This dataset contains current and historical demographic data on Google's workforce since the company began publishing diversity data in 2014. It includes data collected for government reporting and voluntary employee self-identification globally relating to hiring, retention, and representation categorized by race, gender, sexual orientation, gender identity, disability status, and military status. In some instances, the data is limited due to various government policies around the world and the desire to protect Googler confidentiality. All data in this dataset will be updated yearly upon publication of Google’s Diversity Annual Report . Google uses this data to inform its diversity, equity, and inclusion work. More information on our methodology can be found in the Diversity Annual Report. This public dataset is hosted in Google BigQuery and is included in BigQuery's 1TB/mo of free tier processing. This means that each user receives 1TB of free BigQuery processing every month, which can be used to run queries on this public dataset. Watch this short video to learn how to get started quickly using BigQuery to access public datasets. What is BigQuery .
https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
NYC Open Data is an opportunity to engage New Yorkers in the information that is produced and used by City government. We believe that every New Yorker can benefit from Open Data, and Open Data can benefit from every New Yorker. Source: https://opendata.cityofnewyork.us/overview/
Thanks to NYC Open Data, which makes public data generated by city agencies available for public use, and Citi Bike, we've incorporated over 150 GB of data in 5 open datasets into Google BigQuery Public Datasets, including:
Over 8 million 311 service requests from 2012-2016
More than 1 million motor vehicle collisions 2012-present
Citi Bike stations and 30 million Citi Bike trips 2013-present
Over 1 billion Yellow and Green Taxi rides from 2009-present
Over 500,000 sidewalk trees surveyed decennially in 1995, 2005, and 2015
This dataset is deprecated and not being updated.
Fork this kernel to get started with this dataset.
https://opendata.cityofnewyork.us/
This dataset is publicly available for anyone to use under the following terms provided by the Dataset Source - https://data.cityofnewyork.us/ - and is provided "AS IS" without any warranty, express or implied, from Google. Google disclaims all liability for any damages, direct or indirect, resulting from the use of the dataset.
By accessing datasets and feeds available through NYC Open Data, the user agrees to all of the Terms of Use of NYC.gov as well as the Privacy Policy for NYC.gov. The user also agrees to any additional terms of use defined by the agencies, bureaus, and offices providing data. Public data sets made available on NYC Open Data are provided for informational purposes. The City does not warranty the completeness, accuracy, content, or fitness for any particular purpose or use of any public data set made available on NYC Open Data, nor are any such warranties to be implied or inferred with respect to the public data sets furnished therein.
The City is not liable for any deficiencies in the completeness, accuracy, content, or fitness for any particular purpose or use of any public data set, or application utilizing such data set, provided by any third party.
Banner Photo by @bicadmedia from Unplash.
On which New York City streets are you most likely to find a loud party?
Can you find the Virginia Pines in New York City?
Where was the only collision caused by an animal that injured a cyclist?
What’s the Citi Bike record for the Longest Distance in the Shortest Time (on a route with at least 100 rides)?
https://cloud.google.com/blog/big-data/2017/01/images/148467900588042/nyc-dataset-6.png" alt="enter image description here">
https://cloud.google.com/blog/big-data/2017/01/images/148467900588042/nyc-dataset-6.png
The Quarterly Census of Employment and Wages (QCEW) program publishes a quarterly count of employment and wages reported by employers covering more than 95 percent of U.S. jobs, available at the county, MSA, state and national levels by industry. The dataset, hosted as part of the Cloud Public Datasets Program , gives county-level information on jobs and wages each quarter starting in 1990. The counties are identified by geoid which can easily be joined with both all FIPS codes or US county boundaries to unlock new insights within the data. Both of these datasets are available in BigQuery through the Cloud Public Datasets Cleaning and onboarding support for this dataset is provided by CARTO . This public dataset is hosted in Google BigQuery and is included in BigQuery's 1TB/mo of free tier processing. This means that each user receives 1TB of free BigQuery processing every month, which can be used to run queries on this public dataset. Watch this short video to learn how to get started quickly using BigQuery to access public datasets. What is BigQuery .
https://brightdata.com/licensehttps://brightdata.com/license
The Google Maps dataset is ideal for getting extensive information on businesses anywhere in the world. Easily filter by location, business type, and other factors to get the exact data you need. The Google Maps dataset includes all major data points: timestamp, name, category, address, description, open website, phone number, open_hours, open_hours_updated, reviews_count, rating, main_image, reviews, url, lat, lon, place_id, country, and more.
In the U.S. public companies, certain insiders and broker-dealers are required to regularly file with the SEC. The SEC makes this data available online for anybody to view and use via their Electronic Data Gathering, Analysis, and Retrieval (EDGAR) database. The SEC updates this data every quarter going back to January, 2009. To aid analysis a quick summary view of the data has been created that is not available in the original dataset. The quick summary view pulls together signals into a single table that otherwise would have to be joined from multiple tables and enables a more streamlined user experience. This public dataset is hosted in Google BigQuery and is included in BigQuery's 1TB/mo of free tier processing. This means that each user receives 1TB of free BigQuery processing every month, which can be used to run queries on this public dataset. Watch this short video to learn how to get started quickly using BigQuery to access public datasets.Weitere Informationen
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This is the second version of the Google Landmarks dataset (GLDv2), which contains images annotated with labels representing human-made and natural landmarks. The dataset can be used for landmark recognition and retrieval experiments. This version of the dataset contains approximately 5 million images, split into 3 sets of images: train, index and test. The dataset was presented in our CVPR'20 paper. In this repository, we present download links for all dataset files and relevant code for metric computation. This dataset was associated to two Kaggle challenges, on landmark recognition and landmark retrieval. Results were discussed as part of a CVPR'19 workshop. In this repository, we also provide scores for the top 10 teams in the challenges, based on the latest ground-truth version. Please visit the challenge and workshop webpages for more details on the data, tasks and technical solutions from top teams.
Apache License, v2.0https://www.apache.org/licenses/LICENSE-2.0
License information was derived automatically
🧠 data_jobs Dataset
A dataset of real-world data analytics job postings from 2023, collected and processed by Luke Barousse.
Background
I've been collecting data on data job postings since 2022. I've been using a bot to scrape the data from Google, which come from a variety of sources. You can find the full dataset at my app datanerd.tech.
Serpapi has kindly supported my work by providing me access to their API. Tell them I sent you and get 20% off paid plans.… See the full description on the dataset page: https://huggingface.co/datasets/lukebarousse/data_jobs.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
so if you have to have a G+ account (for YouTube, location services, or other reasons) - here's how you can make it totally private! No one will be able to add you, send you spammy links, or otherwise annoy you. You need to visit the "Audience Settings" page - https://plus.google.com/u/0/settings/audience You can then set a "custom audience" - usually you would use this to restrict your account to people from a specific geographic location, or within a specific age range. In this case, we're going to choose a custom audience of "No-one" Check the box and hit save. Now, when people try to visit your Google+ profile - they'll see this "restricted" message. You can visit my G+ Profile if you want to see this working. (https://plus.google.com/114725651137252000986) If you are not able to understand you can follow this website : http://www.livehuntz.com/google-plus/support-phone-number
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The Quick Draw Dataset is a collection of 50 million drawings across 345 categories, contributed by players of the game "Quick, Draw!". The drawings were captured as timestamped vectors, tagged with metadata including what the player was asked to draw and in which country the player was located.
Example drawings: https://raw.githubusercontent.com/googlecreativelab/quickdraw-dataset/master/preview.jpg" alt="preview">
https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
DataSF seeks to transform the way that the City of San Francisco works -- through the use of data.
This dataset contains the following tables: ['311_service_requests', 'bikeshare_stations', 'bikeshare_status', 'bikeshare_trips', 'film_locations', 'sffd_service_calls', 'sfpd_incidents', 'street_trees']
This dataset is deprecated and not being updated.
Fork this kernel to get started with this dataset.
Dataset Source: SF OpenData. This dataset is publicly available for anyone to use under the following terms provided by the Dataset Source - http://sfgov.org/ - and is provided "AS IS" without any warranty, express or implied, from Google. Google disclaims all liability for any damages, direct or indirect, resulting from the use of the dataset.
Banner Photo by @meric from Unplash.
Which neighborhoods have the highest proportion of offensive graffiti?
Which complaint is most likely to be made using Twitter and in which neighborhood?
What are the most complained about Muni stops in San Francisco?
What are the top 10 incident types that the San Francisco Fire Department responds to?
How many medical incidents and structure fires are there in each neighborhood?
What’s the average response time for each type of dispatched vehicle?
Which category of police incidents have historically been the most common in San Francisco?
What were the most common police incidents in the category of LARCENY/THEFT in 2016?
Which non-criminal incidents saw the biggest reporting change from 2015 to 2016?
What is the average tree diameter?
What is the highest number of a particular species of tree planted in a single year?
Which San Francisco locations feature the largest number of trees?
Attribution-ShareAlike 4.0 (CC BY-SA 4.0)https://creativecommons.org/licenses/by-sa/4.0/
License information was derived automatically
Labeled datasets are useful in machine learning research.
This public dataset contains approximately 9 million URLs and metadata for images that have been annotated with labels spanning more than 6,000 categories.
Tables: 1) annotations_bbox 2) dict 3) images 4) labels
Update Frequency: Quarterly
Fork this kernel to get started.
https://bigquery.cloud.google.com/dataset/bigquery-public-data:open_images
https://cloud.google.com/bigquery/public-data/openimages
APA-style citation: Google Research (2016). The Open Images dataset [Image urls and labels]. Available from github: https://github.com/openimages/dataset.
Use: The annotations are licensed by Google Inc. under CC BY 4.0 license.
The images referenced in the dataset are listed as having a CC BY 2.0 license. Note: while we tried to identify images that are licensed under a Creative Commons Attribution license, we make no representations or warranties regarding the license status of each image and you should verify the license for each image yourself.
Banner Photo by Mattias Diesel from Unsplash.
Which labels are in the dataset? Which labels have "bus" in their display names? How many images of a trolleybus are in the dataset? What are some landing pages of images with a trolleybus? Which images with cherries are in the training set?
Company Datasets for valuable business insights!
Discover new business prospects, identify investment opportunities, track competitor performance, and streamline your sales efforts with comprehensive Company Datasets.
These datasets are sourced from top industry providers, ensuring you have access to high-quality information:
We provide fresh and ready-to-use company data, eliminating the need for complex scraping and parsing. Our data includes crucial details such as:
You can choose your preferred data delivery method, including various storage options, delivery frequency, and input/output formats.
Receive datasets in CSV, JSON, and other formats, with storage options like AWS S3 and Google Cloud Storage. Opt for one-time, monthly, quarterly, or bi-annual data delivery.
With Oxylabs Datasets, you can count on:
Pricing Options:
Standard Datasets: choose from various ready-to-use datasets with standardized data schemas, priced from $1,000/month.
Custom Datasets: Tailor datasets from any public web domain to your unique business needs. Contact our sales team for custom pricing.
Experience a seamless journey with Oxylabs:
Unlock the power of data with Oxylabs' Company Datasets and supercharge your business insights today!
Attribution-ShareAlike 3.0 (CC BY-SA 3.0)https://creativecommons.org/licenses/by-sa/3.0/
License information was derived automatically
Dataset Card for Boolq
Dataset Summary
BoolQ is a question answering dataset for yes/no questions containing 15942 examples. These questions are naturally occurring ---they are generated in unprompted and unconstrained settings. Each example is a triplet of (question, passage, answer), with the title of the page as optional additional context. The text-pair classification setup is similar to existing natural language inference tasks.
Supported Tasks and… See the full description on the dataset page: https://huggingface.co/datasets/google/boolq.
The American Community Survey (ACS) is an ongoing survey that provides vital information on a yearly basis about our nation and its people by contacting over 3.5 million households across the country. The resulting data provides incredibly detailed demographic information across the US aggregated at various geographic levels which helps determine how more than $675 billion in federal and state funding are distributed each year. Businesses use ACS data to inform strategic decision-making. ACS data can be used as a component of market research, provide information about concentrations of potential employees with a specific education or occupation, and which communities could be good places to build offices or facilities. For example, someone scouting a new location for an assisted-living center might look for an area with a large proportion of seniors and a large proportion of people employed in nursing occupations. Through the ACS, we know more about jobs and occupations, educational attainment, veterans, whether people own or rent their homes, and other topics. Public officials, planners, and entrepreneurs use this information to assess the past and plan the future. For more information, see the Census Bureau's ACS Information Guide . This public dataset is hosted in Google BigQuery as part of the Google Cloud Public Datasets Program , with Carto providing cleaning and onboarding support. It is included in BigQuery's 1TB/mo of free tier processing. This means that each user receives 1TB of free BigQuery processing every month, which can be used to run queries on this public dataset. Watch this short video to learn how to get started quickly using BigQuery to access public datasets. What is BigQuery .
Band Protocol is a cross-chain data oracle platform that aggregates and connects real-world data and APIs to smart contracts. Band's flexible oracle design allows developers to query any data including real-world events, sports, weather, random numbers and more. Developers can create custom-made oracles using WebAssembly to connect smart contracts with traditional web APIs within minutes. BandChain is designed to be compatible with most smart contract and blockchain development frameworks. It does the heavy lifting jobs of pulling data from external sources, aggregating them, and packaging them into the format that’s easy to use and verified efficiently across multiple blockchains. This dataset is one of many crypto datasets that are available within the Google Cloud Public Datasets . As with other Google Cloud public datasets, you can query this dataset for free, up to 1TB/month of free processing, every month. Watch this short video to learn how to get started with the public datasets. Want to know how the data from these blockchains were brought into BigQuery, and learn how to analyze the data? Weitere Informationen
Apache License, v2.0https://www.apache.org/licenses/LICENSE-2.0
License information was derived automatically
Dataset Card for IFEval
Dataset Summary
This dataset contains the prompts used in the Instruction-Following Eval (IFEval) benchmark for large language models. It contains around 500 "verifiable instructions" such as "write in more than 400 words" and "mention the keyword of AI at least 3 times" which can be verified by heuristics. To load the dataset, run: from datasets import load_dataset
ifeval = load_dataset("google/IFEval")
Supported Tasks and… See the full description on the dataset page: https://huggingface.co/datasets/google/IFEval.
Google News dataset to explore news articles, including publication details, content categories, and geographical origin. Popular use cases include media trend analysis, sentiment analysis, and news consumption research.
Use our Google News dataset to access a structured collection of news articles, including publication details, content categories, and geographical origins. This dataset is a valuable tool for analyzing media trends, sentiment, and coverage patterns, offering insights into how news is reported and consumed across different regions.
Tailored for researchers, journalists, and media analysts, this dataset enables in-depth analysis of news reporting, consumer preferences, and global media dynamics. Whether you're tracking emerging stories, conducting sentiment analysis, or exploring media influence, the Google News dataset provides essential data for understanding the media landscape.
Below is a list of the different columns in the dataset along with a brief description of each: - url: News article URLs - title: Headlines/titles of news articles - publisher: News sources/media outlets - date: Publication timestamp - category: News categories - keyword: Associated keywords/tags - country: Country of publication - image: Image URLs associated with articles
This dataset is suitable for: - News Analysis: Tracking media coverage and trends - Content Analysis: Studying headline patterns and news distribution - Publisher Analysis: Understanding media outlet distribution - Temporal Analysis: News coverage patterns over time
CUSTOM Please review the respective licenses below: 1. Data Provider's License - Bright Data Master Service Agreement
~Up to $0.0025 per record. Min order $250
Approximately 53.8K new records are added each month. Approximately 115K records are updated each month. Get the complete dataset each delivery, including all records. Retrieve only the data you need with the flexibility to set Smart Updates.
New snapshot each month, 12 snapshots/year Paid monthly
New snapshot each quarter, 4 snapshots/year Paid quarterly
New snapshot every 6 months, 2 snapshots/year Paid twice-a-year
New snapshot one-time delivery Paid once
This dataset includes structures within NYC Parks properties. Structures are broadly defined as "an assembly of materials forming construction for occupancy or use." One line of data is a structure. The dataset contains fields that are maintained by multiple agencies including NYC Parks, NYC DoITT, and NYC Planning. Where possible, updated values are pulled from authoritative sources and updated weekly - for more details about specific fields and where they come from please see https://github.com/NYCParks-data/Structures/wiki The System ID and BIN (Building Identification Number) are both required fields. A known limitation to this dataset is that functions other than 'public restroom' and 'recreation center' can and should be attributed to many of the structures. This information will eventually live and be maintained in a related table where all the functions of individual structures can be seen. Data Dictionary here: https://docs.google.com/spreadsheets/d/17ptFZkuhrquuvSfEb2dum3Q6jNbVT98WohR-pl646o4/edit?usp=sharing
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This dataset is a snapshot of the Community Mobility Reports generated by Google. Google developed these sets as a response to public health officials who expressed that the same type of aggregated, anonymized insights used in products such as Google Maps could be helpful as they make critical decisions to combat COVID-19. Each Community Mobility Report is broken down by location and displays the change in visits to places like grocery stores and parks. These Community Mobility Reports aim to provide insights into what has changed in response to policies aimed at combating COVID-19. The reports chart movement trends over time by geography, across different categories of places such as retail and recreation, groceries and pharmacies, parks, transit stations, workplaces, and residential. In order to download or use the data or reports, you must agree to the Google Terms of Service. Learn more about the data here
In the U.S. public companies, certain insiders and broker-dealers are required to regularly file with the SEC. The SEC makes this data available online for anybody to view and use via their Electronic Data Gathering, Analysis, and Retrieval (EDGAR) database. The SEC updates this data every quarter going back to January, 2009. To aid analysis a quick summary view of the data has been created that is not available in the original dataset. The quick summary view pulls together signals into a single table that otherwise would have to be joined from multiple tables and enables a more streamlined user experience. This public dataset is hosted in Google BigQuery and is included in BigQuery's 1TB/mo of free tier processing. This means that each user receives 1TB of free BigQuery processing every month, which can be used to run queries on this public dataset. Watch this short video to learn how to get started quickly using BigQuery to access public datasets.了解详情
This dataset contains current and historical demographic data on Google's workforce since the company began publishing diversity data in 2014. It includes data collected for government reporting and voluntary employee self-identification globally relating to hiring, retention, and representation categorized by race, gender, sexual orientation, gender identity, disability status, and military status. In some instances, the data is limited due to various government policies around the world and the desire to protect Googler confidentiality. All data in this dataset will be updated yearly upon publication of Google’s Diversity Annual Report . Google uses this data to inform its diversity, equity, and inclusion work. More information on our methodology can be found in the Diversity Annual Report. This public dataset is hosted in Google BigQuery and is included in BigQuery's 1TB/mo of free tier processing. This means that each user receives 1TB of free BigQuery processing every month, which can be used to run queries on this public dataset. Watch this short video to learn how to get started quickly using BigQuery to access public datasets. What is BigQuery .