100+ datasets found
  1. Share of people in the U.S. without health insurance by age 1997-2023

    • statista.com
    Updated Jul 9, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). Share of people in the U.S. without health insurance by age 1997-2023 [Dataset]. https://www.statista.com/statistics/200971/percentage-of-americans-without-health-insurance-by-age/
    Explore at:
    Dataset updated
    Jul 9, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Area covered
    United States
    Description

    In 2023, **** percent of people aged 18 to 64 in the United States didn't have health insurance, the lowest in the provided time interval. This statistic contains data on the percentage of U.S. Americans without health insurance coverage from 1997 to 2023, by age.

  2. Reduced Access to Care During COVID-19

    • catalog.data.gov
    • data.virginia.gov
    • +5more
    Updated Apr 23, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Centers for Disease Control and Prevention (2025). Reduced Access to Care During COVID-19 [Dataset]. https://catalog.data.gov/dataset/reduced-access-to-care-during-covid-19
    Explore at:
    Dataset updated
    Apr 23, 2025
    Dataset provided by
    Centers for Disease Control and Preventionhttp://www.cdc.gov/
    Description

    The Research and Development Survey (RANDS) is a platform designed for conducting survey question evaluation and statistical research. RANDS is an ongoing series of surveys from probability-sampled commercial survey panels used for methodological research at the National Center for Health Statistics (NCHS). RANDS estimates are generated using an experimental approach that differs from the survey design approaches generally used by NCHS, including possible biases from different response patterns and sampling frames as well as increased variability from lower sample sizes. Use of the RANDS platform allows NCHS to produce more timely data than would be possible using traditional data collection methods. RANDS is not designed to replace NCHS’ higher quality, core data collections. Below are experimental estimates of reduced access to healthcare for three rounds of RANDS during COVID-19. Data collection for the three rounds of RANDS during COVID-19 occurred between June 9, 2020 and July 6, 2020, August 3, 2020 and August 20, 2020, and May 17, 2021 and June 30, 2021. Information needed to interpret these estimates can be found in the Technical Notes. RANDS during COVID-19 included questions about unmet care in the last 2 months during the coronavirus pandemic. Unmet needs for health care are often the result of cost-related barriers. The National Health Interview Survey, conducted by NCHS, is the source for high-quality data to monitor cost-related health care access problems in the United States. For example, in 2018, 7.3% of persons of all ages reported delaying medical care due to cost and 4.8% reported needing medical care but not getting it due to cost in the past year. However, cost is not the only reason someone might delay or not receive needed medical care. As a result of the coronavirus pandemic, people also may not get needed medical care due to cancelled appointments, cutbacks in transportation options, fear of going to the emergency room, or an altruistic desire to not be a burden on the health care system, among other reasons. The Household Pulse Survey (https://www.cdc.gov/nchs/covid19/pulse/reduced-access-to-care.htm), an online survey conducted in response to the COVID-19 pandemic by the Census Bureau in partnership with other federal agencies including NCHS, also reports estimates of reduced access to care during the pandemic (beginning in Phase 1, which started on April 23, 2020). The Household Pulse Survey reports the percentage of adults who delayed medical care in the last 4 weeks or who needed medical care at any time in the last 4 weeks for something other than coronavirus but did not get it because of the pandemic. The experimental estimates on this page are derived from RANDS during COVID-19 and show the percentage of U.S. adults who were unable to receive medical care (including urgent care, surgery, screening tests, ongoing treatment, regular checkups, prescriptions, dental care, vision care, and hearing care) in the last 2 months. Technical Notes: https://www.cdc.gov/nchs/covid19/rands/reduced-access-to-care.htm#limitations

  3. Number of people in the U.S. without health insurance 1997-2023

    • statista.com
    Updated Jul 10, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2024). Number of people in the U.S. without health insurance 1997-2023 [Dataset]. https://www.statista.com/statistics/200955/americans-without-health-insurance/
    Explore at:
    Dataset updated
    Jul 10, 2024
    Dataset authored and provided by
    Statistahttp://statista.com/
    Area covered
    United States
    Description

    In 2023, 25 million people in the United States had no health insurance. The share of Americans without health insurance saw a steady increase from 2015 to 2019 before starting to decline in 2020 to 2023. Factors like the implementation of Medicaid expansion in additional states and growth in private health insurance coverage led to the decline in uninsured population, despite the economic challenges due to the pandemic in 2020. Positive impact of Affordable Care Act In the U.S. there are public and private forms of health insurance, as well as social welfare programs such as Medicaid and programs just for veterans such as CHAMPVA. The Affordable Care Act (ACA) was enacted in 2010, which dramatically reduced the share of uninsured Americans, though there’s still room for improvement. In spite of its success in providing more Americans with health insurance, ACA has had an almost equal number of proponents and opponents since its introduction, though the share of Americans in favor of it has risen since mid-2017 to the majority. Persistent disparity among ethnic groups The share of uninsured people is higher in certain demographic groups. For instance, Hispanics continue to be the ethnic group with the highest rate of uninsured people, even after ACA. Meanwhile the share of uninsured White and Asian people is lower than the national average.

  4. 2010-2014 ACS Health Insurance by Age by Race Variables - Boundaries

    • gis-for-racialequity.hub.arcgis.com
    Updated Dec 1, 2020
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Esri (2020). 2010-2014 ACS Health Insurance by Age by Race Variables - Boundaries [Dataset]. https://gis-for-racialequity.hub.arcgis.com/maps/esri::county-140
    Explore at:
    Dataset updated
    Dec 1, 2020
    Dataset authored and provided by
    Esrihttp://esri.com/
    Area covered
    Description

    This layer contains 2010-2014 American Community Survey (ACS) 5-year data, and contains estimates and margins of error. The layer shows health insurance coverage sex and race by age group. This is shown by tract, county, and state boundaries. There are also additional calculated attributes related to this topic, which can be mapped or used within analysis. Sums may add to more than the total, as people can be in multiple race groups (for example, Hispanic and Black). Later vintages of this layer have a different age group for children that includes age 18. This layer is symbolized to show the percent of population with no health insurance coverage. To see the full list of attributes available in this service, go to the "Data" tab, and choose "Fields" at the top right. Vintage: 2010-2014ACS Table(s): B27010, C27001B, C27001C, C27001D, C27001E, C27001F, C27001G, C27001H, C27001I (Not all lines of these tables are available in this layer.)Data downloaded from: Census Bureau's API for American Community Survey Date of API call: November 28, 2020National Figures: data.census.govThe United States Census Bureau's American Community Survey (ACS):About the SurveyGeography & ACSTechnical DocumentationNews & UpdatesThis ready-to-use layer can be used within ArcGIS Pro, ArcGIS Online, its configurable apps, dashboards, Story Maps, custom apps, and mobile apps. Data can also be exported for offline workflows. For more information about ACS layers, visit the FAQ. Please cite the Census and ACS when using this data.Data Note from the Census:Data are based on a sample and are subject to sampling variability. The degree of uncertainty for an estimate arising from sampling variability is represented through the use of a margin of error. The value shown here is the 90 percent margin of error. The margin of error can be interpreted as providing a 90 percent probability that the interval defined by the estimate minus the margin of error and the estimate plus the margin of error (the lower and upper confidence bounds) contains the true value. In addition to sampling variability, the ACS estimates are subject to nonsampling error (for a discussion of nonsampling variability, see Accuracy of the Data). The effect of nonsampling error is not represented in these tables.Data Processing Notes:This layer has associated layers containing the most recent ACS data available by the U.S. Census Bureau. Click here to learn more about ACS data releases and click here for the associated boundaries layer. The reason this data is 5+ years different from the most recent vintage is due to the overlapping of survey years. It is recommended by the U.S. Census Bureau to compare non-overlapping datasets.Boundaries come from the US Census TIGER geodatabases. Boundary vintage (2014) appropriately matches the data vintage as specified by the Census. These are Census boundaries with water and/or coastlines clipped for cartographic purposes. For census tracts, the water cutouts are derived from a subset of the 2010 AWATER (Area Water) boundaries offered by TIGER. For state and county boundaries, the water and coastlines are derived from the coastlines of the 500k TIGER Cartographic Boundary Shapefiles. The original AWATER and ALAND fields are still available as attributes within the data table (units are square meters). The States layer contains 52 records - all US states, Washington D.C., and Puerto RicoCensus tracts with no population that occur in areas of water, such as oceans, are removed from this data service (Census Tracts beginning with 99).Percentages and derived counts, and associated margins of error, are calculated values (that can be identified by the "_calc_" stub in the field name), and abide by the specifications defined by the American Community Survey.Field alias names were created based on the Table Shells file available from the American Community Survey Summary File Documentation page.Negative values (e.g., -4444...) have been set to null, with the exception of -5555... which has been set to zero. These negative values exist in the raw API data to indicate the following situations:The margin of error column indicates that either no sample observations or too few sample observations were available to compute a standard error and thus the margin of error. A statistical test is not appropriate.Either no sample observations or too few sample observations were available to compute an estimate, or a ratio of medians cannot be calculated because one or both of the median estimates falls in the lowest interval or upper interval of an open-ended distribution.The median falls in the lowest interval of an open-ended distribution, or in the upper interval of an open-ended distribution. A statistical test is not appropriate.The estimate is controlled. A statistical test for sampling variability is not appropriate.The data for this geographic area cannot be displayed because the number of sample cases is too small.

  5. U.S. Americans with health insurance 1990-2023

    • statista.com
    Updated Jun 23, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). U.S. Americans with health insurance 1990-2023 [Dataset]. https://www.statista.com/statistics/200946/americans-with-health-insurance/
    Explore at:
    Dataset updated
    Jun 23, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Area covered
    United States
    Description

    As of 2023, nearly *** million people in the United States had some kind of health insurance, a significant increase from around *** million insured people in 2010. However, as of 2023, there were still approximately ** million people in the United States without any kind of health insurance. Insurance coverage The United States does not have universal health insurance, and so health care cost is mostly covered through different private and public insurance programs. In 2021, almost ** percent of the insured population of the United States were insured through employers, while **** percent of people were insured through Medicaid, and **** percent of people through Medicare. As of 2022, about *** percent of people were uninsured in the U.S., compared to ** percent in 2010. The Affordable Care Act The Affordable Care Act (ACA) significantly reduced the number of uninsured people in the United States, from **** million uninsured people in 2013 to **** million people in 2015. However, since the repeal of the individual mandate the number of people without health insurance has risen. Healthcare reform in the United States remains an ongoing political issue with public opinion on a Medicare-for-all plan consistently divided.

  6. Uninsured Population Census Data CY 2009-2014 Human Services

    • splitgraph.com
    • data.pa.gov
    Updated Oct 18, 2022
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Small Area Health Insurance Estimates Program, U.S. Census Bureau (2022). Uninsured Population Census Data CY 2009-2014 Human Services [Dataset]. https://www.splitgraph.com/pa-gov/uninsured-population-census-data-cy-20092014-human-s782-mpqp
    Explore at:
    application/vnd.splitgraph.image, json, application/openapi+jsonAvailable download formats
    Dataset updated
    Oct 18, 2022
    Dataset provided by
    United States Census Bureauhttp://census.gov/
    Authors
    Small Area Health Insurance Estimates Program, U.S. Census Bureau
    License

    U.S. Government Workshttps://www.usa.gov/government-works
    License information was derived automatically

    Description

    This data is pulled from the U.S. Census website. This data is for years Calendar Years 2009-2014.

    Product: SAHIE File Layout Overview

    Small Area Health Insurance Estimates Program - SAHIE

    Filenames: SAHIE Text and SAHIE CSV files 2009 – 2014

    Source: Small Area Health Insurance Estimates Program, U.S. Census Bureau.

    Internet Release Date: May 2016

    Description: Model‐based Small Area Health Insurance Estimates (SAHIE) for Counties and States File Layout and Definitions

    The Small Area Health Insurance Estimates (SAHIE) program was created to develop model-based estimates of health insurance coverage for counties and states. This program builds on the work of the Small Area Income and Poverty Estimates (SAIPE) program. SAHIE is only source of single-year health insurance coverage estimates for all U.S. counties.

    For 2008-2014, SAHIE publishes STATE and COUNTY estimates of population with and without health insurance coverage, along with measures of uncertainty, for the full cross-classification of:

    •5 age categories: 0-64, 18-64, 21-64, 40-64, and 50-64

    •3 sex categories: both sexes, male, and female

    •6 income categories: all incomes, as well as income-to-poverty ratio (IPR) categories 0-138%, 0-200%, 0-250%, 0-400%, and 138-400% of the poverty threshold

    •4 races/ethnicities (for states only): all races/ethnicities, White not Hispanic, Black not Hispanic, and Hispanic (any race).

    In addition, estimates for age category 0-18 by the income categories listed above are published.

    Each year’s estimates are adjusted so that, before rounding, the county estimates sum to their respective state totals and for key demographics the state estimates sum to the national ACS numbers insured and uninsured.

    This program is partially funded by the Centers for Disease Control and Prevention's (CDC), National Breast and Cervical Cancer Early Detection ProgramLink to a non-federal Web site (NBCCEDP). The CDC have a congressional mandate to provide screening services for breast and cervical cancer to low-income, uninsured, and underserved women through the NBCCEDP. Most state NBCCEDP programs define low-income as 200 or 250 percent of the poverty threshold. Also included are IPR categories relevant to the Affordable Care Act (ACA). In 2014, the ACA will help families gain access to health care by allowing Medicaid to cover families with incomes less than or equal to 138 percent of the poverty line. Families with incomes above the level needed to qualify for Medicaid, but less than or equal to 400 percent of the poverty line can receive tax credits that will help them pay for health coverage in the new health insurance exchanges.

    We welcome your feedback as we continue to research and improve our estimation methods. The SAHIE program's age model methodology and estimates have undergone internal U.S. Census Bureau review as well as external review. See the SAHIE Methodological Review page for more details and a summary of the comments and our response.

    The SAHIE program models health insurance coverage by combining survey data from several sources, including:

    •The American Community Survey (ACS)

    •Demographic population estimates

    •Aggregated federal tax returns

    •Participation records for the Supplemental Nutrition Assistance Program (SNAP), formerly known as the Food Stamp program

    •County Business Patterns

    •Medicaid

    •Children's Health Insurance Program (CHIP) participation records

    •Census 2010

    Margin of error (MOE). Some ACS products provide

    an MOE instead of confidence intervals. An MOE is the

    difference between an estimate and its upper or lower

    confidence bounds. Confidence bounds can be created

    by adding the margin of error to the estimate (for the

    upper bound) and subtracting the margin of error from

    the estimate (for the lower bound). All published ACS

    margins of error are based on a 90-percent confidence

    level.

    Splitgraph serves as an HTTP API that lets you run SQL queries directly on this data to power Web applications. For example:

    See the Splitgraph documentation for more information.

  7. COVID-19 Reported Patient Impact and Hospital Capacity by State Timeseries...

    • catalog.data.gov
    • data.virginia.gov
    • +2more
    Updated Jul 4, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Department of Health and Human Services (2025). COVID-19 Reported Patient Impact and Hospital Capacity by State Timeseries (RAW) [Dataset]. https://catalog.data.gov/dataset/covid-19-reported-patient-impact-and-hospital-capacity-by-state-timeseries-cf58c
    Explore at:
    Dataset updated
    Jul 4, 2025
    Dataset provided by
    United States Department of Health and Human Serviceshttp://www.hhs.gov/
    Description

    After May 3, 2024, this dataset and webpage will no longer be updated because hospitals are no longer required to report data on COVID-19 hospital admissions, and hospital capacity and occupancy data, to HHS through CDC’s National Healthcare Safety Network. Data voluntarily reported to NHSN after May 1, 2024, will be available starting May 10, 2024, at COVID Data Tracker Hospitalizations. The following dataset provides state-aggregated data for hospital utilization in a timeseries format dating back to January 1, 2020. These are derived from reports with facility-level granularity across three main sources: (1) HHS TeleTracking, (2) reporting provided directly to HHS Protect by state/territorial health departments on behalf of their healthcare facilities and (3) National Healthcare Safety Network (before July 15). The file will be updated regularly and provides the latest values reported by each facility within the last four days for all time. This allows for a more comprehensive picture of the hospital utilization within a state by ensuring a hospital is represented, even if they miss a single day of reporting. No statistical analysis is applied to account for non-response and/or to account for missing data. The below table displays one value for each field (i.e., column). Sometimes, reports for a given facility will be provided to more than one reporting source: HHS TeleTracking, NHSN, and HHS Protect. When this occurs, to ensure that there are not duplicate reports, prioritization is applied to the numbers for each facility. On April 27, 2022 the following pediatric fields were added: all_pediatric_inpatient_bed_occupied all_pediatric_inpatient_bed_occupied_coverage all_pediatric_inpatient_beds all_pediatric_inpatient_beds_coverage previous_day_admission_pediatric_covid_confirmed_0_4 previous_day_admission_pediatric_covid_confirmed_0_4_coverage previous_day_admission_pediatric_covid_confirmed_12_17 previous_day_admission_pediatric_covid_confirmed_12_17_coverage previous_day_admission_pediatric_covid_confirmed_5_11 previous_day_admission_pediatric_covid_confirmed_5_11_coverage previous_day_admission_pediatric_covid_confirmed_unknown previous_day_admission_pediatric_covid_confirmed_unknown_coverage staffed_icu_pediatric_patients_confirmed_covid staffed_icu_pediatric_patients_confirmed_covid_coverage staffed_pediatric_icu_bed_occupancy staffed_pediatric_icu_bed_occupancy_coverage total_staffed_pediatric_icu_beds total_staffed_pediatric_icu_beds_coverage On January 19, 2022, the following fields have been added to this dataset: inpatient_beds_used_covid inpatient_beds_used_covid_coverage On September 17, 2021, this data set has had the following fields added: icu_patients_confirmed_influenza, icu_patients_confirmed_influenza_coverage, previous_day_admission_influenza_confirmed, previous_day_admission_influenza_confirmed_coverage, previous_day_deaths_covid_and_influenza, previous_day_deaths_covid_and_influenza_coverage, previous_day_deaths_influenza, previous_day_deaths_influenza_coverage, total_patients_hospitalized_confirmed_influenza, total_patients_hospitalized_confirmed_influenza_and_covid, total_patients_hospitalized_confirmed_influenza_and_covid_coverage, total_patients_hospitalized_confirmed_influenza_coverage On September 13, 2021, this data set has had the following fields added: on_hand_supply_therapeutic_a_casirivimab_imdevimab_courses, on_hand_supply_therapeutic_b_bamlanivimab_courses, on_hand_supply_therapeutic_c_bamlanivimab_etesevimab_courses, previous_week_therapeutic_a_casirivimab_imdevimab_courses_used, previous_week_therapeutic_b_bamlanivimab_courses_used, previous_week_therapeutic_c_bamlanivima

  8. uninsured state

    • gis-for-racialequity.hub.arcgis.com
    Updated May 10, 2017
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Urban Observatory by Esri (2017). uninsured state [Dataset]. https://gis-for-racialequity.hub.arcgis.com/datasets/UrbanObservatory::uninsured-state
    Explore at:
    Dataset updated
    May 10, 2017
    Dataset provided by
    Esrihttp://esri.com/
    Authors
    Urban Observatory by Esri
    Area covered
    Description

    This layer shows the percentage of people without health insurance in the U.S. by state and county, from American Community Survey 5-year estimates: 2011-2015 (Table GCT2701). The map switches from state data to county data as the map zooms in. The national average was 13.0%, down from approximately 20% in 2005.A person’s ability to access health services has a profound effect on every aspect of his or her health. Many Americans do not have a primary care provider (PCP) or health center where they can receive regular medical services. People without medical insurance are more likely to lack a usual source of medical care, such as a PCP, and are more likely to skip routine medical care due to costs, increasing their risk for serious and disabling health conditions. When they do access health services, they are often burdened with large medical bills and out-of-pocket expenses. Increasing access to both routine medical care and medical insurance are vital steps in improving the health of all Americans.

  9. A

    People per Health Care Facility in the U.S.

    • data.amerigeoss.org
    arcgis map preview +1
    Updated Aug 19, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    United States (2022). People per Health Care Facility in the U.S. [Dataset]. https://data.amerigeoss.org/dataset/people-per-health-care-facility-in-the-us
    Explore at:
    arcgis map preview, arcgis map serviceAvailable download formats
    Dataset updated
    Aug 19, 2022
    Dataset provided by
    United States
    Area covered
    United States
    Description

    This map service displays healthcare resources supply and demand per state, congressional district, and county in the United States. It shows the number of people per geography (state, congressional district and county), from the U.S. Census Bureau’s 2010 census, divided by the number of health care facilities (hospitals, medical centers, federally qualified health centers, and home health services), provided by the U.S. Department of Health Human Services. The health care system capacity is calculated as the number of facilities in the area multiplied by the national average (number of people per facility). The number of facilities of each type needed is calculated by dividing the area's population by the national average (number of people per facility). The facility surplus or need is calculated by subtracting the number of facilities needed (based on the population size) from the number of existing facilities. Number of hospital beds, accessibility and travel time are not considered in these calculations as this data is not available here.We recommend this service be viewed with a 40% transparency. Other data source include Data.gov._Other Health Datapalooza focused content that may interest you: Health Datapalooza Health Datapalooza

  10. a

    2016 ACS Health Insurance by Age and Gender - County

    • gis-for-racialequity.hub.arcgis.com
    Updated Mar 16, 2018
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    ArcGIS Living Atlas Team (2018). 2016 ACS Health Insurance by Age and Gender - County [Dataset]. https://gis-for-racialequity.hub.arcgis.com/datasets/arcgis-content::2016-acs-health-insurance-by-age-and-gender-county
    Explore at:
    Dataset updated
    Mar 16, 2018
    Dataset authored and provided by
    ArcGIS Living Atlas Team
    Area covered
    Description

    This layer shows the percentage of the civilian noninstitutionalized population who do not have insurance. This is shown by county centroids. The data values are from the 2012-2016 American Community Survey 5-year estimate in the B27001 Table for health insurance coverage status broken down by by age and sex characteristics.This map helps to answer a few questions:How many people in the United States don't have health insurance?Where are the concentrations of uninsured population?This map helps to tell a regional pattern about insurance in the United States. The data can be stratified by different age and sex characteristics in order to create additional maps. By default, the pop-up provides a breakdown of total male and female uninsured population. This data was downloaded from the United States Census Bureau American Fact Finder on March 1, 2018. It was then joined with 2016 vintage centroid points and hosted to ArcGIS Online and into the Living Atlas. The data contains additional attributes that can be used for mapping and analysis. Nationally, the breakdown of insurance for the civilian noninstitutionalized population in the US is:Total:313,576,137+/-10,365Male:153,162,940+/-12,077Under 6 years:12,227,441+/-11,224With health insurance coverage11,643,526+/-12,783No health insurance coverage583,915+/-6,4386 to 17 years:25,282,489+/-12,396With health insurance coverage23,659,835+/-16,339No health insurance coverage1,622,654+/-14,50018 to 24 years:15,350,990+/-8,369With health insurance coverage12,112,729+/-19,586No health insurance coverage3,238,261+/-24,08125 to 34 years:20,901,264+/-8,155With health insurance coverage15,669,472+/-36,401No health insurance coverage5,231,792+/-38,88735 to 44 years:19,499,072+/-6,321With health insurance coverage15,722,620+/-41,969No health insurance coverage3,776,452+/-41,91645 to 54 years:20,965,500+/-5,283With health insurance coverage17,819,431+/-33,014No health insurance coverage3,146,069+/-31,18155 to 64 years:19,068,251+/-3,959With health insurance coverage17,076,497+/-20,830No health insurance coverage1,991,754+/-19,81365 to 74 years:12,168,198+/-3,453With health insurance coverage12,041,594+/-4,736No health insurance coverage126,604+/-3,20775 years and over:7,699,735+/-3,458With health insurance coverage7,657,815+/-3,794No health insurance coverage41,920+/-1,719Female:160,413,197+/-8,724Under 6 years:11,684,980+/-10,395With health insurance coverage11,115,775+/-13,062No health insurance coverage569,205+/-7,1326 to 17 years:24,280,468+/-11,445With health insurance coverage22,723,174+/-14,642No health insurance coverage1,557,294+/-13,46818 to 24 years:15,151,707+/-5,432With health insurance coverage12,591,379+/-16,744No health insurance coverage2,560,328+/-18,82625 to 34 years:21,367,510+/-4,829With health insurance coverage17,505,087+/-32,122No health insurance coverage3,862,423+/-31,65135 to 44 years:20,279,901+/-4,751With health insurance coverage17,146,763+/-32,076No health insurance coverage3,133,138+/-31,65945 to 54 years:21,975,842+/-5,087With health insurance coverage19,083,932+/-27,415No health insurance coverage2,891,910+/-25,02255 to 64 years:20,665,987+/-3,867With health insurance coverage18,537,874+/-18,484No health insurance coverage2,128,113+/-16,61465 to 74 years:13,896,484+/-3,882With health insurance coverage13,730,727+/-6,177No health insurance coverage165,757+/-3,85775 years and over:11,110,318+/-3,977With health insurance coverage11,037,661+/-4,391No health insurance coverage72,657+/-2,120Data note from the US Census Bureau:[ACS] data are based on a sample and are subject to sampling variability. The degree of uncertainty for an estimate arising from sampling variability is represented through the use of a margin of error. The value shown here is the 90 percent margin of error. The margin of error can be interpreted roughly as providing a 90 percent probability that the interval defined by the estimate minus the margin of error and the estimate plus the margin of error (the lower and upper confidence bounds) contains the true value. In addition to sampling variability, the ACS estimates are subject to nonsampling error (for a discussion of nonsampling variability, see Accuracy of the Data). The effect of nonsampling error is not represented in these tables.

  11. Health Insurance 2021 (all geographies, statewide)

    • gisdata.fultoncountyga.gov
    • opendata.atlantaregional.com
    • +1more
    Updated Mar 9, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Georgia Association of Regional Commissions (2023). Health Insurance 2021 (all geographies, statewide) [Dataset]. https://gisdata.fultoncountyga.gov/maps/47f55267af1b4e4da60b9433421407cc
    Explore at:
    Dataset updated
    Mar 9, 2023
    Dataset provided by
    The Georgia Association of Regional Commissions
    Authors
    Georgia Association of Regional Commissions
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Description

    This dataset was developed by the Research & Analytics Group at the Atlanta Regional Commission using data from the U.S. Census Bureau across all standard and custom geographies at statewide summary level where applicable. For a deep dive into the data model including every specific metric, see the ACS 2017-2021 Data Manifest. The manifest details ARC-defined naming conventions, field names/descriptions and topics, summary levels; source tables; notes and so forth for all metrics. Find naming convention prefixes/suffixes, geography definitions and user notes below.Prefixes:NoneCountpPercentrRatemMedianaMean (average)tAggregate (total)chChange in absolute terms (value in t2 - value in t1)pchPercent change ((value in t2 - value in t1) / value in t1)chpChange in percent (percent in t2 - percent in t1)sSignificance flag for change: 1 = statistically significant with a 90% CI, 0 = not statistically significant, blank = cannot be computedSuffixes:_e21Estimate from 2017-21 ACS_m21Margin of Error from 2017-21 ACS_e102006-10 ACS, re-estimated to 2020 geography_m10Margin of Error from 2006-10 ACS, re-estimated to 2020 geography_e10_21Change, 2010-21 (holding constant at 2020 geography)GeographiesAAA = Area Agency on Aging (12 geographic units formed from counties providing statewide coverage)ARC21 = Atlanta Regional Commission modeling area (21 counties merged to a single geographic unit)ARWDB7 = Atlanta Regional Workforce Development Board (7 counties merged to a single geographic unit)BeltLine (buffer)BeltLine Study (subareas)Census Tract (statewide)CFGA23 = Community Foundation for Greater Atlanta (23 counties merged to a single geographic unit)City (statewide)City of Atlanta Council Districts (City of Atlanta)City of Atlanta Neighborhood Planning Unit (City of Atlanta)City of Atlanta Neighborhood Planning Unit STV (3 NPUs merged to a single geographic unit within City of Atlanta)City of Atlanta Neighborhood Statistical Areas (City of Atlanta)City of Atlanta Neighborhood Statistical Areas E02E06 (2 NSAs merged to single geographic unit within City of Atlanta)County (statewide)Georgia House (statewide)Georgia Senate (statewide)MetroWater15 = Atlanta Metropolitan Water District (15 counties merged to a single geographic unit)Regional Commissions (statewide)SPARCC = Strong, Prosperous And Resilient Communities ChallengeState of Georgia (single geographic unit)Superdistrict (ARC region)US Congress (statewide)UWGA13 = United Way of Greater Atlanta (13 counties merged to a single geographic unit)WFF = Westside Future Fund (subarea of City of Atlanta)ZIP Code Tabulation Areas (statewide)The user should note that American Community Survey data represent estimates derived from a surveyed sample of the population, which creates some level of uncertainty, as opposed to an exact measure of the entire population (the full census count is only conducted once every 10 years and does not cover as many detailed characteristics of the population). Therefore, any measure reported by ACS should not be taken as an exact number – this is why a corresponding margin of error (MOE) is also given for ACS measures. The size of the MOE relative to its corresponding estimate value provides an indication of confidence in the accuracy of each estimate. Each MOE is expressed in the same units as its corresponding measure; for example, if the estimate value is expressed as a number, then its MOE will also be a number; if the estimate value is expressed as a percent, then its MOE will also be a percent. The user should also note that for relatively small geographic areas, such as census tracts shown here, ACS only releases combined 5-year estimates, meaning these estimates represent rolling averages of survey results that were collected over a 5-year span (in this case 2017-2021). Therefore, these data do not represent any one specific point in time or even one specific year. For geographic areas with larger populations, 3-year and 1-year estimates are also available. For further explanation of ACS estimates and margin of error, visit Census ACS website.Source: U.S. Census Bureau, Atlanta Regional CommissionDate: 2017-2021Data License: Creative Commons Attribution 4.0 International (CC by 4.0)Link to the data manifest: https://garc.maps.arcgis.com/sharing/rest/content/items/34b9adfdcc294788ba9c70bf433bd4c1/data

  12. PFAS and multimorbidity among a random sample of patients from the...

    • catalog.data.gov
    • s.cnmilf.com
    Updated Oct 28, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. EPA Office of Research and Development (ORD) (2022). PFAS and multimorbidity among a random sample of patients from the University of North Carolina Healthcare System [Dataset]. https://catalog.data.gov/dataset/pfas-and-multimorbidity-among-a-random-sample-of-patients-from-the-university-of-north-car
    Explore at:
    Dataset updated
    Oct 28, 2022
    Dataset provided by
    United States Environmental Protection Agencyhttp://www.epa.gov/
    Description

    This dataset contains electronic health records used to study associations between PFAS occurrence and multimorbidity in a random sample of UNC Healthcare system patients. The dataset contains the medical record number to uniquely identify each individual as well as information on PFAS occurrence at the zip code level, the zip code of residence for each individual, chronic disease diagnoses, patient demographics, and neighborhood socioeconomic information from the 2010 US Census. This dataset is not publicly accessible because: EPA cannot release personally identifiable information regarding living individuals, according to the Privacy Act and the Freedom of Information Act (FOIA). This dataset contains information about human research subjects. Because there is potential to identify individual participants and disclose personal information, either alone or in combination with other datasets, individual level data are not appropriate to post for public access. Restricted access may be granted to authorized persons by contacting the party listed. It can be accessed through the following means: Because this data has PII from electronic health records the data can only be accessed with an approved IRB application. Project analytic code is available at L:/PRIV/EPHD_CRB/Cavin/CARES/Project Analytic Code/Cavin Ward/PFAS Chronic Disease and Multimorbidity. Format: This data is formatted as a R dataframe and associated comma-delimited flat text file. The data has the medical record number to uniquely identify each individual (which also serves as the primary key for the dataset), as well as information on the occurrence of PFAS contamination at the zip code level, socioeconomic data at the census tract level from the 2010 US Census, demographics, and the presence of chronic disease as well as multimorbidity (the presence of two or more chronic diseases). This dataset is associated with the following publication: Ward-Caviness, C., J. Moyer, A. Weaver, R. Devlin, and D. Diazsanchez. Associations between PFAS occurrence and multimorbidity as observed in an electronic health record cohort. Environmental Epidemiology. Wolters Kluwer, Alphen aan den Rijn, NETHERLANDS, 6(4): p e217, (2022).

  13. ACS Health Insurance Coverage Variables - Centroids

    • coronavirus-resources.esri.com
    • covid-hub.gio.georgia.gov
    • +5more
    Updated Dec 7, 2018
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Esri (2018). ACS Health Insurance Coverage Variables - Centroids [Dataset]. https://coronavirus-resources.esri.com/maps/7c69956008bb4019bbbe67ed9fb05dbb
    Explore at:
    Dataset updated
    Dec 7, 2018
    Dataset authored and provided by
    Esrihttp://esri.com/
    Area covered
    Description

    This layer shows health insurance coverage by type and by age group. This is shown by tract, county, and state centroids. This service is updated annually to contain the most currently released American Community Survey (ACS) 5-year data, and contains estimates and margins of error. There are also additional calculated attributes related to this topic, which can be mapped or used within analysis. This layer is symbolized to show the count and percent uninsured. To see the full list of attributes available in this service, go to the "Data" tab, and choose "Fields" at the top right. Current Vintage: 2019-2023ACS Table(s): B27010 (Not all lines of this ACS table are available in this feature layer.)Data downloaded from: Census Bureau's API for American Community Survey Date of API call: December 12, 2024National Figures: data.census.govThe United States Census Bureau's American Community Survey (ACS):About the SurveyGeography & ACSTechnical DocumentationNews & UpdatesThis ready-to-use layer can be used within ArcGIS Pro, ArcGIS Online, its configurable apps, dashboards, Story Maps, custom apps, and mobile apps. Data can also be exported for offline workflows. For more information about ACS layers, visit the FAQ. Please cite the Census and ACS when using this data.Data Note from the Census:Data are based on a sample and are subject to sampling variability. The degree of uncertainty for an estimate arising from sampling variability is represented through the use of a margin of error. The value shown here is the 90 percent margin of error. The margin of error can be interpreted as providing a 90 percent probability that the interval defined by the estimate minus the margin of error and the estimate plus the margin of error (the lower and upper confidence bounds) contains the true value. In addition to sampling variability, the ACS estimates are subject to nonsampling error (for a discussion of nonsampling variability, see Accuracy of the Data). The effect of nonsampling error is not represented in these tables.Data Processing Notes:This layer is updated automatically when the most current vintage of ACS data is released each year, usually in December. The layer always contains the latest available ACS 5-year estimates. It is updated annually within days of the Census Bureau's release schedule. Click here to learn more about ACS data releases.Boundaries come from the US Census TIGER geodatabases, specifically, the National Sub-State Geography Database (named tlgdb_(year)_a_us_substategeo.gdb). Boundaries are updated at the same time as the data updates (annually), and the boundary vintage appropriately matches the data vintage as specified by the Census. These are Census boundaries with water and/or coastlines erased for cartographic and mapping purposes. For census tracts, the water cutouts are derived from a subset of the 2020 Areal Hydrography boundaries offered by TIGER. Water bodies and rivers which are 50 million square meters or larger (mid to large sized water bodies) are erased from the tract level boundaries, as well as additional important features. For state and county boundaries, the water and coastlines are derived from the coastlines of the 2023 500k TIGER Cartographic Boundary Shapefiles. These are erased to more accurately portray the coastlines and Great Lakes. The original AWATER and ALAND fields are still available as attributes within the data table (units are square meters).The States layer contains 52 records - all US states, Washington D.C., and Puerto RicoCensus tracts with no population that occur in areas of water, such as oceans, are removed from this data service (Census Tracts beginning with 99).Percentages and derived counts, and associated margins of error, are calculated values (that can be identified by the "_calc_" stub in the field name), and abide by the specifications defined by the American Community Survey.Field alias names were created based on the Table Shells file available from the American Community Survey Summary File Documentation page.Negative values (e.g., -4444...) have been set to null, with the exception of -5555... which has been set to zero. These negative values exist in the raw API data to indicate the following situations:The margin of error column indicates that either no sample observations or too few sample observations were available to compute a standard error and thus the margin of error. A statistical test is not appropriate.Either no sample observations or too few sample observations were available to compute an estimate, or a ratio of medians cannot be calculated because one or both of the median estimates falls in the lowest interval or upper interval of an open-ended distribution.The median falls in the lowest interval of an open-ended distribution, or in the upper interval of an open-ended distribution. A statistical test is not appropriate.The estimate is controlled. A statistical test for sampling variability is not appropriate.The data for this geographic area cannot be displayed because the number of sample cases is too small.

  14. d

    Dataplex: United Healthcare Transparency in Coverage | 76,000+ US Employers...

    • datarade.ai
    .json
    Updated Jan 1, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Dataplex (2025). Dataplex: United Healthcare Transparency in Coverage | 76,000+ US Employers | Insurance Data | Ideal for Healthcare Cost Analysis [Dataset]. https://datarade.ai/data-products/dataplex-united-healthcare-transparency-in-coverage-76-000-dataplex
    Explore at:
    .jsonAvailable download formats
    Dataset updated
    Jan 1, 2025
    Dataset authored and provided by
    Dataplex
    Area covered
    United States of America
    Description

    United Healthcare Transparency in Coverage Dataset

    Unlock the power of healthcare pricing transparency with our comprehensive United Healthcare Transparency in Coverage dataset. This invaluable resource provides unparalleled insights into healthcare costs, enabling data-driven decision-making for insurers, employers, researchers, and policymakers.

    Key Features:

    • Extensive Coverage: Access detailed pricing information for a wide range of medical procedures and services across the United States, covering approximately 76,000 employers.
    • Granular Data: Analyze costs at the provider, plan, and employer levels, allowing for in-depth comparisons and trend analysis.
    • Massive Scale: Over 400TB of data generated monthly, providing a wealth of information for comprehensive analysis.
    • Historical Perspective: Track pricing changes over time to identify patterns and forecast future trends.
    • Regular Updates: Stay current with the latest pricing information, ensuring your analyses are always based on the most recent data.

    Detailed Data Points:

    For each of the 76,000 employers, the dataset includes: 1. In-network negotiated rates for covered items and services 2. Historical out-of-network allowed amounts and billed charges 3. Cost-sharing information for specific items and services 4. Pricing data for medical procedures and services across providers, plans, and employers

    Use Cases

    For Insurers: - Benchmark your rates against competitors - Optimize network design and provider contracting - Develop more competitive and cost-effective insurance products

    For Employers: - Make informed decisions about health plan offerings - Negotiate better rates with insurers and providers - Implement cost-saving strategies for employee healthcare

    For Researchers: - Conduct in-depth studies on healthcare pricing variations - Analyze the impact of policy changes on healthcare costs - Investigate regional differences in healthcare pricing

    For Policymakers: - Develop evidence-based healthcare policies - Monitor the effectiveness of price transparency initiatives - Identify areas for potential cost-saving interventions

    Data Delivery

    Our flexible data delivery options ensure you receive the information you need in the most convenient format:

    • Custom Extracts: We can provide targeted datasets focusing on specific regions, procedures, or time periods.
    • Regular Reports: Receive scheduled updates tailored to your specific requirements.

    Why Choose Our Dataset?

    1. Expertise: Our team has extensive experience in healthcare data retrieval and analysis, ensuring high-quality, reliable data.
    2. Customization: We can tailor the dataset to meet your specific needs, whether you're interested in particular companies, regions, or procedures.
    3. Scalability: Our infrastructure is designed to handle the massive scale of this dataset (400TB+ monthly), allowing us to provide comprehensive coverage without compromise.
    4. Support: Our dedicated team is available to assist with data interpretation and technical support.

    Harness the power of healthcare pricing transparency to drive your business forward. Contact us today to discuss how our United Healthcare Transparency in Coverage dataset can meet your specific needs and unlock valuable insights for your organization.

  15. a

    Do Non-citizens Have Insurance? - NMCDC

    • chi-phi-nmcdc.opendata.arcgis.com
    Updated Jun 26, 2019
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    New Mexico Community Data Collaborative (2019). Do Non-citizens Have Insurance? - NMCDC [Dataset]. https://chi-phi-nmcdc.opendata.arcgis.com/maps/d5226b8ce12640f3a603ae55ca1b92df
    Explore at:
    Dataset updated
    Jun 26, 2019
    Dataset authored and provided by
    New Mexico Community Data Collaborative
    Area covered
    Description

    This web map shows the likelihood of non-citizens to have insurance within the United States. This is shown by highlighting if it is more common for non-citizens to have insurance or not have insurance. The data values are from the 2012-2016 American Community Survey 5-year estimate in the B27020 Table for health insurance coverage status and type by citizenship status. The pattern in the map is shown by county and census tract centroid points. This map helps to answer a few questions:Do non-citizens have health insurance?Where are the non-citizens in the US?The color of the symbols represent if an area is more likely to have non-citizens who have insurance, or not have insurance. The color is related to which value is largest. This mapping technique is known as predominance because the color is based on which value is predominant:Non-citizens who have insuranceNon-citizens who do not have insuranceThe size of the symbol shows how many non-citizens live within each area. The strength of the symbol represents HOW predominant the population's insurance type is. The tract pattern shows how distinct neighborhoods are clustered by the likelihood to have insurance or not. The county pattern shows an rural/urban difference in insurance holdings. This pattern is shown by census tracts at large scales, and counties at smaller scales.This map is designed for a dark basemap such as the Human Geography Basemap or the Dark Gray Canvas Basemap. It helps show a local pattern about the uninsured and insured non-citizen population. The layers used in this map are included in the Living Atlas of the World. They can also be found here:2016 ACS Health Insurance by Citizenship - County2016 ACS Health Insurance by Citizenship - TractThis data was downloaded from the United States Census Bureau American Fact Finder on March 1, 2018. It was then joined with 2016 vintage centroid points and hosted to ArcGIS Online and into the Living Atlas. The data contains additional attributes that can be used for mapping and analysis. Nationally, the breakdown of insurance for the civilian noninstitutionalized population in the US is:Total:313,576,137+/-10,365Native Born:271,739,505+/-102,340With health insurance coverage246,142,724+/-281,131With private health insurance186,765,058+/-576,448With public coverage92,452,853+/-209,370No health insurance coverage25,596,781+/-190,502Foreign Born:41,836,632+/-109,590Naturalized:19,819,629+/-35,976With health insurance coverage17,489,342+/-42,261With private health insurance12,927,060+/-50,505With public coverage6,687,375+/-16,733No health insurance coverage2,330,287+/-20,148Noncitizen:22,017,003+/-118,842With health insurance coverage13,243,825+/-44,108With private health insurance9,320,483+/-26,031With public coverage4,459,972+/-34,270No health insurance coverage8,773,178+/-86,951Data note from the US Census Bureau:[ACS] data are based on a sample and are subject to sampling variability. The degree of uncertainty for an estimate arising from sampling variability is represented through the use of a margin of error. The value shown here is the 90 percent margin of error. The margin of error can be interpreted roughly as providing a 90 percent probability that the interval defined by the estimate minus the margin of error and the estimate plus the margin of error (the lower and upper confidence bounds) contains the true value. In addition to sampling variability, the ACS estimates are subject to nonsampling error (for a discussion of nonsampling variability, see Accuracy of the Data). The effect of nonsampling error is not represented in these tables.

  16. d

    COVID-19 - Vaccinations by Region, Age, and Race-Ethnicity - Historical

    • catalog.data.gov
    • healthdata.gov
    • +2more
    Updated Dec 16, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    data.cityofchicago.org (2023). COVID-19 - Vaccinations by Region, Age, and Race-Ethnicity - Historical [Dataset]. https://catalog.data.gov/dataset/covid-19-vaccinations-by-region-age-and-race-ethnicity
    Explore at:
    Dataset updated
    Dec 16, 2023
    Dataset provided by
    data.cityofchicago.org
    Description

    NOTE: This dataset has been retired and marked as historical-only. The recommended dataset to use in its place is https://data.cityofchicago.org/Health-Human-Services/COVID-19-Vaccination-Coverage-Region-HCEZ-/5sc6-ey97. COVID-19 vaccinations administered to Chicago residents by Healthy Chicago Equity Zones (HCEZ) based on the reported address, race-ethnicity, and age group of the person vaccinated, as provided by the medical provider in the Illinois Comprehensive Automated Immunization Registry Exchange (I-CARE). Healthy Chicago Equity Zones is an initiative of the Chicago Department of Public Health to organize and support hyperlocal, community-led efforts that promote health and racial equity. Chicago is divided into six HCEZs. Combinations of Chicago’s 77 community areas make up each HCEZ, based on geography. For more information about HCEZs including which community areas are in each zone see: https://data.cityofchicago.org/Health-Human-Services/Healthy-Chicago-Equity-Zones/nk2j-663f Vaccination Status Definitions: ·People with at least one vaccine dose: Number of people who have received at least one dose of any COVID-19 vaccine, including the single-dose Johnson & Johnson COVID-19 vaccine. ·People with a completed vaccine series: Number of people who have completed a primary COVID-19 vaccine series. Requirements vary depending on age and type of primary vaccine series received. ·People with a bivalent dose: Number of people who received a bivalent (updated) dose of vaccine. Updated, bivalent doses became available in Fall 2022 and were created with the original strain of COVID-19 and newer Omicron variant strains. Weekly cumulative totals by vaccination status are shown for each combination of race-ethnicity and age group within an HCEZ. Note that each HCEZ has a row where HCEZ is “Citywide” and each HCEZ has a row where age is "All" so care should be taken when summing rows. Vaccinations are counted based on the date on which they were administered. Weekly cumulative totals are reported from the week ending Saturday, December 19, 2020 onward (after December 15, when vaccines were first administered in Chicago) through the Saturday prior to the dataset being updated. Population counts are from the U.S. Census Bureau American Community Survey (ACS) 2017-2021 5-year estimates. Coverage percentages are calculated based on the cumulative number of people in each population subgroup (age group by race-ethnicity within an HCEZ) who have each vaccination status as of the date, divided by the estimated number of people in that subgroup. Actual counts may exceed population estimates and lead to >100% coverage, especially in small race-ethnicity subgroups of each age group within an HCEZ. All coverage percentages are capped at 99%. All data are provisional and subject to change. Information is updated as additional details are received and it is, in fact, very common for recent dates to be incomplete and to be updated as time goes on. At any given time, this dataset reflects data currently known to CDPH. Numbers in this dataset may differ from other public sources due to when data are reported and how City of Chicago boundaries are defined. CDPH uses the most complete data available to estimate COVID-19 vaccination coverage among Chicagoans, but there are several limitations that impact its estimates. Data reported in I-CARE only includes doses administered in Illinois and some doses administered outside of Illinois reported historically by Illinois providers. Doses administered by the federal Bureau of Prisons and Department of Defense are also not currently reported in I-CARE. The Veterans Health Administration began reporting doses in I-CARE beginning September 2022. Due to people receiving vaccinations that are not recorded in I-CARE that can be linked to their record, such as someone receiving a vaccine dose in another state, the number of people with a completed series or a booster dose is underesti

  17. d

    COVID-19 Reported Patient Impact and Hospital Capacity by Facility

    • catalog.data.gov
    Updated Aug 2, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    data.ct.gov (2025). COVID-19 Reported Patient Impact and Hospital Capacity by Facility [Dataset]. https://catalog.data.gov/dataset/covid-19-reported-patient-impact-and-hospital-capacity-by-facility-cd5bb
    Explore at:
    Dataset updated
    Aug 2, 2025
    Dataset provided by
    data.ct.gov
    Description

    The "COVID-19 Reported Patient Impact and Hospital Capacity by Facility" dataset from the U.S. Department of Health & Human Services, filtered for Connecticut. View the full dataset and detailed metadata here: https://healthdata.gov/Hospital/COVID-19-Reported-Patient-Impact-and-Hospital-Capa/anag-cw7u The following dataset provides facility-level data for hospital utilization aggregated on a weekly basis (Friday to Thursday). These are derived from reports with facility-level granularity across two main sources: (1) HHS TeleTracking, and (2) reporting provided directly to HHS Protect by state/territorial health departments on behalf of their healthcare facilities. The hospital population includes all hospitals registered with Centers for Medicare & Medicaid Services (CMS) as of June 1, 2020. It includes non-CMS hospitals that have reported since July 15, 2020. It does not include psychiatric, rehabilitation, Indian Health Service (IHS) facilities, U.S. Department of Veterans Affairs (VA) facilities, Defense Health Agency (DHA) facilities, and religious non-medical facilities. For a given entry, the term “collection_week” signifies the start of the period that is aggregated. For example, a “collection_week” of 2020-11-20 means the average/sum/coverage of the elements captured from that given facility starting and including Friday, November 20, 2020, and ending and including reports for Thursday, November 26, 2020. Reported elements include an append of either “_coverage”, “_sum”, or “_avg”. A “_coverage” append denotes how many times the facility reported that element during that collection week. A “_sum” append denotes the sum of the reports provided for that facility for that element during that collection week. A “_avg” append is the average of the reports provided for that facility for that element during that collection week. The file will be updated weekly. No statistical analysis is applied to impute non-response. For averages, calculations are based on the number of values collected for a given hospital in that collection week. Suppression is applied to the file for sums and averages less than four (4). In these cases, the field will be replaced with “-999,999”. This data is preliminary and subject to change as more data become available. Data is available starting on July 31, 2020. Sometimes, reports for a given facility will be provided to both HHS TeleTracking and HHS Protect. When this occurs, to ensure that there are not duplicate reports, deduplication is applied according to prioritization rules within HHS Protect. For influenza fields listed in the file, the current HHS guidance marks these fields as optional. As a result, coverage of these elements are varied. On May 3, 2021, the following fields have been added to this data set. hhs_ids previous_day_admission_adult_covid_confirmed_7_day_coverage previous_day_admission_pediatric_covid_confirmed_7_day_coverage previous_day_admission_adult_covid_suspected_7_day_coverage previous_day_admission_pediatric_covid_suspected_7_day_coverage previous_week_personnel_covid_vaccinated_doses_administered_7_day_sum total_personnel_covid_vaccinated_doses_none_7_day_sum total_personnel_covid_vaccinated_doses_one_7_day_sum total_personnel_covid_vaccinated_doses_all_7_day_sum previous_week_patients_covid_vaccinated_doses_one_7_day_sum previous_week_patients_covid_vaccinated_doses_all_7_day_sum On May 8, 2021, this data set has been converted to a corrected data set. The corrections applied to this data set are to smooth out data anomalies caused by keyed in data errors. To help determine which records have had corrections made to it. An additional Boolean field called is_corrected has been added. To see the numbers as reported by the facilities, go to: https://healthdata.gov/Hospital/COVID-19-Reported-Patient-Impact-and-Hospital-Capa/uqq2-txqb On May 13, 2021 Changed vaccination fields from sum to max or min fields. This reflects the maximum or minimum number report

  18. #DDOD Use Case: Accuracy of healthcare.gov Plan Finder

    • healthdata.gov
    application/rdfxml +5
    Updated Feb 13, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2021). #DDOD Use Case: Accuracy of healthcare.gov Plan Finder [Dataset]. https://healthdata.gov/w/iqmt-wqwe/default?cur=mY5e67xSJ-q&from=heDJO-vdS0D
    Explore at:
    csv, xml, application/rdfxml, application/rssxml, tsv, jsonAvailable download formats
    Dataset updated
    Feb 13, 2021
    Description

    SUMMARY

    DDOD use case to verify the accuracy of data obtained from the HealthCare Finder API after a user identified potential data quality issues.

    WHAT IS A USE CASE?

    A “Use Case” is a request that was made by the user community because there were no available datasets that met their particular needs. If this use case is similar to your needs, we ask that you add your own requirements to the specifications section.

    The concept of a use case falls within the Demand-Driven Open Data (DDOD) program and gives you a formalized way to identify what data you need. It’s for anyone in industry, research, media, nonprofits or other government agencies. Each request becomes a DDOD use case, so that it can be prioritized and worked on.

    Use Cases also provide a wealth of insights about existing alternative datasets and tips for interpreting and manipulating data for specific purposes.

    PURPOSE

    Clarity is needed around how completeness of the data via the HealthFinder API.

    • Is it intended to be a complete data set? e.g., does it have every on- and off-exchange plan available in the country?
    • If it is not intended to be a complete data set, what fields (eg, plans, issuers, scenarios) are systematically missing in the data?
    • Why are there specific cases of known plans that are missing in the data (eg, no Carefirst/BCBS plans in Virgina)?

    VALUE

    In order for the HealthCare Finder API to be useful, it must be a trusted source and accurate; if there are data gaps, those must be clearly documented. The API is critical in assisting the users to find the best healthcare plans.

    USE CASE SPECIFICATIONS & SOLUTION

    Information about this use cases is maintained in a wiki: http://hhs.ddod.us/wiki/Use_Case_28:_Verify_accuracy_of_healthcare.gov_P...

    It serves as a knowledge base.

    USE CASE DISCUSSION FORUM

    All communications between Data Users, DDOD Administrators and Data Owners are logged as discussions within GitHub issues: https://github.com/demand-driven-open-data/ddod-intake/issues/28

    It aims to provide complete transparency into the process and ensure the same message gets to all participants.

    CASE STATUS

    Closed. PlanFinder is intended for off-exchange (off FFM) plans only. PlanFinder is not meant to be a comprehensive list of every plan available; it is only intended to display the potential options for consumers looking to purchase insurance off the exchange. While there is some overlap where many on-exchange plans appear in the dataset, this does not guarantee a comprehensive list of every plan.

    The PlanFinder API and website return the same data.

    On-exchange plans are also available on data.healthcare.gov under the term "QHP" (Qualified Health Plan).

  19. 2017 American Community Survey: S2702 | SELECTED CHARACTERISTICS OF THE...

    • data.census.gov
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    ACS, 2017 American Community Survey: S2702 | SELECTED CHARACTERISTICS OF THE UNINSURED IN THE UNITED STATES (ACS 1-Year Estimates Subject Tables) [Dataset]. https://data.census.gov/table/ACSST1Y2017.S2702?tid=ACSST1Y2017.S2702
    Explore at:
    Dataset provided by
    United States Census Bureauhttp://census.gov/
    Authors
    ACS
    License

    CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
    License information was derived automatically

    Time period covered
    2017
    Area covered
    United States
    Description

    Supporting documentation on code lists, subject definitions, data accuracy, and statistical testing can be found on the American Community Survey website in the Technical Documentation section...Sample size and data quality measures (including coverage rates, allocation rates, and response rates) can be found on the American Community Survey website in the Methodology section..Although the American Community Survey (ACS) produces population, demographic and housing unit estimates, it is the Census Bureau''s Population Estimates Program that produces and disseminates the official estimates of the population for the nation, states, counties, cities, and towns and estimates of housing units for states and counties..Explanation of Symbols:An ''**'' entry in the margin of error column indicates that either no sample observations or too few sample observations were available to compute a standard error and thus the margin of error. A statistical test is not appropriate..An ''-'' entry in the estimate column indicates that either no sample observations or too few sample observations were available to compute an estimate, or a ratio of medians cannot be calculated because one or both of the median estimates falls in the lowest interval or upper interval of an open-ended distribution..An ''-'' following a median estimate means the median falls in the lowest interval of an open-ended distribution..An ''+'' following a median estimate means the median falls in the upper interval of an open-ended distribution..An ''***'' entry in the margin of error column indicates that the median falls in the lowest interval or upper interval of an open-ended distribution. A statistical test is not appropriate..An ''*****'' entry in the margin of error column indicates that the estimate is controlled. A statistical test for sampling variability is not appropriate. .An ''N'' entry in the estimate and margin of error columns indicates that data for this geographic area cannot be displayed because the number of sample cases is too small..An ''(X)'' means that the estimate is not applicable or not available..Estimates of urban and rural populations, housing units, and characteristics reflect boundaries of urban areas defined based on Census 2010 data. As a result, data for urban and rural areas from the ACS do not necessarily reflect the results of ongoing urbanization..While the 2017 American Community Survey (ACS) data generally reflect the July 2015 Office of Management and Budget (OMB) delineations of metropolitan and micropolitan statistical areas, in certain instances the names, codes, and boundaries of the principal cities shown in ACS tables may differ from the OMB delineations due to differences in the effective dates of the geographic entities..Beginning in 2017, selected variable categories were updated, including age-categories, income-to-poverty ratio (IPR) categories, and the age universe for certain employment and education variables. See user note entitled "Health Insurance Table Updates" for further details..Logical coverage edits applying a rules-based assignment of Medicaid, Medicare and military health coverage were added as of 2009 -- please see https://www.census.gov/library/working-papers/2010/demo/coverage_edits_final.html for more details. The 2008 data table in American FactFinder does not incorporate these edits. Therefore, the estimates that appear in these tables are not comparable to the estimates in the 2009 and later tables. Select geographies of 2008 data comparable to the 2009 and later tables are available at https://www.census.gov/data/tables/time-series/acs/1-year-re-run-health-insurance.html. The health insurance coverage category names were modified in 2010. See https://www.census.gov/topics/health/health-insurance/about/glossary.html#par_textimage_18 for a list of the insurance type definitions..Occupation codes are 4-digit codes and are based on Standard Occupational Classification 2010..Data are based on a sample and are subject to sampling variability. The degree of uncertainty for an estimate arising from sampling variability is represented through the use of a margin of error. The value shown here is the 90 percent margin of error. The margin of error can be interpreted roughly as providing a 90 percent probability that the interval defined by the estimate minus the margin of error and the estimate plus the margin of error (the lower and upper confidence bounds) contains the true value. In addition to sampling variability, the ACS estimates are subject to nonsampling error (for a discussion of nonsampling variability, see Accuracy of the Data). The effect of nonsampling error is not represented in these tables..Source: U.S. Census Bureau, 2017 American Community Survey 1-Year Estimates

  20. d

    DOHMH COVID-19 Antibody-by-Neighborhood Poverty

    • catalog.data.gov
    • data.cityofnewyork.us
    • +1more
    Updated Jul 7, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    data.cityofnewyork.us (2024). DOHMH COVID-19 Antibody-by-Neighborhood Poverty [Dataset]. https://catalog.data.gov/dataset/dohmh-covid-19-antibody-by-neighborhood-poverty
    Explore at:
    Dataset updated
    Jul 7, 2024
    Dataset provided by
    data.cityofnewyork.us
    Description

    This dataset contains information on antibody testing for COVID-19: the number of people who received a test, the number of people with positive results, the percentage of people tested who tested positive, and the rate of testing per 100,000 people, stratified by ZIP Code Tabulation Area (ZCTA) neighborhood poverty group. These data can also be accessed here: https://github.com/nychealth/coronavirus-data/blob/master/totals/antibody-by-poverty.csv Exposure to COVID-19 can be detected by measuring antibodies to the disease in a person’s blood, which can indicate that a person may have had an immune response to the virus. Antibodies are proteins produced by the body’s immune system that can be found in the blood. People can test positive for antibodies after they have been exposed, sometimes when they no longer test positive for the virus itself. It is important to note that the science around COVID-19 antibody tests is evolving rapidly and there is still much uncertainty about what individual antibody test results mean for a single person and what population-level antibody test results mean for understanding the epidemiology of COVID-19 at a population level. These data only provide information on people tested. People receiving an antibody test do not reflect all people in New York City; therefore, these data may not reflect antibody prevalence among all New Yorkers. Increasing instances of screening programs further impact the generalizability of these data, as screening programs influence who and how many people are tested over time. Examples of screening programs in NYC include: employers screening their workers (e.g., hospitals), and long-term care facilities screening their residents. In addition, there may be potential biases toward people receiving an antibody test who have a positive result because people who were previously ill are preferentially seeking testing, in addition to the testing of persons with higher exposure (e.g., health care workers, first responders.) Neighborhood-level poverty groups were classified in a manner consistent with Health Department practices to describe and monitor disparities in health in NYC. Neighborhood poverty measures are defined as the percentage of people earning below the Federal Poverty Threshold (FPT) within a ZCTA. The standard cut-points for defining categories of neighborhood-level poverty in NYC are: • Low: <10% of residents in ZCTA living below the FPT • Medium: 10% to <20% • High: 20% to <30% • Very high: ≥30% residents living below the FPT The ZCTAs used for classification reflect the first non-missing address within NYC for each person reported with an antibody test result. Rates were calculated using interpolated intercensal population estimates updated in 2019. These rates differ from previously reported rates based on the 2000 Census or previous versions of population estimates. The Health Department produced these population estimates based on estimates from the U.S. Census Bureau and NYC Department of City Planning. Rates for poverty were calculated using direct standardization for age at diagnosis and weighting by the US 2000 standard population. Antibody tests are categorized based on the date of specimen collection and are aggregated by full weeks starting each Sunday and ending on Saturday. For example, a person whose blood was collected for antibody testing on Wednesday, May 6 would be categorized as tested during the week ending May 9. A person tested twice in one week would only be counted once in that week. This dataset includes testing data beginning April 5, 2020. Data are updated daily, and the dataset preserves historical records and source data changes, so each extract date reflects the current copy of the data as of that date. For example, an extract date of 11/04/2020 and extract date of 11/03/2020 will both contain all records as they were as of that extract date. Without filtering or grouping by extract date, an analysis will almost certain

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Statista (2025). Share of people in the U.S. without health insurance by age 1997-2023 [Dataset]. https://www.statista.com/statistics/200971/percentage-of-americans-without-health-insurance-by-age/
Organization logo

Share of people in the U.S. without health insurance by age 1997-2023

Explore at:
Dataset updated
Jul 9, 2025
Dataset authored and provided by
Statistahttp://statista.com/
Area covered
United States
Description

In 2023, **** percent of people aged 18 to 64 in the United States didn't have health insurance, the lowest in the provided time interval. This statistic contains data on the percentage of U.S. Americans without health insurance coverage from 1997 to 2023, by age.

Search
Clear search
Close search
Google apps
Main menu