6 datasets found
  1. COVID-19 State Data

    • kaggle.com
    zip
    Updated Nov 3, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Night Ranger (2020). COVID-19 State Data [Dataset]. https://www.kaggle.com/nightranger77/covid19-state-data
    Explore at:
    zip(4501 bytes)Available download formats
    Dataset updated
    Nov 3, 2020
    Authors
    Night Ranger
    Description

    This dataset is a per-state amalgamation of demographic, public health and other relevant predictors for COVID-19.

    Deaths, Infections and Tests by State

    The COVID Tracking Project: https://covidtracking.com/data/api

    Used positive, death and totalTestResults from the API for, respectively, Infected, Deaths and Tested in this dataset. Please read the documentation of the API for more context on those columns

    Predictor Data and Sources

    Population (2020)

    Density is people per meter squared https://worldpopulationreview.com/states/

    ICU Beds and Age 60+

    https://khn.org/news/as-coronavirus-spreads-widely-millions-of-older-americans-live-in-counties-with-no-icu-beds/

    GDP

    https://worldpopulationreview.com/states/gdp-by-state/

    Income per capita (2018)

    https://worldpopulationreview.com/states/per-capita-income-by-state/

    Gini

    https://en.wikipedia.org/wiki/List_of_U.S._states_by_Gini_coefficient

    Unemployment (2020)

    Rates from Feb 2020 and are percentage of labor force
    https://www.bls.gov/web/laus/laumstrk.htm

    Sex (2017)

    Ratio is Male / Female
    https://www.kff.org/other/state-indicator/distribution-by-gender/

    Smoking Percentage (2020)

    https://worldpopulationreview.com/states/smoking-rates-by-state/

    Influenza and Pneumonia Death Rate (2018)

    Death rate per 100,000 people
    https://www.cdc.gov/nchs/pressroom/sosmap/flu_pneumonia_mortality/flu_pneumonia.htm

    Chronic Lower Respiratory Disease Death Rate (2018)

    Death rate per 100,000 people
    https://www.cdc.gov/nchs/pressroom/sosmap/lung_disease_mortality/lung_disease.htm

    Active Physicians (2019)

    https://www.kff.org/other/state-indicator/total-active-physicians/

    Hospitals (2018)

    https://www.kff.org/other/state-indicator/total-hospitals

    Health spending per capita

    Includes spending for all health care services and products by state of residence. Hospital spending is included and reflects the total net revenue. Costs such as insurance, administration, research, and construction expenses are not included.
    https://www.kff.org/other/state-indicator/avg-annual-growth-per-capita/

    Pollution (2019)

    Pollution: Average exposure of the general public to particulate matter of 2.5 microns or less (PM2.5) measured in micrograms per cubic meter (3-year estimate)
    https://www.americashealthrankings.org/explore/annual/measure/air/state/ALL

    Medium and Large Airports

    For each state, number of medium and large airports https://en.wikipedia.org/wiki/List_of_the_busiest_airports_in_the_United_States

    Temperature (2019)

    Note that FL was incorrect in the table, but is corrected in the Hottest States paragraph
    https://worldpopulationreview.com/states/average-temperatures-by-state/
    District of Columbia temperature computed as the average of Maryland and Virginia

    Urbanization (2010)

    Urbanization as a percentage of the population https://www.icip.iastate.edu/tables/population/urban-pct-states

    Age Groups (2018)

    https://www.kff.org/other/state-indicator/distribution-by-age/

    School Closure Dates

    Schools that haven't closed are marked NaN https://www.edweek.org/ew/section/multimedia/map-coronavirus-and-school-closures.html

    Note that some datasets above did not contain data for District of Columbia, this missing data was found via Google searches manually entered.

  2. Leading causes of death, total population, by age group

    • www150.statcan.gc.ca
    • ouvert.canada.ca
    • +1more
    Updated Feb 19, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Government of Canada, Statistics Canada (2025). Leading causes of death, total population, by age group [Dataset]. http://doi.org/10.25318/1310039401-eng
    Explore at:
    Dataset updated
    Feb 19, 2025
    Dataset provided by
    Statistics Canadahttps://statcan.gc.ca/en
    Area covered
    Canada
    Description

    Rank, number of deaths, percentage of deaths, and age-specific mortality rates for the leading causes of death, by age group and sex, 2000 to most recent year.

  3. Flu vaccines availability data

    • kaggle.com
    zip
    Updated Nov 28, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    AmirHosein Mousavian (2023). Flu vaccines availability data [Dataset]. https://www.kaggle.com/datasets/amirhoseinmousavian/flu-vaccines-availability-data
    Explore at:
    zip(3668 bytes)Available download formats
    Dataset updated
    Nov 28, 2023
    Authors
    AmirHosein Mousavian
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    The flu is estimated to cause 400,000 respiratory deaths each year on average across the world. These deaths come from pneumonia and other respiratory symptoms caused by the flu. People also die from other complications of the flu – such as a stroke or heart attack – but global estimates have not been made of their death toll. The Spanish flu caused the largest influenza pandemic in history. Yet, data on the flu is limited. With better testing, countries could improve their response to flu epidemics. It could help to rapidly identify new strains, detect epidemics early, and design better-matched vaccines to target flu strains circulating in the population.

    this data set contains the vaccine coverage around the world from 2018 to 2022.

  4. C

    California Hospital Inpatient Mortality Rates and Quality Ratings

    • data.chhs.ca.gov
    • data.ca.gov
    • +5more
    csv, pdf, xls, zip
    Updated Nov 6, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Department of Health Care Access and Information (2025). California Hospital Inpatient Mortality Rates and Quality Ratings [Dataset]. https://data.chhs.ca.gov/dataset/california-hospital-inpatient-mortality-rates-and-quality-ratings
    Explore at:
    pdf(306372), pdf, xls(143872), pdf(134270), pdf(83317), pdf(445171), pdf(700782), pdf(280571), pdf(419645), xls(214016), xls(165376), csv(3189182), xls, pdf(451935), pdf(253971), pdf(791847), pdf(150793), xls(141824), xls(166400), xls(163840), pdf(1235022), xls(172032), pdf(713960), pdf(363570), pdf(798633), pdf(538945), pdf(100994), pdf(288823), pdf(452858), pdf(146736), pdf(114573), pdf(264343), pdf(730246), pdf(238223), pdf(796065), pdf(254426), pdf(729792), pdf(239000), pdf(321071), pdf(147517), csv(6740988), zipAvailable download formats
    Dataset updated
    Nov 6, 2025
    Dataset authored and provided by
    Department of Health Care Access and Information
    Area covered
    California
    Description

    The dataset contains risk-adjusted mortality rates, quality ratings, and number of deaths and cases for 6 medical conditions treated (Acute Stroke, Acute Myocardial Infarction, Heart Failure, Gastrointestinal Hemorrhage, Hip Fracture and Pneumonia) and 3 procedures performed (Carotid Endarterectomy, Pancreatic Resection, and Percutaneous Coronary Intervention) in California hospitals. The 2023 IMIs were generated using AHRQ Version 2024, while previous years' IMIs were generated with older versions of AHRQ software (2022 IMIs by Version 2023, 2021 IMIs by Version 2022, 2020 IMIs by Version 2021, 2019 IMIs by Version 2020, 2016-2018 IMIs by Version 2019, 2014 and 2015 IMIs by Version 5.0, and 2012 and 2013 IMIs by Version 4.5). The differences in the statistical method employed and inclusion and exclusion criteria using different versions can lead to different results. Users should not compare trends of mortality rates over time. However, many hospitals showed consistent performance over years; “better” performing hospitals may perform better and “worse” performing hospitals may perform worse consistently across years. This dataset does not include conditions treated or procedures performed in outpatient settings. Please refer to statewide table for California overall rates: https://data.chhs.ca.gov/dataset/california-hospital-inpatient-mortality-rates-and-quality-ratings/resource/af88090e-b6f5-4f65-a7ea-d613e6569d96

  5. Mortality Moscow 2010-2020

    • kaggle.com
    zip
    Updated May 27, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Vitaliy Malcev (2020). Mortality Moscow 2010-2020 [Dataset]. https://www.kaggle.com/vitaliymalcev/mortaliy-moscow-20102020
    Explore at:
    zip(3873 bytes)Available download formats
    Dataset updated
    May 27, 2020
    Authors
    Vitaliy Malcev
    License

    https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/

    Area covered
    Moscow
    Description

    Context - Covid data falsification discussion:

    An active discussion about the mortality data in Moscow has erupted in the days. The Moscow Times newspaper drew attention to a significant increase in official mortality rates in April 2020: "Moscow recorded 20% more fatalities in April 2020 compared to its average April mortality total over the past decade, according to newly published preliminary data from Moscow’s civil registry office. The data comes as Russia sees the fastest growth in coronavirus infections in Europe, while its mortality rate remains much lower than in many countries. Moscow, the epicenter of Russia’s coronavirus outbreak, has continued to see daily spikes in new cases despite being under lockdown since March 30. According to the official data, 11,846 people died in Russia’s capital in April of this year, roughly a 20% increase from the 10-year average for April deaths, which is 9,866. The numbers suggest that the city’s statistics of coronavirus deaths may be higher in reality than official numbers indicate. Russia boasts a relatively low coronavirus mortality rate of 0.9%, which experts believe is linked to the way coronavirus-related deaths are counted."

    After this publication have been realesed The Moscow Department of Health has denied the statement of the inaccuracy of counting.:

    First, Moscow is a region that openly publishes mortality data on its websites. Moscow on an initiative basis published data for April before the federal structures did it. Secondly, the comparison of mortality rates in the monthly dynamics is incorrect and is not a clear evidence of any trends. In April 2020, indeed, according to the Civil Registry Office in Moscow, 11,846 death certificates were issued. So, the increase compared to April 2019 amounted to 1841 people, and compared to the same month of 2018 - 985 people, i.e. 2 times less. Thirdly, the diagnosis of coronavirus-infected deaths in Moscow is established after a mandatory autopsy is performed in strict accordance with the Provisional Guidelines of the Russian Ministry of Health.Of the total number of deaths in April 2020, 639 are people whose cause of death is coronavirus infection and its complications, most often pneumonia.It should be emphasized that the pathological autopsy of the dead with suspected CoV-19 in Russia and Moscow is carried out in 100% of cases, unlike most other countries.It is impossible to name the cause of death of COVID-19 in other cases. For example, over 60% of deaths occurred from obvious alternative causes, such as vascular accidents (myocardial infarction and stroke), stage 4 malignant diseases (essentially palliative patients), leukemia, systemic diseases with the development of organ failure (e.g. amyloidosis and terminal renal insufficiency) and other non-curable deadly diseases. Fourth, any seasonal increase in the incidence of SARS, not to mention the pandemic caused by the spread of the new coronavirus, is always accompanied by an increase in mortality. This is due to the appearance of the dead directly from an infectious disease, but to an even greater extent from other diseases, the exacerbation of which and the decompensation of the condition of patients suffering from these diseases also leads to death. In these cases, the infectious onset is a catalyst for the rapid progression of chronic diseases and the manifestation of new diseases. Fifthly, a similar situation with statistics is observed in other countries - mortality from COVID-19 is lower than the overall increase in mortality. According to the official sites of cities:In New York, mortality from coronavirus in April amounted to 11,861 people. At the same time, the total increase in mortality compared to the same period in 2019 is 15709.In London, in April, 3,589 people died with a diagnosis of coronavirus, while the total increase was 5531 Sixth, even if all the additional mortality for April in Moscow is attributed to coronavirus, the mortality from COVID will be slightly more than 3%, which is lower than the official mortality in New York and London (10% and 23%, respectively). Moreover, if you make such a recount in these cities, the mortality rate in them will be 13% and 32%, respectively. Seventh, Moscow is open for discussion and is ready to share experience with both Russian and foreign experts.

    Content

    I think community members would be interested in studying the data on mortality in the Russian capital themselves and conducting a competent statistical check.

    This may be of particular interest in connection with that he [US announced a grant of $ 250 thousand to "expose the disinformation of health care" in Russia](https://www....

  6. COVID-19 Country Data

    • kaggle.com
    zip
    Updated May 3, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Patrick (2020). COVID-19 Country Data [Dataset]. https://www.kaggle.com/datasets/bitsnpieces/covid19-country-data/code
    Explore at:
    zip(190821 bytes)Available download formats
    Dataset updated
    May 3, 2020
    Authors
    Patrick
    License

    http://opendatacommons.org/licenses/dbcl/1.0/http://opendatacommons.org/licenses/dbcl/1.0/

    Description

    Motivation

    Why did I create this dataset? This is my first time creating a notebook in Kaggle and I am interested in learning more about COVID-19 and how different countries are affected by it and why. It might be useful to compare different metrics between different countries. And I also wanted to participate in a challenge, and I've decided to join the COVID-19 datasets challenge. While looking through the projects, I noticed https://www.kaggle.com/koryto/countryinfo and it inspired me to start this project.

    Method

    My approach is to scour the Internet and Kaggle looking for country data that can potentially have an impact on how the COVID-19 pandemic spreads. In the end, I ended up with the following for each country:

    • Monthly temperature and precipitation from Worldbank
    • Latitude and longitude
    • Population, density, gender and age
    • Airport traffic from Worldbank
    • COVID-19 date of first case and number of cases and deaths as of March 26, 2020
    • 2009 H1N1 flu pandemic cases and deaths obtained from Wikipedia
    • Property affordability index and Health care index from Numbeo
    • Number of hospital beds and ICU beds from Wikipedia
    • Flu and pneumonia death rate from Worldlifeexpectancy.com (Age Adjusted Death Rate Estimates: 2017)
    • School closures due to COVID-19
    • Number of COVID-19 tests done
    • Number of COVID-19 genetic strains
    • US Social Distancing Policies from COVID19StatePolicy’s SocialDistancing repository on GitHub
    • DHL Global Connectedness Index 2018 (People Breadth scores)
    • Datasets have been merged by country name whenever possible. I needed to rename some countries by hand, e.g. US to United Sates, etc. but it's possible that I might have missed some. See the output file covid19_merged.csv for the merged result.

    See covid19_data - data_sources.csv for data source details.

    Notebook: https://www.kaggle.com/bitsnpieces/covid19-data

    Caveats

    Since I did not personally collect each datapoint, and because each datasource is different with different objectives, collected at different times, measured in different ways, any inferences from this dataset will need further investigation.

    Other interesting sources of information

    Acknowledgements

    I want to acknowledge the authors of the datasets that made their data publicly available which has made this project possible. Banner image is by Brian.

    I hope that the community finds this dataset useful. Feel free to recommend other datasets that you think will be useful / relevant! Thanks for looking.

  7. Not seeing a result you expected?
    Learn how you can add new datasets to our index.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Night Ranger (2020). COVID-19 State Data [Dataset]. https://www.kaggle.com/nightranger77/covid19-state-data
Organization logo

COVID-19 State Data

Per-state predictors for COVID-19

Explore at:
256 scholarly articles cite this dataset (View in Google Scholar)
zip(4501 bytes)Available download formats
Dataset updated
Nov 3, 2020
Authors
Night Ranger
Description

This dataset is a per-state amalgamation of demographic, public health and other relevant predictors for COVID-19.

Deaths, Infections and Tests by State

The COVID Tracking Project: https://covidtracking.com/data/api

Used positive, death and totalTestResults from the API for, respectively, Infected, Deaths and Tested in this dataset. Please read the documentation of the API for more context on those columns

Predictor Data and Sources

Population (2020)

Density is people per meter squared https://worldpopulationreview.com/states/

ICU Beds and Age 60+

https://khn.org/news/as-coronavirus-spreads-widely-millions-of-older-americans-live-in-counties-with-no-icu-beds/

GDP

https://worldpopulationreview.com/states/gdp-by-state/

Income per capita (2018)

https://worldpopulationreview.com/states/per-capita-income-by-state/

Gini

https://en.wikipedia.org/wiki/List_of_U.S._states_by_Gini_coefficient

Unemployment (2020)

Rates from Feb 2020 and are percentage of labor force
https://www.bls.gov/web/laus/laumstrk.htm

Sex (2017)

Ratio is Male / Female
https://www.kff.org/other/state-indicator/distribution-by-gender/

Smoking Percentage (2020)

https://worldpopulationreview.com/states/smoking-rates-by-state/

Influenza and Pneumonia Death Rate (2018)

Death rate per 100,000 people
https://www.cdc.gov/nchs/pressroom/sosmap/flu_pneumonia_mortality/flu_pneumonia.htm

Chronic Lower Respiratory Disease Death Rate (2018)

Death rate per 100,000 people
https://www.cdc.gov/nchs/pressroom/sosmap/lung_disease_mortality/lung_disease.htm

Active Physicians (2019)

https://www.kff.org/other/state-indicator/total-active-physicians/

Hospitals (2018)

https://www.kff.org/other/state-indicator/total-hospitals

Health spending per capita

Includes spending for all health care services and products by state of residence. Hospital spending is included and reflects the total net revenue. Costs such as insurance, administration, research, and construction expenses are not included.
https://www.kff.org/other/state-indicator/avg-annual-growth-per-capita/

Pollution (2019)

Pollution: Average exposure of the general public to particulate matter of 2.5 microns or less (PM2.5) measured in micrograms per cubic meter (3-year estimate)
https://www.americashealthrankings.org/explore/annual/measure/air/state/ALL

Medium and Large Airports

For each state, number of medium and large airports https://en.wikipedia.org/wiki/List_of_the_busiest_airports_in_the_United_States

Temperature (2019)

Note that FL was incorrect in the table, but is corrected in the Hottest States paragraph
https://worldpopulationreview.com/states/average-temperatures-by-state/
District of Columbia temperature computed as the average of Maryland and Virginia

Urbanization (2010)

Urbanization as a percentage of the population https://www.icip.iastate.edu/tables/population/urban-pct-states

Age Groups (2018)

https://www.kff.org/other/state-indicator/distribution-by-age/

School Closure Dates

Schools that haven't closed are marked NaN https://www.edweek.org/ew/section/multimedia/map-coronavirus-and-school-closures.html

Note that some datasets above did not contain data for District of Columbia, this missing data was found via Google searches manually entered.

Search
Clear search
Close search
Google apps
Main menu