Open Government Licence 3.0http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
License information was derived automatically
The number of deaths registered in England and Wales due to and involving coronavirus (COVID-19). Breakdowns include age, sex, region, local authority, Middle-layer Super Output Area (MSOA), indices of deprivation and place of death. Includes age-specific and age-standardised mortality rates.
Due to changes in the collection and availability of data on COVID-19 this page will no longer be updated. The webpage will no longer be available as of 11 May 2023. On-going, reliable sources of data for COVID-19 are available via the COVID-19 dashboard, Office for National Statistics, and the UKHSA
This page provides a weekly summary of data on deaths related to COVID-19 published by NHS England and the Office for National Statistics. More frequent reporting on COVID-19 deaths is now available here, alongside data on cases, hospitalisations, and vaccinations.
This update contains data on deaths related to COVID-19 from:
Summary notes about each these sources are provided at the end of this document.
Note on interpreting deaths data: statistics from the available sources differ in definition, timing and completeness. It is important to understand these differences when interpreting the data or comparing between sources.
https://cdn.datapress.cloud/london/img/dataset/2406874d-a960-49d0-bbd5-3ea57c4a9b85/2025-06-09T20%3A54%3A56/e58736bd8800e0fe2b32fc2eb79e37da.webp" width="3840" alt="Embedded Image" />
21 June 22 June 23 June 24 June 25 June 26 June 27 June London No positive test 0 0 1 4 0 0 0 London Positive test 3 7 2 10 0 0 2 Rest of England No positive test 2 6 4 4 0 0 6 Rest of England Positive test 47 49 41 58 6 0 81 https://cdn.datapress.cloud/london/img/dataset/2406874d-a960-49d0-bbd5-3ea57c4a9b85/2025-06-09T20%3A54%3A57/527d64c1e783180ed460de85c1781ec5.webp" width="3840" alt="Embedded Image" />
https://cdn.datapress.cloud/london/img/dataset/2406874d-a960-49d0-bbd5-3ea57c4a9b85/2025-06-09T20%3A54%3A57/c5d895e060bb2af8255978c92f2d5416.webp" width="3840" alt="Embedded Image" />
https://cdn.datapress.cloud/london/img/dataset/2406874d-a960-49d0-bbd5-3ea57c4a9b85/2025-06-09T20%3A54%3A58/5f9687a97d398aae070ec876c0b18b35.webp" width="3840" alt="Embedded Image" />
https://cdn.datapress.cloud/london/img/dataset/2406874d-a960-49d0-bbd5-3ea57c4a9b85/2025-06-09T20%3A54%3A58/4691f3cf7b2cd77786a48c3414bfa910.webp" width="3840" alt="Embedded Image" />
The data published by NHS England are incomplete due to:
Open Government Licence 3.0http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
License information was derived automatically
Pre-existing conditions of people who died due to COVID-19, broken down by country, broad age group, and place of death occurrence, usual residents of England and Wales.
A List of UK Health Workers Who Have Died from COVID-19
Made machine-readable by hand from data from the UK newspaper "The Guardian", in this article: "Doctors, nurses, porters, volunteers: the UK health workers who have died from Covid-19" https://www.theguardian.com/world/2020/apr/16/doctors-nurses-porters-volunteers-the-uk-health-workers-who-have-died-from-covid-19
The Guardian is continuing to update the list day-by-day, as the COVID-19 pandemic continues. I do not plan to update this dataset, assuming, since the data collection biases are unknown, that nobody else will find it very interesting. I am not a copyright lawyer and do not know if this data is protected copyright, and if so, in which parts of the world.
Caveat: Creating this dataset from a newspaper article required a lot of hand work. I've done my best, but there may be mistakes.
Columns: Name age institution city: I have filled this in myself; I am ignorant of UK geography and there may well be mistakes date_of_death possible_ppe_issue: mostly blank, but I have filled in "yes" where the article mentions a person who had doubts about the adequacy of PPE (personal protective equipment) MED_SPEC: I have attempted to fill in a medical specialty from the values used on the Eurostat web site for Physicians by Medical Specialty" and "Nursing and caring professionals" tables. The idea is to be able to calculate a fraction of affected individuals by specialty.
Open Government Licence 3.0http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
License information was derived automatically
Provisional deaths registration data for single year of age and average age of death (median and mean) of persons whose death involved coronavirus (COVID-19), England and Wales. Includes deaths due to COVID-19 and breakdowns by sex.
Open Government Licence 3.0http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
License information was derived automatically
Provisional counts of the number of deaths and age-standardised mortality rates involving the coronavirus (COVID-19), by occupational groups, for deaths registered between 9 March and 28 December 2020 in England and Wales. Figures are provided for males and females.
CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
This mapping tool enables you to see how COVID-19 deaths in your area may relate to factors in the local population, which research has shown are associated with COVID-19 mortality. It maps COVID-19 deaths rates for small areas of London (known as MSOAs) and enables you to compare these to a number of other factors including the Index of Multiple Deprivation, the age and ethnicity of the local population, extent of pre-existing health conditions in the local population, and occupational data. Research has shown that the mortality risk from COVID-19 is higher for people of older age groups, for men, for people with pre-existing health conditions, and for people from BAME backgrounds. London boroughs had some of the highest mortality rates from COVID-19 based on data to April 17th 2020, based on data from the Office for National Statistics (ONS). Analysis from the ONS has also shown how mortality is also related to socio-economic issues such as occupations classified ‘at risk’ and area deprivation. There is much about COVID-19-related mortality that is still not fully understood, including the intersection between the different factors e.g. relationship between BAME groups and occupation. On their own, none of these individual factors correlate strongly with deaths for these small areas. This is most likely because the most relevant factors will vary from area to area. In some cases it may relate to the age of the population, in others it may relate to the prevalence of underlying health conditions, area deprivation or the proportion of the population working in ‘at risk occupations’, and in some cases a combination of these or none of them. Further descriptive analysis of the factors in this tool can be found here: https://data.london.gov.uk/dataset/covid-19--socio-economic-risk-factors-briefing
Open Government Licence 3.0http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
License information was derived automatically
The number of deaths registered in Leicester including deaths involving coronavirus (Covid-19).The data will be updated weekly.
Open Government Licence 3.0http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
License information was derived automatically
Age-standardised mortality rates for deaths involving coronavirus (COVID-19), non-COVID-19 deaths and all deaths by vaccination status, broken down by age group.
https://www.ons.gov.uk/aboutus/whatwedo/statistics/requestingstatistics/approvedresearcherschemehttps://www.ons.gov.uk/aboutus/whatwedo/statistics/requestingstatistics/approvedresearcherscheme
The Public Health Research Database (PHRD) is a linked asset which currently includes Census 2011 data; Mortality Data; Hospital Episode Statistics (HES); GP Extraction Service (GPES) Data for Pandemic Planning and Research data. Researchers may apply for these datasets individually or any combination of the current 4 datasets.
The purpose of this dataset is to enable analysis of deaths involving COVID-19 by multiple factors such as ethnicity, religion, disability and known comorbidities as well as age, sex, socioeconomic and marital status at subnational levels. 2011 Census data for usual residents of England and Wales, who were not known to have died by 1 January 2020, linked to death registrations for deaths registered between 1 January 2020 and 8 March 2021 on NHS number. The data exclude individuals who entered the UK in the year before the Census took place (due to their high propensity to have left the UK prior to the study period), and those over 100 years of age at the time of the Census, even if their death was not linked. The dataset contains all individuals who died (any cause) during the study period, and a 5% simple random sample of those still alive at the end of the study period. For usual residents of England, the dataset also contains comorbidity flags derived from linked Hospital Episode Statistics data from April 2017 to December 2019 and GP Extraction Service Data from 2015-2019.
https://bhfdatasciencecentre.org/areas/cvd-covid-uk-covid-impact/https://bhfdatasciencecentre.org/areas/cvd-covid-uk-covid-impact/
CVD-COVID-UK, co-ordinated by the British Heart Foundation (BHF) Data Science Centre (https://bhfdatasciencecentre.org/), is one of the NIHR-BHF Cardiovascular Partnership’s National Flagship Projects.
CVD-COVID-UK aims to understand the relationship between COVID-19 and cardiovascular diseases through analyses of de-identified, pseudonymised, linked, nationally collated health datasets across the four nations of the UK. The consortium has over 400 members across more than 50 institutions including data custodians, data scientists and clinicians, all of whom have signed up to an agreed set of principles with an inclusive, open and transparent ethos.
Approved researchers access data within secure trusted/secure research environments (TREs/SDEs) provided by NHS England (England), the National Safe Haven (Scotland), the Secure Anonymised Information Linkage (SAIL) Databank (Wales) and the Honest Broker Service (Northern Ireland). A dashboard of datasets available in each nation’s TRE can be found here: https://bhfdatasciencecentre.org/areas/cvd-covid-uk-covid-impact/
This dataset represents the linked datasets in SAIL Databank’s TRE for Wales and contains the following datasets: • Welsh Longitudinal GP Dataset - Welsh Primary Care (Daily COVID codes only) (GPCD) • Welsh Longitudinal General Practice Dataset (WLGP) - Welsh Primary Care • Critical Care Dataset (CCDS) • Emergency Department Dataset Daily (EDDD) • Emergency Department Dataset (EDDS) • Outpatient Database for Wales (OPDW) • Outpatient Referral (OPRD) • Patient Episode Dataset for Wales (PEDW) • COVID-19 Test Results (PATD) • COVID-19 Test Trace and Protect (CTTP) - Legacy • COVID-19 Shielded People List (CVSP) • SARS-CoV-2 viral sequencing data (COG-UK data)-Lineage/Variant Data-Wales (CVSD) • Covid Vaccination Dataset (CVVD) • Annual District Death Daily (ADDD) • Annual District Death Extract (ADDE) • COVID-19 Consolidated Deaths (CDDS) • Intensive Care National Audit and Research Centre (ICCD) - Legacy - COVID only • Intensive Care National Audit and Research Centre (ICNC) • Welsh Dispensing Dataset (WDDS) - Legacy • Annual District Birth Extract (ADBE) • Maternity Indicators Dataset (MIDS) • National Community Child Health Database (NCCHD) • Care Home Dataset (CARE) • Congenital Anomaly Register and Information Service (CARS) • Referral to Treatment Times (RTTD) • SAIL Dementia e-Cohort (SDEC) • Welsh Ambulance Services NHS Trust (WASD) • Welsh Demographic Service Dataset (WDSD) • Welsh Results Reports Service (WRRS)
https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
https://ichef.bbci.co.uk/news/976/cpsprodpb/11C98/production/_118165827_gettyimages-1232465340.jpg" alt="">
People across India scrambled for life-saving oxygen supplies on Friday and patients lay dying outside hospitals as the capital recorded the equivalent of one death from COVID-19 every five minutes.
For the second day running, the country’s overnight infection total was higher than ever recorded anywhere in the world since the pandemic began last year, at 332,730.
India’s second wave has hit with such ferocity that hospitals are running out of oxygen, beds, and anti-viral drugs. Many patients have been turned away because there was no space for them, doctors in Delhi said.
https://s.yimg.com/ny/api/res/1.2/XhVWo4SOloJoXaQLrxxUIQ--/YXBwaWQ9aGlnaGxhbmRlcjt3PTk2MA--/https://s.yimg.com/os/creatr-uploaded-images/2021-04/8aa568f0-a3e0-11eb-8ff6-6b9a188e374a" alt="">
Mass cremations have been taking place as the crematoriums have run out of space. Ambulance sirens sounded throughout the day in the deserted streets of the capital, one of India’s worst-hit cities, where a lockdown is in place to try and stem the transmission of the virus. source
The dataset consists of the tweets made with the #IndiaWantsOxygen hashtag covering the tweets from the past week. The dataset totally consists of 25,440 tweets and will be updated on a daily basis.
The description of the features is given below | No |Columns | Descriptions | | -- | -- | -- | | 1 | user_name | The name of the user, as they’ve defined it. | | 2 | user_location | The user-defined location for this account’s profile. | | 3 | user_description | The user-defined UTF-8 string describing their account. | | 4 | user_created | Time and date, when the account was created. | | 5 | user_followers | The number of followers an account currently has. | | 6 | user_friends | The number of friends an account currently has. | | 7 | user_favourites | The number of favorites an account currently has | | 8 | user_verified | When true, indicates that the user has a verified account | | 9 | date | UTC time and date when the Tweet was created | | 10 | text | The actual UTF-8 text of the Tweet | | 11 | hashtags | All the other hashtags posted in the tweet along with #IndiaWantsOxygen | | 12 | source | Utility used to post the Tweet, Tweets from the Twitter website have a source value - web | | 13 | is_retweet | Indicates whether this Tweet has been Retweeted by the authenticating user. |
https://globalnews.ca/news/7785122/india-covid-19-hospitals-record/ Image courtesy: BBC and Reuters
The past few days have been really depressing after seeing these incidents. These tweets are the voice of the indians requesting help and people all over the globe asking their own countries to support India by providing oxygen tanks.
And I strongly believe that this is not just some data, but the pure emotions of people and their call for help. And I hope we as data scientists could contribute on this front by providing valuable information and insights.
Open Government Licence 3.0http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
License information was derived automatically
Provisional counts of deaths in care homes caused by coronavirus (COVID-19) by local authority. Published by the Office for National Statistics and Care Quality Commission.
Open Government Licence 3.0http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
License information was derived automatically
Provisional counts of the number of deaths registered in England and Wales, including deaths involving coronavirus (COVID-19), by local authority, health board and place of death in the latest weeks for which data are available. The occurrence tabs in the 2021 edition of this dataset were updated for the last time on 25 October 2022.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The features in the order shown under “Feature name” are: GDP, inter-state distance based on lat-long coordinates, gender, ethnicity, quality of health care facility, number of homeless people, total infected and death, population density, airport passenger traffic, age group, days for infection and death to peak, number of people tested for COVID-19, days elapsed between first reported infection and the imposition of lockdown measures at a given state.
Open Government Licence 3.0http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
License information was derived automatically
This open data publication has moved to COVID-19 Statistical Data in Scotland (from 02/11/2022) Novel coronavirus (COVID-19) is a new strain of coronavirus first identified in Wuhan, China. Clinical presentation may range from mild-to-moderate illness to pneumonia or severe acute respiratory infection. This dataset provides information on demographic characteristics (age, sex, deprivation) of confirmed novel coronavirus (COVID-19) cases, as well as trend data regarding the wider impact of the virus on the healthcare system. Data includes information on primary care out of hours consultations, respiratory calls made to NHS24, contact with COVID-19 Hubs and Assessment Centres, incidents received by Scottish Ambulance Services (SAS), as well as COVID-19 related hospital admissions and admissions to ICU (Intensive Care Unit). Further data on the wider impact of the COVID-19 response, focusing on hospital admissions, unscheduled care and volume of calls to NHS24, is available on the COVID-19 Wider Impact Dashboard. There is a large amount of data being regularly published regarding COVID-19 (for example, Coronavirus in Scotland - Scottish Government and Deaths involving coronavirus in Scotland - National Records of Scotland. Additional data sources relating to this topic area are provided in the Links section of the Metadata below. Information on COVID-19, including stay at home advice for people who are self-isolating and their households, can be found on NHS Inform. All publications and supporting material to this topic area can be found in the weekly COVID-19 Statistical Report. The date of the next release can be found on our list of forthcoming publications. Data visualisation is available to view in the interactive dashboard accompanying the COVID-19 Statistical Report. Please note information on COVID-19 in children and young people of educational age, education staff and educational settings is presented in a new COVID-19 Education Surveillance dataset going forward.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Methods: This was a national, population-based, cross-sectional study of routinely-collected mortality and demographic data pertaining to March-August of 2020 (COVID-19 pandemic) compared to the corresponding periods in 2015-2019. ICD-10-coded causes of death of deceased people of any age were obtained from a national mortality registry of death certificates. The G40-41 ICD-10 codes for epilepsy were used to define epilepsy-related deaths, with or without a U07*1-07*2 ICD-10 code for COVID-19 listed as an additional cause. Deaths unrelated to epilepsy were defined as all remaining Scottish deaths without G40-41 ICD-10 codes listed as a cause. We assessed the number of epilepsy-related deaths in 2020 compared to mean year-to-year variation observed in 2015-2019 (overall, men, women). We assessed proportionate mortality and odds ratios (OR) for deaths with COVID-19 listed as the underlying cause in people with epilepsy-related deaths compared to in deaths unrelated to epilepsy, reporting 95% confidence intervals (95% CIs). Sheet 1 contains a key to the remaining dataset.
https://digital.nhs.uk/about-nhs-digital/terms-and-conditionshttps://digital.nhs.uk/about-nhs-digital/terms-and-conditions
This indicator is designed to accompany the SHMI publication. The SHMI includes all deaths reported of patients who were admitted to non-specialist acute trusts in England and either died while in hospital or within 30 days of discharge. Deaths related to COVID-19 are excluded from the SHMI. A contextual indicator on the percentage of deaths reported in the SHMI which occurred in hospital and the percentage which occurred outside of hospital is produced to support the interpretation of the SHMI. Notes: 1. For discharges in the reporting period April 2024 - May 2024, almost all of the records for Wirral University Teaching Hospital NHS Foundation Trust (trust code RBL) have been submitted without an NHS number. This will have affected the linkage of the HES data to the ONS death registrations data and may have resulted in a smaller number of deaths occurring outside hospital within 30 days of discharge being identified for this trust than would have otherwise been the case. The results for this trust should therefore be interpreted with caution. 2. There is a shortfall in the number of records for North Middlesex University Hospital NHS Trust (trust code RAP), Northumbria Healthcare NHS Foundation Trust (trust code RTF), The Rotherham NHS Foundation Trust (trust code RFR), and The Shrewsbury and Telford Hospital NHS Trust (trust code RXW). Values for these trusts are based on incomplete data and should therefore be interpreted with caution. 3. A number of trusts are now submitting Same Day Emergency Care (SDEC) data to the Emergency Care Data Set (ECDS) rather than the Admitted Patient Care (APC) dataset. The SHMI is calculated using APC data. Removal of SDEC activity from the APC data may impact a trust’s SHMI value and may increase it. More information about this is available in the Background Quality Report. 4. Further information on data quality can be found in the SHMI background quality report, which can be downloaded from the 'Resources' section of this page.
Open Government Licence 3.0http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
License information was derived automatically
This publication was archived on 12 October 2023. Please see the Viral Respiratory Diseases (Including Influenza and COVID-19) in Scotland publication for the latest data. This dataset provides information on number of new daily confirmed cases, negative cases, deaths, testing by NHS Labs (Pillar 1) and UK Government (Pillar 2), new hospital admissions, new ICU admissions, hospital and ICU bed occupancy from novel coronavirus (COVID-19) in Scotland, including cumulative totals and population rates at Scotland, NHS Board and Council Area levels (where possible). Seven day positive cases and population rates are also presented by Neighbourhood Area (Intermediate Zone 2011). Information on how PHS publish small are COVID figures is available on the PHS website. Information on demographic characteristics (age, sex, deprivation) of confirmed novel coronavirus (COVID-19) cases, as well as trend data regarding the wider impact of the virus on the healthcare system is provided in this publication. Data includes information on primary care out of hours consultations, respiratory calls made to NHS24, contact with COVID-19 Hubs and Assessment Centres, incidents received by Scottish Ambulance Services (SAS), as well as COVID-19 related hospital admissions and admissions to ICU (Intensive Care Unit). Further data on the wider impact of the COVID-19 response, focusing on hospital admissions, unscheduled care and volume of calls to NHS24, is available on the COVID-19 Wider Impact Dashboard. Novel coronavirus (COVID-19) is a new strain of coronavirus first identified in Wuhan, China. Clinical presentation may range from mild-to-moderate illness to pneumonia or severe acute respiratory infection. COVID-19 was declared a pandemic by the World Health Organisation on 12 March 2020. We now have spread of COVID-19 within communities in the UK. Public Health Scotland no longer reports the number of COVID-19 deaths within 28 days of a first positive test from 2nd June 2022. Please refer to NRS death certificate data as the single source for COVID-19 deaths data in Scotland. In the process of updating the hospital admissions reporting to include reinfections, we have had to review existing methodology. In order to provide the best possible linkage of COVID-19 cases to hospital admissions, each admission record is required to have a discharge date, to allow us to better match the most appropriate COVID positive episode details to an admission. This means that in cases where the discharge date is missing (either due to the patient still being treated, delays in discharge information being submitted or data quality issues), it has to be estimated. Estimating a discharge date for historic records means that the average stay for those with missing dates is reduced, and fewer stays overlap with records of positive tests. The result of these changes has meant that approximately 1,200 historic COVID admissions have been removed due to improvements in methodology to handle missing discharge dates, while approximately 820 have been added to the cumulative total with the inclusion of reinfections. COVID-19 hospital admissions are now identified as the following: A patient's first positive PCR or LFD test of the episode of infection (including reinfections at 90 days or more) for COVID-19 up to 14 days prior to admission to hospital, on the day of their admission or during their stay in hospital. If a patient's first positive PCR or LFD test of the episode of infection is after their date of discharge from hospital, they are not included in the analysis. Information on COVID-19, including stay at home advice for people who are self-isolating and their households, can be found on NHS Inform. Data visualisation of Scottish COVID-19 cases is available on the Public Health Scotland - Covid 19 Scotland dashboard. Further information on coronavirus in Scotland is available on the Scottish Government - Coronavirus in Scotland page, where further breakdown of past coronavirus data has also been published.
Open Government Licence 3.0http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
License information was derived automatically
The percentage of extra deaths that occurred due to winter, including those that had COVID-19 mentioned on the death certificate. The Excess Winter Mortality (EWM) index is calculated as the number of excess winter deaths divided by the average non-winter deaths, expressed as a percentage. Calculated so that comparisons can be made between sexes, age groups, and regions.
An EWM index of 20 shows that there were 20 percent more deaths in winter compared with the non-winter period. Provisional figures at country and region level are produced for the most recent winter using estimation methods, and so are rounded to the nearest 100 deaths. Data post 2019/20 should be treated with caution due to high numbers of deaths from COVID-19 in the summer period.
For data years 2020/21 onwards, instances where the number of winter deaths compared to non-winter deaths were equal to zero or a negative value, an EWM index is presented. (For earlier years, the EWM index was removed). A zero value for winter deaths compared to non-winter deaths is often affected by rounding, so in these instances, the winter mortality index can either be a positive or negative value. A negative winter mortality index means there were a higher number of deaths in the non-winter periods than the winter period.
Alternatively, figures are available for deaths excluding COVID-19, calculated using all-cause deaths that did not have COVID-19 mentioned on the death certificate.
Data is Powered by LG Inform Plus and automatically checked for new data on the 3rd of each month.
Open Government Licence 3.0http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
License information was derived automatically
The number of deaths registered in England and Wales due to and involving coronavirus (COVID-19). Breakdowns include age, sex, region, local authority, Middle-layer Super Output Area (MSOA), indices of deprivation and place of death. Includes age-specific and age-standardised mortality rates.