11 datasets found
  1. COVID-19 and Influenza | New York Datasets

    • kaggle.com
    zip
    Updated May 9, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Angel Henriquez (2020). COVID-19 and Influenza | New York Datasets [Dataset]. https://www.kaggle.com/datasets/angelhenriquez1/covid19-influenza-newyorkdatasets/discussion
    Explore at:
    zip(648794 bytes)Available download formats
    Dataset updated
    May 9, 2020
    Authors
    Angel Henriquez
    Description

    Context

    New York has presented the most cases compared to all states across the U.S..There have also been critiques regarding how much more unnoticed impact the flu has caused. My dataset allows us to compare whether or not this is true according to the most recent data.

    Content

    This COVID-19 data is from Kaggle whereas the New York influenza data comes from the U.S. government health data website. I merged the two datasets by county and FIPS code and listed the most recent reports of 2020 COVID-19 cases and deaths alongside the 2019 known influenza cases for comparison.

    Acknowledgements

    I am thankful to Kaggle and the U.S. government for making the data that made this possible openly available.

    Inspiration

    This data can be extended to answer the common misconceptions of the scale of the COVID-19 and common flu. My inspiration stems from supporting conclusions with data rather than simply intuition.

    I would like my data to help answer how we can make U.S. citizens realize what diseases are most impactful.

  2. u

    Influenza death rates by county, 2019-2023 - Dataset - Healthy Communities...

    • midb.uspatial.umn.edu
    Updated Oct 24, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2025). Influenza death rates by county, 2019-2023 - Dataset - Healthy Communities Data Portal [Dataset]. https://midb.uspatial.umn.edu/hcdp/dataset/influenza-death-rates-by-county-2019-2023
    Explore at:
    Dataset updated
    Oct 24, 2025
    Description

    Influenza death rates by county, all races (includes Hispanic/Latino), all sexes, all ages, 2019-2023. Death data were provided by the National Vital Statistics System. Death rates (deaths per 100,000 population per year) are age-adjusted to the 2000 US standard population (20 age groups: <1, 1-4, 5-9, ... , 80-84, 85-89, 90+). Rates calculated using SEER*Stat. Population counts for denominators are based on Census populations as modified by the National Cancer Institute. The US Population Data File is used for mortality data. The Average Annual Percent Change is based onthe APCs calculated by the Joinpoint Regression Program (Version 4.9.0.0). Due to data availability issues, the time period used in the calculation of the joinpoint regression model may differ for selected counties. Counties with a (3) after their name may have their joinpoint regresssion model calculated using a different time period due to data availability issues.

  3. COVID-19 State Data

    • kaggle.com
    zip
    Updated Nov 3, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Night Ranger (2020). COVID-19 State Data [Dataset]. https://www.kaggle.com/nightranger77/covid19-state-data
    Explore at:
    zip(4501 bytes)Available download formats
    Dataset updated
    Nov 3, 2020
    Authors
    Night Ranger
    Description

    This dataset is a per-state amalgamation of demographic, public health and other relevant predictors for COVID-19.

    Deaths, Infections and Tests by State

    The COVID Tracking Project: https://covidtracking.com/data/api

    Used positive, death and totalTestResults from the API for, respectively, Infected, Deaths and Tested in this dataset. Please read the documentation of the API for more context on those columns

    Predictor Data and Sources

    Population (2020)

    Density is people per meter squared https://worldpopulationreview.com/states/

    ICU Beds and Age 60+

    https://khn.org/news/as-coronavirus-spreads-widely-millions-of-older-americans-live-in-counties-with-no-icu-beds/

    GDP

    https://worldpopulationreview.com/states/gdp-by-state/

    Income per capita (2018)

    https://worldpopulationreview.com/states/per-capita-income-by-state/

    Gini

    https://en.wikipedia.org/wiki/List_of_U.S._states_by_Gini_coefficient

    Unemployment (2020)

    Rates from Feb 2020 and are percentage of labor force
    https://www.bls.gov/web/laus/laumstrk.htm

    Sex (2017)

    Ratio is Male / Female
    https://www.kff.org/other/state-indicator/distribution-by-gender/

    Smoking Percentage (2020)

    https://worldpopulationreview.com/states/smoking-rates-by-state/

    Influenza and Pneumonia Death Rate (2018)

    Death rate per 100,000 people
    https://www.cdc.gov/nchs/pressroom/sosmap/flu_pneumonia_mortality/flu_pneumonia.htm

    Chronic Lower Respiratory Disease Death Rate (2018)

    Death rate per 100,000 people
    https://www.cdc.gov/nchs/pressroom/sosmap/lung_disease_mortality/lung_disease.htm

    Active Physicians (2019)

    https://www.kff.org/other/state-indicator/total-active-physicians/

    Hospitals (2018)

    https://www.kff.org/other/state-indicator/total-hospitals

    Health spending per capita

    Includes spending for all health care services and products by state of residence. Hospital spending is included and reflects the total net revenue. Costs such as insurance, administration, research, and construction expenses are not included.
    https://www.kff.org/other/state-indicator/avg-annual-growth-per-capita/

    Pollution (2019)

    Pollution: Average exposure of the general public to particulate matter of 2.5 microns or less (PM2.5) measured in micrograms per cubic meter (3-year estimate)
    https://www.americashealthrankings.org/explore/annual/measure/air/state/ALL

    Medium and Large Airports

    For each state, number of medium and large airports https://en.wikipedia.org/wiki/List_of_the_busiest_airports_in_the_United_States

    Temperature (2019)

    Note that FL was incorrect in the table, but is corrected in the Hottest States paragraph
    https://worldpopulationreview.com/states/average-temperatures-by-state/
    District of Columbia temperature computed as the average of Maryland and Virginia

    Urbanization (2010)

    Urbanization as a percentage of the population https://www.icip.iastate.edu/tables/population/urban-pct-states

    Age Groups (2018)

    https://www.kff.org/other/state-indicator/distribution-by-age/

    School Closure Dates

    Schools that haven't closed are marked NaN https://www.edweek.org/ew/section/multimedia/map-coronavirus-and-school-closures.html

    Note that some datasets above did not contain data for District of Columbia, this missing data was found via Google searches manually entered.

  4. H1N1 | 2009 | Swine Flu Pandemic

    • kaggle.com
    zip
    Updated Jul 16, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Devakumar K. P. (2020). H1N1 | 2009 | Swine Flu Pandemic [Dataset]. https://www.kaggle.com/datasets/imdevskp/h1n1-swine-flu-2009-pandemic-dataset/code
    Explore at:
    zip(17887 bytes)Available download formats
    Dataset updated
    Jul 16, 2020
    Authors
    Devakumar K. P.
    Description

    Context

    The 2009 swine flu pandemic was an influenza pandemic that lasted for about 19 months, from January 2009 to August 2010, and the second of two pandemics involving H1N1 influenza virus.

    Content

    1. data.csv - contains day by day country wise no. of cases & deaths from 4th April to 6th July 2009

    Note

    • Although the pandemic went on for more than 2 years the data is only from 24th April 2009 to 6th July 2009.
    • Because the countries were no longer required to test and report individual cases from 6th July 2009.
    • So that day by day data from 6th July 2009 is not available.

    Acknowledgements / Data Source

    https://www.who.int/csr/disease/swineflu/updates/en/

    Collection methodology

    https://github.com/imdevskp/h1n1_data_webscrapping

    Cover Photo

    Photo from CDC Blog https://blogs.cdc.gov/publichealthmatters/2019/04/h1n1/

    Similar Datasets

  5. Preliminary 2024-2025 U.S. COVID-19 Burden Estimates

    • data.cdc.gov
    • data.virginia.gov
    • +1more
    csv, xlsx, xml
    Updated Sep 26, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Coronavirus and Other Respiratory Viruses Division (CORVD), National Center for Immunization and Respiratory Diseases (NCIRD). (2025). Preliminary 2024-2025 U.S. COVID-19 Burden Estimates [Dataset]. https://data.cdc.gov/Public-Health-Surveillance/Preliminary-2024-2025-U-S-COVID-19-Burden-Estimate/ahrf-yqdt
    Explore at:
    xlsx, csv, xmlAvailable download formats
    Dataset updated
    Sep 26, 2025
    Dataset provided by
    National Center for Immunization and Respiratory Diseases
    Authors
    Coronavirus and Other Respiratory Viruses Division (CORVD), National Center for Immunization and Respiratory Diseases (NCIRD).
    License

    https://www.usa.gov/government-workshttps://www.usa.gov/government-works

    Description

    This dataset represents preliminary estimates of cumulative U.S. COVID-19 disease burden for the 2024-2025 period, including illnesses, outpatient visits, hospitalizations, and deaths. The weekly COVID-19-associated burden estimates are preliminary and based on continuously collected surveillance data from patients hospitalized with laboratory-confirmed severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infections. The data come from the Coronavirus Disease 2019 (COVID-19)-Associated Hospitalization Surveillance Network (COVID-NET), a surveillance platform that captures data from hospitals that serve about 10% of the U.S. population. Each week CDC estimates a range (i.e., lower estimate and an upper estimate) of COVID-19 -associated burden that have occurred since October 1, 2024.

    Note: Data are preliminary and subject to change as more data become available. Rates for recent COVID-19-associated hospital admissions are subject to reporting delays; as new data are received each week, previous rates are updated accordingly.

    References

    1. Reed C, Chaves SS, Daily Kirley P, et al. Estimating influenza disease burden from population-based surveillance data in the United States. PLoS One. 2015;10(3):e0118369. https://doi.org/10.1371/journal.pone.0118369 
    2. Rolfes, MA, Foppa, IM, Garg, S, et al. Annual estimates of the burden of seasonal influenza in the United States: A tool for strengthening influenza surveillance and preparedness. Influenza Other Respi Viruses. 2018; 12: 132– 137. https://doi.org/10.1111/irv.12486
    3. Tokars JI, Rolfes MA, Foppa IM, Reed C. An evaluation and update of methods for estimating the number of influenza cases averted by vaccination in the United States. Vaccine. 2018;36(48):7331-7337. doi:10.1016/j.vaccine.2018.10.026 
    4. Collier SA, Deng L, Adam EA, Benedict KM, Beshearse EM, Blackstock AJ, Bruce BB, Derado G, Edens C, Fullerton KE, Gargano JW, Geissler AL, Hall AJ, Havelaar AH, Hill VR, Hoekstra RM, Reddy SC, Scallan E, Stokes EK, Yoder JS, Beach MJ. Estimate of Burden and Direct Healthcare Cost of Infectious Waterborne Disease in the United States. Emerg Infect Dis. 2021 Jan;27(1):140-149. doi: 10.3201/eid2701.190676. PMID: 33350905; PMCID: PMC7774540.
    5. Reed C, Kim IK, Singleton JA,  et al. Estimated influenza illnesses and hospitalizations averted by vaccination–United States, 2013-14 influenza season. MMWR Morb Mortal Wkly Rep. 2014 Dec 12;63(49):1151-4. https://www.cdc.gov/mmwr/preview/mmwrhtml/mm6349a2.htm 
    6. Reed C, Angulo FJ, Swerdlow DL, et al. Estimates of the Prevalence of Pandemic (H1N1) 2009, United States, April–July 2009. Emerg Infect Dis. 2009;15(12):2004-2007. https://dx.doi.org/10.3201/eid1512.091413
    7. Devine O, Pham H, Gunnels B, et al. Extrapolating Sentinel Surveillance Information to Estimate National COVID-19 Hospital Admission Rates: A Bayesian Modeling Approach. Influenza and Other Respiratory Viruses. https://onlinelibrary.wiley.com/doi/10.1111/irv.70026. Volume18, Issue10. October 2024.
    8. https://www.cdc.gov/covid/php/covid-net/index.html">COVID-NET | COVID-19 | CDC 
    9. https://www.cdc.gov/covid/hcp/clinical-care/systematic-review-process.html 
    10. https://academic.oup.com/pnasnexus/article/1/3/pgac079/6604394?login=false">Excess natural-cause deaths in California by cause and setting: March 2020 through February 2021 | PNAS Nexus | Oxford Academic (oup.com)
    11. Kruschke, J. K. 2011. Doing Bayesian data analysis: a tutorial with R and BUGS. Elsevier, Amsterdam, Section 3.3.5.

  6. Leading causes of death, total population, by age group

    • www150.statcan.gc.ca
    • ouvert.canada.ca
    • +1more
    Updated Feb 19, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Government of Canada, Statistics Canada (2025). Leading causes of death, total population, by age group [Dataset]. http://doi.org/10.25318/1310039401-eng
    Explore at:
    Dataset updated
    Feb 19, 2025
    Dataset provided by
    Statistics Canadahttps://statcan.gc.ca/en
    Area covered
    Canada
    Description

    Rank, number of deaths, percentage of deaths, and age-specific mortality rates for the leading causes of death, by age group and sex, 2000 to most recent year.

  7. COVID-19 Country Data

    • kaggle.com
    zip
    Updated May 3, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Patrick (2020). COVID-19 Country Data [Dataset]. https://www.kaggle.com/datasets/bitsnpieces/covid19-country-data/code
    Explore at:
    zip(190821 bytes)Available download formats
    Dataset updated
    May 3, 2020
    Authors
    Patrick
    License

    http://opendatacommons.org/licenses/dbcl/1.0/http://opendatacommons.org/licenses/dbcl/1.0/

    Description

    Motivation

    Why did I create this dataset? This is my first time creating a notebook in Kaggle and I am interested in learning more about COVID-19 and how different countries are affected by it and why. It might be useful to compare different metrics between different countries. And I also wanted to participate in a challenge, and I've decided to join the COVID-19 datasets challenge. While looking through the projects, I noticed https://www.kaggle.com/koryto/countryinfo and it inspired me to start this project.

    Method

    My approach is to scour the Internet and Kaggle looking for country data that can potentially have an impact on how the COVID-19 pandemic spreads. In the end, I ended up with the following for each country:

    • Monthly temperature and precipitation from Worldbank
    • Latitude and longitude
    • Population, density, gender and age
    • Airport traffic from Worldbank
    • COVID-19 date of first case and number of cases and deaths as of March 26, 2020
    • 2009 H1N1 flu pandemic cases and deaths obtained from Wikipedia
    • Property affordability index and Health care index from Numbeo
    • Number of hospital beds and ICU beds from Wikipedia
    • Flu and pneumonia death rate from Worldlifeexpectancy.com (Age Adjusted Death Rate Estimates: 2017)
    • School closures due to COVID-19
    • Number of COVID-19 tests done
    • Number of COVID-19 genetic strains
    • US Social Distancing Policies from COVID19StatePolicy’s SocialDistancing repository on GitHub
    • DHL Global Connectedness Index 2018 (People Breadth scores)
    • Datasets have been merged by country name whenever possible. I needed to rename some countries by hand, e.g. US to United Sates, etc. but it's possible that I might have missed some. See the output file covid19_merged.csv for the merged result.

    See covid19_data - data_sources.csv for data source details.

    Notebook: https://www.kaggle.com/bitsnpieces/covid19-data

    Caveats

    Since I did not personally collect each datapoint, and because each datasource is different with different objectives, collected at different times, measured in different ways, any inferences from this dataset will need further investigation.

    Other interesting sources of information

    Acknowledgements

    I want to acknowledge the authors of the datasets that made their data publicly available which has made this project possible. Banner image is by Brian.

    I hope that the community finds this dataset useful. Feel free to recommend other datasets that you think will be useful / relevant! Thanks for looking.

  8. f

    Table1_Clinical outcomes of COVID-19 and influenza in hospitalized children...

    • datasetcatalog.nlm.nih.gov
    Updated Sep 11, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Khan, Farid; Di Fusco, Manuela; McGrath, Leah J.; Lopez, Santiago M. C.; Cane, Alejandro; Reimbaeva, Maya; Welch, Verna L.; Malhotra, Deepa; Alfred, Tamuno; Moran, Mary M. (2023). Table1_Clinical outcomes of COVID-19 and influenza in hospitalized children <5 years in the US.pdf [Dataset]. https://datasetcatalog.nlm.nih.gov/dataset?q=0001012872
    Explore at:
    Dataset updated
    Sep 11, 2023
    Authors
    Khan, Farid; Di Fusco, Manuela; McGrath, Leah J.; Lopez, Santiago M. C.; Cane, Alejandro; Reimbaeva, Maya; Welch, Verna L.; Malhotra, Deepa; Alfred, Tamuno; Moran, Mary M.
    Area covered
    United States
    Description

    IntroductionWe compared hospitalization outcomes of young children hospitalized with COVID-19 to those hospitalized with influenza in the United States.MethodsPatients aged 0-<5 years hospitalized with an admission diagnosis of acute COVID-19 (April 2021-March 2022) or influenza (April 2019-March 2020) were selected from the PINC AI Healthcare Database Special Release. Hospitalization outcomes included length of stay (LOS), intensive care unit (ICU) admission, oxygen supplementation, and mechanical ventilation (MV). Inverse probability of treatment weighting was used to adjust for confounders in logistic regression analyses.ResultsAmong children hospitalized with COVID-19 (n = 4,839; median age: 0 years), 21.3% had an ICU admission, 19.6% received oxygen supplementation, 7.9% received MV support, and 0.5% died. Among children hospitalized with influenza (n = 4,349; median age: 1 year), 17.4% were admitted to the ICU, 26.7% received oxygen supplementation, 7.6% received MV support, and 0.3% died. Compared to children hospitalized with influenza, those with COVID-19 were more likely to have an ICU admission (adjusted odds ratio [aOR]: 1.34; 95% confidence interval [CI]: 1.21–1.48). However, children with COVID-19 were less likely to receive oxygen supplementation (aOR: 0.71; 95% CI: 0.64–0.78), have a prolonged LOS (aOR: 0.81; 95% CI: 0.75–0.88), or a prolonged ICU stay (aOR: 0.56; 95% CI: 0.46–0.68). The likelihood of receiving MV was similar (aOR: 0.94; 95% CI: 0.81, 1.1).ConclusionsHospitalized children with either SARS-CoV-2 or influenza had severe complications including ICU admission and oxygen supplementation. Nearly 10% received MV support. Both SARS-CoV-2 and influenza have the potential to cause severe illness in young children.

  9. Characteristics of patients hospitalised for COVID-19 and controls.

    • plos.figshare.com
    • datasetcatalog.nlm.nih.gov
    xls
    Updated Jun 5, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Krishnan Bhaskaran; Christopher T. Rentsch; George Hickman; William J. Hulme; Anna Schultze; Helen J. Curtis; Kevin Wing; Charlotte Warren-Gash; Laurie Tomlinson; Chris J. Bates; Rohini Mathur; Brian MacKenna; Viyaasan Mahalingasivam; Angel Wong; Alex J. Walker; Caroline E. Morton; Daniel Grint; Amir Mehrkar; Rosalind M. Eggo; Peter Inglesby; Ian J. Douglas; Helen I. McDonald; Jonathan Cockburn; Elizabeth J. Williamson; David Evans; John Parry; Frank Hester; Sam Harper; Stephen JW Evans; Sebastian Bacon; Liam Smeeth; Ben Goldacre (2023). Characteristics of patients hospitalised for COVID-19 and controls. [Dataset]. http://doi.org/10.1371/journal.pmed.1003871.t001
    Explore at:
    xlsAvailable download formats
    Dataset updated
    Jun 5, 2023
    Dataset provided by
    PLOShttp://plos.org/
    Authors
    Krishnan Bhaskaran; Christopher T. Rentsch; George Hickman; William J. Hulme; Anna Schultze; Helen J. Curtis; Kevin Wing; Charlotte Warren-Gash; Laurie Tomlinson; Chris J. Bates; Rohini Mathur; Brian MacKenna; Viyaasan Mahalingasivam; Angel Wong; Alex J. Walker; Caroline E. Morton; Daniel Grint; Amir Mehrkar; Rosalind M. Eggo; Peter Inglesby; Ian J. Douglas; Helen I. McDonald; Jonathan Cockburn; Elizabeth J. Williamson; David Evans; John Parry; Frank Hester; Sam Harper; Stephen JW Evans; Sebastian Bacon; Liam Smeeth; Ben Goldacre
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Characteristics of patients hospitalised for COVID-19 and controls.

  10. Post hoc analysis of specific hospitalisation/mortality outcomes within the...

    • plos.figshare.com
    • datasetcatalog.nlm.nih.gov
    xls
    Updated Jun 7, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Krishnan Bhaskaran; Christopher T. Rentsch; George Hickman; William J. Hulme; Anna Schultze; Helen J. Curtis; Kevin Wing; Charlotte Warren-Gash; Laurie Tomlinson; Chris J. Bates; Rohini Mathur; Brian MacKenna; Viyaasan Mahalingasivam; Angel Wong; Alex J. Walker; Caroline E. Morton; Daniel Grint; Amir Mehrkar; Rosalind M. Eggo; Peter Inglesby; Ian J. Douglas; Helen I. McDonald; Jonathan Cockburn; Elizabeth J. Williamson; David Evans; John Parry; Frank Hester; Sam Harper; Stephen JW Evans; Sebastian Bacon; Liam Smeeth; Ben Goldacre (2023). Post hoc analysis of specific hospitalisation/mortality outcomes within the mental health and cognitive category. [Dataset]. http://doi.org/10.1371/journal.pmed.1003871.t002
    Explore at:
    xlsAvailable download formats
    Dataset updated
    Jun 7, 2023
    Dataset provided by
    PLOShttp://plos.org/
    Authors
    Krishnan Bhaskaran; Christopher T. Rentsch; George Hickman; William J. Hulme; Anna Schultze; Helen J. Curtis; Kevin Wing; Charlotte Warren-Gash; Laurie Tomlinson; Chris J. Bates; Rohini Mathur; Brian MacKenna; Viyaasan Mahalingasivam; Angel Wong; Alex J. Walker; Caroline E. Morton; Daniel Grint; Amir Mehrkar; Rosalind M. Eggo; Peter Inglesby; Ian J. Douglas; Helen I. McDonald; Jonathan Cockburn; Elizabeth J. Williamson; David Evans; John Parry; Frank Hester; Sam Harper; Stephen JW Evans; Sebastian Bacon; Liam Smeeth; Ben Goldacre
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Post hoc analysis of specific hospitalisation/mortality outcomes within the mental health and cognitive category.

  11. Data_Sheet_1_Population-level benefits of increasing influenza vaccination...

    • frontiersin.figshare.com
    bin
    Updated Aug 3, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Alexander Domnich; Andrea Orsi; Donatella Panatto; Matilde Ogliastro; Alessandra Barca; Fabrizio Bert; Danilo Cereda; Maria Chironna; Claudio Costantino; Daniel Fiacchini; Elena Pariani; Caterina Rizzo; Enrico Volpe; Giancarlo Icardi; The FluCoV Study Group (2023). Data_Sheet_1_Population-level benefits of increasing influenza vaccination uptake among Italian older adults: results from a granular panel model.docx [Dataset]. http://doi.org/10.3389/fpubh.2023.1224175.s001
    Explore at:
    binAvailable download formats
    Dataset updated
    Aug 3, 2023
    Dataset provided by
    Frontiers Mediahttp://www.frontiersin.org/
    Authors
    Alexander Domnich; Andrea Orsi; Donatella Panatto; Matilde Ogliastro; Alessandra Barca; Fabrizio Bert; Danilo Cereda; Maria Chironna; Claudio Costantino; Daniel Fiacchini; Elena Pariani; Caterina Rizzo; Enrico Volpe; Giancarlo Icardi; The FluCoV Study Group
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    BackgroundThe impact of seasonal influenza vaccination (SIV) on mortality is still controversial; some studies have claimed that increasing vaccination coverage rates is beneficial, while others have found no significant association. This study aimed to construct a granular longitudinal dataset of local VCRs and assess their effect on pneumonia- and influenza-related (P&I) mortality among Italian adults aged ≥ 65 years.MethodsNUTS-3 (nomenclature of territorial units for statistics) level data on SIV coverage were collected via a survey of local data holders. Fixed- and random-effects panel regression modeling, when adjusted for potential confounders, was performed to assess the association between local SIV coverage rates and P&I mortality in older adults.ResultsA total of 1,144 local VCRs from 2003 to 2019 were ascertained. In the fully adjusted fixed-effects model, each 1% increase in vaccination coverage was associated (P < 0.001) with a 0.6% (95% CI: 0.3–0.9%) average over-time decrease in P&I mortality. With an annual average of 9,293 P&I deaths in Italy, this model suggested that 56 deaths could have been avoided each year by increasing SIV coverage by 1%. The random-effects model produced similar results. The base-case results were robust in a sensitivity analysis.ConclusionOver the last two decades, Italian jurisdictions with higher SIV uptake had, on average, fewer P&I deaths among older adults. Local policy-makers should implement effective strategies to increase SIV coverage in the Italian senior population.

  12. Not seeing a result you expected?
    Learn how you can add new datasets to our index.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Angel Henriquez (2020). COVID-19 and Influenza | New York Datasets [Dataset]. https://www.kaggle.com/datasets/angelhenriquez1/covid19-influenza-newyorkdatasets/discussion
Organization logo

COVID-19 and Influenza | New York Datasets

Useful Dataset to Compare COVID-19 and Influenza Death Tolls in New York

Explore at:
zip(648794 bytes)Available download formats
Dataset updated
May 9, 2020
Authors
Angel Henriquez
Description

Context

New York has presented the most cases compared to all states across the U.S..There have also been critiques regarding how much more unnoticed impact the flu has caused. My dataset allows us to compare whether or not this is true according to the most recent data.

Content

This COVID-19 data is from Kaggle whereas the New York influenza data comes from the U.S. government health data website. I merged the two datasets by county and FIPS code and listed the most recent reports of 2020 COVID-19 cases and deaths alongside the 2019 known influenza cases for comparison.

Acknowledgements

I am thankful to Kaggle and the U.S. government for making the data that made this possible openly available.

Inspiration

This data can be extended to answer the common misconceptions of the scale of the COVID-19 and common flu. My inspiration stems from supporting conclusions with data rather than simply intuition.

I would like my data to help answer how we can make U.S. citizens realize what diseases are most impactful.

Search
Clear search
Close search
Google apps
Main menu