thousand molecules while de novo and rational designs produced over a hundred molecules. These approaches produced three lead molecules with binding energies for both non-mutant (-34.84, −59.99 and −60.66 kcal/mol) and mutant (-40.40, −58.93, −76.19 kcal/mol) H2N2 NA calculated by MM-PBSA compared with those of oseltamivir −25.64 and −18.40 respectively. The results offer new drug candidates against influenza infection. Communicated by Ramaswamy H. Sarma

  18. COVID-19 Country Data

    • kaggle.com
    zip
    Updated May 3, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Patrick (2020). COVID-19 Country Data [Dataset]. https://www.kaggle.com/datasets/bitsnpieces/covid19-country-data/code
    Explore at:
    zip(190821 bytes)Available download formats
    Dataset updated
    May 3, 2020
    Authors
    Patrick
    License

    http://opendatacommons.org/licenses/dbcl/1.0/http://opendatacommons.org/licenses/dbcl/1.0/

    Description

    Motivation

    Why did I create this dataset? This is my first time creating a notebook in Kaggle and I am interested in learning more about COVID-19 and how different countries are affected by it and why. It might be useful to compare different metrics between different countries. And I also wanted to participate in a challenge, and I've decided to join the COVID-19 datasets challenge. While looking through the projects, I noticed https://www.kaggle.com/koryto/countryinfo and it inspired me to start this project.

    Method

    My approach is to scour the Internet and Kaggle looking for country data that can potentially have an impact on how the COVID-19 pandemic spreads. In the end, I ended up with the following for each country:

    • Monthly temperature and precipitation from Worldbank
    • Latitude and longitude
    • Population, density, gender and age
    • Airport traffic from Worldbank
    • COVID-19 date of first case and number of cases and deaths as of March 26, 2020
    • 2009 H1N1 flu pandemic cases and deaths obtained from Wikipedia
    • Property affordability index and Health care index from Numbeo
    • Number of hospital beds and ICU beds from Wikipedia
    • Flu and pneumonia death rate from Worldlifeexpectancy.com (Age Adjusted Death Rate Estimates: 2017)
    • School closures due to COVID-19
    • Number of COVID-19 tests done
    • Number of COVID-19 genetic strains
    • US Social Distancing Policies from COVID19StatePolicy’s SocialDistancing repository on GitHub
    • DHL Global Connectedness Index 2018 (People Breadth scores)
    • Datasets have been merged by country name whenever possible. I needed to rename some countries by hand, e.g. US to United Sates, etc. but it's possible that I might have missed some. See the output file covid19_merged.csv for the merged result.

    See covid19_data - data_sources.csv for data source details.

    Notebook: https://www.kaggle.com/bitsnpieces/covid19-data

    Caveats

    Since I did not personally collect each datapoint, and because each datasource is different with different objectives, collected at different times, measured in different ways, any inferences from this dataset will need further investigation.

    Other interesting sources of information

    Acknowledgements

    I want to acknowledge the authors of the datasets that made their data publicly available which has made this project possible. Banner image is by Brian.

    I hope that the community finds this dataset useful. Feel free to recommend other datasets that you think will be useful / relevant! Thanks for looking.

  19. Data_Sheet_1_Population-level benefits of increasing influenza vaccination...

    • frontiersin.figshare.com
    bin
    Updated Aug 3, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Alexander Domnich; Andrea Orsi; Donatella Panatto; Matilde Ogliastro; Alessandra Barca; Fabrizio Bert; Danilo Cereda; Maria Chironna; Claudio Costantino; Daniel Fiacchini; Elena Pariani; Caterina Rizzo; Enrico Volpe; Giancarlo Icardi; The FluCoV Study Group (2023). Data_Sheet_1_Population-level benefits of increasing influenza vaccination uptake among Italian older adults: results from a granular panel model.docx [Dataset]. http://doi.org/10.3389/fpubh.2023.1224175.s001
    Explore at:
    binAvailable download formats
    Dataset updated
    Aug 3, 2023
    Dataset provided by
    Frontiers Mediahttp://www.frontiersin.org/
    Authors
    Alexander Domnich; Andrea Orsi; Donatella Panatto; Matilde Ogliastro; Alessandra Barca; Fabrizio Bert; Danilo Cereda; Maria Chironna; Claudio Costantino; Daniel Fiacchini; Elena Pariani; Caterina Rizzo; Enrico Volpe; Giancarlo Icardi; The FluCoV Study Group
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    BackgroundThe impact of seasonal influenza vaccination (SIV) on mortality is still controversial; some studies have claimed that increasing vaccination coverage rates is beneficial, while others have found no significant association. This study aimed to construct a granular longitudinal dataset of local VCRs and assess their effect on pneumonia- and influenza-related (P&I) mortality among Italian adults aged ≥ 65 years.MethodsNUTS-3 (nomenclature of territorial units for statistics) level data on SIV coverage were collected via a survey of local data holders. Fixed- and random-effects panel regression modeling, when adjusted for potential confounders, was performed to assess the association between local SIV coverage rates and P&I mortality in older adults.ResultsA total of 1,144 local VCRs from 2003 to 2019 were ascertained. In the fully adjusted fixed-effects model, each 1% increase in vaccination coverage was associated (P < 0.001) with a 0.6% (95% CI: 0.3–0.9%) average over-time decrease in P&I mortality. With an annual average of 9,293 P&I deaths in Italy, this model suggested that 56 deaths could have been avoided each year by increasing SIV coverage by 1%. The random-effects model produced similar results. The base-case results were robust in a sensitivity analysis.ConclusionOver the last two decades, Italian jurisdictions with higher SIV uptake had, on average, fewer P&I deaths among older adults. Local policy-makers should implement effective strategies to increase SIV coverage in the Italian senior population.

  20. HIV AIDS Dataset

    • kaggle.com
    zip
    Updated Jun 11, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Devakumar K. P. (2020). HIV AIDS Dataset [Dataset]. https://www.kaggle.com/datasets/imdevskp/hiv-aids-dataset/code
    Explore at:
    zip(38012 bytes)Available download formats
    Dataset updated
    Jun 11, 2020
    Authors
    Devakumar K. P.
    Description

    Context

    In the time of epidemics, what is the status of HIV AIDS across the world, where does each country stands, is it getting any better. The data set should be helpful to explore much more about above mentioned factors.

    Content

    The data set contains data on

    1. No. of people living with HIV AIDS
    2. No. of deaths due to HIV AIDS
    3. No. of cases among adults (19-45)
    4. Prevention of mother-to-child transmission estimates
    5. ART (Anti Retro-viral Therapy) coverage among people living with HIV estimates
    6. ART (Anti Retro-viral Therapy) coverage among children estimates

    Acknowledgements / Data Source

    Collection methodology

    https://github.com/imdevskp/hiv_aids_who_unesco_data_cleaning

    Cover Photo

    Photo by Anna Shvets from Pexels https://www.pexels.com/photo/red-ribbon-on-white-surface-3900425/

    Similar Datasets

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Angel Henriquez (2020). COVID-19 and Influenza | New York Datasets [Dataset]. https://www.kaggle.com/datasets/angelhenriquez1/covid19-influenza-newyorkdatasets/discussion
Organization logo

COVID-19 and Influenza | New York Datasets

Useful Dataset to Compare COVID-19 and Influenza Death Tolls in New York

Explore at:
zip(648794 bytes)Available download formats
Dataset updated
May 9, 2020
Authors
Angel Henriquez
Description

Context

New York has presented the most cases compared to all states across the U.S..There have also been critiques regarding how much more unnoticed impact the flu has caused. My dataset allows us to compare whether or not this is true according to the most recent data.

Content

This COVID-19 data is from Kaggle whereas the New York influenza data comes from the U.S. government health data website. I merged the two datasets by county and FIPS code and listed the most recent reports of 2020 COVID-19 cases and deaths alongside the 2019 known influenza cases for comparison.

Acknowledgements

I am thankful to Kaggle and the U.S. government for making the data that made this possible openly available.

Inspiration

This data can be extended to answer the common misconceptions of the scale of the COVID-19 and common flu. My inspiration stems from supporting conclusions with data rather than simply intuition.

I would like my data to help answer how we can make U.S. citizens realize what diseases are most impactful.

Search
Clear search
Close search
Google apps
Main menu