32 datasets found
  1. cms-medicare

    • kaggle.com
    zip
    Updated Apr 21, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Google BigQuery (2020). cms-medicare [Dataset]. https://www.kaggle.com/datasets/bigquery/cms-medicare
    Explore at:
    zip(0 bytes)Available download formats
    Dataset updated
    Apr 21, 2020
    Dataset provided by
    BigQueryhttps://cloud.google.com/bigquery
    Authors
    Google BigQuery
    Description

    Context

    This dataset contains Hospital General Information from the U.S. Department of Health & Human Services. This is the BigQuery COVID-19 public dataset. This data contains a list of all hospitals that have been registered with Medicare. This list includes addresses, phone numbers, hospital types and quality of care information. The quality of care data is provided for over 4,000 Medicare-certified hospitals, including over 130 Veterans Administration (VA) medical centers, across the country. You can use this data to find hospitals and compare the quality of their care

    Querying BigQuery tables

    You can use the BigQuery Python client library to query tables in this dataset in Kernels. Note that methods available in Kernels are limited to querying data. Tables are at bigquery-public-data.cms_medicare.hospital_general_info.

    Sample Query

    How do the hospitals in Mountain View, CA compare to the average hospital in the US? With the hospital compare data you can quickly understand how hospitals in one geographic location compare to another location. In this example query we compare Google’s home in Mountain View, California, to the average hospital in the United States. You can also modify the query to learn how the hospitals in your city compare to the US national average.

    “#standardSQL SELECT MTV_AVG_HOSPITAL_RATING, US_AVG_HOSPITAL_RATING FROM ( SELECT ROUND(AVG(CAST(hospital_overall_rating AS int64)),2) AS MTV_AVG_HOSPITAL_RATING FROM bigquery-public-data.cms_medicare.hospital_general_info WHERE city = 'MOUNTAIN VIEW' AND state = 'CA' AND hospital_overall_rating <> 'Not Available') MTV JOIN ( SELECT ROUND(AVG(CAST(hospital_overall_rating AS int64)),2) AS US_AVG_HOSPITAL_RATING FROM bigquery-public-data.cms_medicare.hospital_general_info WHERE hospital_overall_rating <> 'Not Available') ON 1 = 1”

    What are the most common diseases treated at hospitals that do well in the category of patient readmissions? For hospitals that achieved “Above the national average” in the category of patient readmissions, it might be interesting to review the types of diagnoses that are treated at those inpatient facilities. While this query won’t provide the granular detail that went into the readmission calculation, it gives us a quick glimpse into the top disease related groups (DRG)
    , or classification of inpatient stays that are found at those hospitals. By joining the general hospital information to the inpatient charge data, also provided by CMS, you could quickly identify DRGs that may warrant additional research. You can also modify the query to review the top diagnosis related groups for hospital metrics you might be interested in. “#standardSQL SELECT drg_definition, SUM(total_discharges) total_discharge_per_drg FROM bigquery-public-data.cms_medicare.hospital_general_info gi INNER JOIN bigquery-public-data.cms_medicare.inpatient_charges_2015 ic ON gi.provider_id = ic.provider_id WHERE readmission_national_comparison = 'Above the national average' GROUP BY drg_definition ORDER BY total_discharge_per_drg DESC LIMIT 10;”

  2. a

    Medicare Datasets

    • atlaslongitudinaldatasets.ac.uk
    url
    Updated Dec 6, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Centers for Medicare & Medicaid Services (CMS) (2024). Medicare Datasets [Dataset]. https://atlaslongitudinaldatasets.ac.uk/datasets/medicare-datasets
    Explore at:
    urlAvailable download formats
    Dataset updated
    Dec 6, 2024
    Dataset provided by
    Atlas of Longitudinal Datasets
    Authors
    Centers for Medicare & Medicaid Services (CMS)
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    United States
    Variables measured
    None
    Measurement technique
    Healthcare records, Insurance records, Secondary data, Registry, None
    Dataset funded by
    Centers for Medicare & Medicaid Services
    United States Department of Health and Human Serviceshttp://www.hhs.gov/
    Description

    Medicare is a federal health insurance program for those aged 65 and older, certain people under 65 with disabilities, and people of any age with end-stage renal disease in the United States (US). Medicare covers about 96% of all US citizens aged 65 and older. These data have been used to describe patterns of morbidity and mortality and burden of disease, compare the effectiveness of pharmacologic therapies, examine the cost of care, evaluate the effects of provider practices on the delivery of care, and explore the effects of important policy changes on physician practices and patient outcomes. In 2014, 16% of Medicare beneficiaries were under the age of 65 years, 46% were between 65 and 74 years, 25% between 75 and 84 years, and 12% over the age of 85 years. Fifty-five percent of beneficiaries were female, 76% were white, 10% black, 9% Hispanic, and 5% Asian or other/unknown race.

  3. CMS Medicare Diabetes Prevention Program

    • kaggle.com
    zip
    Updated Apr 15, 2019
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Centers for Medicare & Medicaid Services (2019). CMS Medicare Diabetes Prevention Program [Dataset]. https://www.kaggle.com/cms/cms-medicare-diabetes-prevention-program
    Explore at:
    zip(34535 bytes)Available download formats
    Dataset updated
    Apr 15, 2019
    Dataset authored and provided by
    Centers for Medicare & Medicaid Services
    License

    https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/

    Description

    Content

    The following dataset demonstrates the Medicare-enrolled MDPP suppliers from which eligible Medicare beneficiaries may be furnished MDPP services. If you receive your Medicare coverage via a Medicare Advantage plan, please consult your health plan to identify the specific MDPP suppliers that are available to you with no cost sharing

    Context

    This is a dataset hosted by the Centers for Medicare & Medicaid Services (CMS). The organization has an open data platform found here and they update their information according the amount of data that is brought in. Explore CMS's Data using Kaggle and all of the data sources available through the CMS organization page!

    • Update Frequency: This dataset is updated daily.

    Acknowledgements

    This dataset is maintained using Socrata's API and Kaggle's API. Socrata has assisted countless organizations with hosting their open data and has been an integral part of the process of bringing more data to the public.

    Cover photo by Philipp Mandler on Unsplash
    Unsplash Images are distributed under a unique Unsplash License.

  4. Medicare Physician Provider and Service Resampled

    • kaggle.com
    zip
    Updated Aug 24, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Steve Drasco (2024). Medicare Physician Provider and Service Resampled [Dataset]. https://www.kaggle.com/datasets/sdrasco/medicare-physician-provider-and-service-resampled
    Explore at:
    zip(27288154 bytes)Available download formats
    Dataset updated
    Aug 24, 2024
    Authors
    Steve Drasco
    License

    https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/

    Description

    This is a random sampling of the 2022 public data set hosted by the Center for Medicare & Medicaid Services at:

    https://data.cms.gov/provider-summary-by-type-of-service/medicare-physician-other-practitioners/medicare-physician-other-practitioners-by-provider-and-service

    The complete data set for 2022 can be found there. This random sampling has 292,663 rows and 29 columns. The full set hosted at the link above is about 3GB in size with 9,755,427 rows and 29 columns. The 29 columns are:

    1. National Provider Identifier (Rndrng_NPI)
    2. Last Name/Organization Name of the Provider (Rndrng_Prvdr_Last_Org_Name)
    3. First Name of the Provider (Rndrng_Prvdr_First_Name)
    4. Middle Initial of the Provider (Rndrng_Prvdr_MI)
    5. Credentials of the Provider (Rndrng_Prvdr_Crdntls)
    6. Gender of the Provider (Rndrng_Prvdr_Gndr)
    7. Entity Type of the Provider (Rndrng_Prvdr_Ent_Cd)
    8. Street Address 1 of the Provider (Rndrng_Prvdr_St1)
    9. Street Address 2 of the Provider (Rndrng_Prvdr_St2)
    10. City of the Provider (Rndrng_Prvdr_City)
    11. State Abbreviation of the Provider (Rndrng_Prvdr_State_Abrvtn)
    12. State FIPS Code of the Provider (Rndrng_Prvdr_State_FIPS)
    13. Zip Code of the Provide (Rndrng_Prvdr_Zip5)
    14. RUCA Code of the Provider (Rndrng_Prvdr_RUCA)
    15. RUCA Description (Rndrng_Prvdr_RUCA_Desc)
    16. Country Code of the Provider (Rndrng_Prvdr_Cntry)
    17. Provider Type of the Provider (Rndrng_Prvdr_Type)
    18. Medicare Participation Indicator (Rndrng_Prvdr_Mdcr_Prtcptg_Ind)
    19. HCPCS Code (HCPCS_Cd)
    20. HCPCS Description (HCPCS_Desc)
    21. HCPCS Drug Indicator (HCPCS_Drug_Ind)
    22. Place of Service (Place_Of_Srvc)
    23. Number of Medicare Beneficiaries (Tot_Benes)
    24. Number of Services (Tot_Srvcs)
    25. Number of Distinct Medicare Beneficiary/Per Day Services (Tot_Bene_Day_Srvcs)
    26. Average Submitted Charge Amount (Avg_Sbmtd_Chrg)
    27. Average Medicare Allowed Amount (Avg_Mdcr_Alowd_Amt)
    28. Average Medicare Payment Amount (Avg_Mdcr_Pymt_Amt)
    29. Average Medicare Standardized Payment Amount (Avg_Mdcr_Stdzd_Amt)

    A brief description of each these columns can be found here:

    https://data.cms.gov/resources/medicare-physician-other-practitioners-by-provider-and-service-data-dictionary

    A full description of the data is in the 27-page document, "Medicare Fee-For-Service Provider Utilization & Payment Data Physician and Other Supplier Public Use File: A Methodological Overview" which can be found here:

    www.cms.gov/research-statistics-data-and-systems/statistics-trends-and-reports/medicare-provider-charge-data/downloads/medicare-physician-and-other-supplier-puf-methodology.pdf

    This data set is similar to the one posted by Tamil Selvan here https://www.kaggle.com/datasets/tamilsel/healthcare-providers-data. That data's origin is unclear, however it is very likely from same source. It has different header text and may be from one of the earlier years.

  5. Data from: Medicare Data

    • kaggle.com
    zip
    Updated Feb 12, 2019
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Centers for Medicare & Medicaid Services (2019). Medicare Data [Dataset]. https://www.kaggle.com/cms/cms-medicare
    Explore at:
    zip(0 bytes)Available download formats
    Dataset updated
    Feb 12, 2019
    Dataset authored and provided by
    Centers for Medicare & Medicaid Services
    License

    https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/

    Description

    Context

    In the United States, Medicare is a single-payer, national social insurance program administered by the U.S. federal government since 1966. It provides health insurance for Americans aged 65 and older who have worked and paid into the system through the payroll tax. Source: https://en.wikipedia.org/wiki/Medicare_(United_States)

    Content

    This public dataset was created by the Centers for Medicare & Medicaid Services. The data summarizes the utilization and payments for procedures, services, and prescription drugs provided to Medicare beneficiaries by specific inpatient and outpatient hospitals, physicians, and other suppliers. The dataset includes the following data.

    Common inpatient and outpatient services All physician and other supplier procedures and services All Part D prescriptions. Providers determine what they will charge for items, services, and procedures provided to patients and these charges are the amount that providers bill for an item, service, or procedure.

    Fork this kernel to get started.

    Acknowledgements

    https://bigquery.cloud.google.com/dataset/bigquery-public-data:medicare

    https://cloud.google.com/bigquery/public-data/medicare

    Dataset Source: Center for Medicare and Medicaid Services. This dataset is publicly available for anyone to use under the following terms provided by the Dataset Source - http://www.data.gov/privacy-policy#data_policy — and is provided "AS IS" without any warranty, express or implied, from Google. Google disclaims all liability for any damages, direct or indirect, resulting from the use of the dataset.

    Banner Photo by @rawpixel from Unplash.

    Inspiration

    What is the total number of medications prescribed in each state?

    What is the most prescribed medication in each state?

    What is the average cost for inpatient and outpatient treatment in each city and state?

    Which are the most common inpatient diagnostic conditions in the United States?

    Which cities have the most number of cases for each diagnostic condition?

    What are the average payments for these conditions in these cities and how do they compare to the national average?

  6. NPPES Plan and Provider Enumeration System

    • kaggle.com
    zip
    Updated Mar 20, 2019
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Centers for Medicare & Medicaid Services (2019). NPPES Plan and Provider Enumeration System [Dataset]. https://www.kaggle.com/cms/nppes
    Explore at:
    zip(0 bytes)Available download formats
    Dataset updated
    Mar 20, 2019
    Dataset authored and provided by
    Centers for Medicare & Medicaid Services
    License

    https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/

    Description

    Context

    The CMS National Plan and Provider Enumeration System (NPPES) was developed as part of the Administrative Simplification provisions in the original HIPAA act. The primary purpose of NPPES was to develop a unique identifier for each physician that billed medicare and medicaid. This identifier is now known as the National Provider Identifier Standard (NPI) which is a required 10 digit number that is unique to an individual provider at the national level.

    Once an NPI record is assigned to a healthcare provider, parts of the NPI record that have public relevance, including the provider’s name, speciality, and practice address are published in a searchable website as well as downloadable file of zipped data containing all of the FOIA disclosable health care provider data in NPPES and a separate PDF file of code values which documents and lists the descriptions for all of the codes found in the data file.

    Content

    The dataset contains the latest NPI downloadable file in an easy to query BigQuery table, npi_raw. In addition, there is a second table, npi_optimized which harnesses the power of Big Query’s next-generation columnar storage format to provide an analytical view of the NPI data containing description fields for the codes based on the mappings in Data Dissemination Public File - Code Values documentation as well as external lookups to the healthcare provider taxonomy codes . While this generates hundreds of columns, BigQuery makes it possible to process all this data effectively and have a convenient single lookup table for all provider information.

    Fork this kernel to get started.

    Acknowledgements

    https://bigquery.cloud.google.com/dataset/bigquery-public-data:nppes?_ga=2.117120578.-577194880.1523455401

    https://console.cloud.google.com/marketplace/details/hhs/nppes?filter=category:science-research

    Dataset Source: Center for Medicare and Medicaid Services. This dataset is publicly available for anyone to use under the following terms provided by the Dataset Source - http://www.data.gov/privacy-policy#data_policy — and is provided "AS IS" without any warranty, express or implied, from Google. Google disclaims all liability for any damages, direct or indirect, resulting from the use of the dataset.

    Banner Photo by @rawpixel from Unplash.

    Inspiration

    What are the top ten most common types of physicians in Mountain View?

    What are the names and phone numbers of dentists in California who studied public health?

  7. Medicare Fee-For-Service Public Provider Enrollment

    • datalumos.org
    • data.virginia.gov
    • +1more
    delimited
    Updated Apr 24, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    United States Department of Health and Human Services. Centers for Medicare and Medicaid Services (2025). Medicare Fee-For-Service Public Provider Enrollment [Dataset]. http://doi.org/10.3886/E227676V1
    Explore at:
    delimitedAvailable download formats
    Dataset updated
    Apr 24, 2025
    Dataset provided by
    Centers for Medicare & Medicaid Services
    United States Department of Health and Human Serviceshttp://www.hhs.gov/
    Authors
    United States Department of Health and Human Services. Centers for Medicare and Medicaid Services
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    The Medicare Fee-For-Service Public Provider Enrollment dataset includes information on providers who are actively approved to bill Medicare or have completed the 855O at the time the data was pulled from the Provider Enrollment, Chain, and Ownership System (PECOS). The release of this provider enrollment data is not related to other provider information releases such as Physician Compare or Data Transparency. Note: This full dataset contains more records than most spreadsheet programs can handle, which will result in an incomplete load of data. Use of a database or statistical software is required.Resources for Using and Understanding the DataThese files are populated from PECOS and contain basic enrollment and provider information, reassignment of benefits information and practice location city, state and zip. These files are not intended to be used as real time reporting as the data changes from day to day and the files are updated only on a quarterly basis. If any information on these files needs to be updated, the provider needs to contact their respective Medicare Administrative Contractor (MAC) to have that information updated. This data does not include information on opt-out providers. Information is redacted where necessary to protect Medicare provider privacy.

  8. d

    Dataplex: All CMS Data Feeds | Access 1519 Reports & 26B+ Rows of Data |...

    • datarade.ai
    .csv
    Updated Aug 14, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Dataplex (2024). Dataplex: All CMS Data Feeds | Access 1519 Reports & 26B+ Rows of Data | Perfect for Historical Analysis & Easy Ingestion [Dataset]. https://datarade.ai/data-products/dataplex-all-cms-data-feeds-access-1519-reports-26b-row-dataplex
    Explore at:
    .csvAvailable download formats
    Dataset updated
    Aug 14, 2024
    Dataset authored and provided by
    Dataplex
    Area covered
    United States of America
    Description

    The All CMS Data Feeds dataset is an expansive resource offering access to 118 unique report feeds, providing in-depth insights into various aspects of the U.S. healthcare system. With over 25.8 billion rows of data meticulously collected since 2007, this dataset is invaluable for healthcare professionals, analysts, researchers, and businesses seeking to understand and analyze healthcare trends, performance metrics, and demographic shifts over time. The dataset is updated monthly, ensuring that users always have access to the most current and relevant data available.

    Dataset Overview:

    118 Report Feeds: - The dataset includes a wide array of report feeds, each providing unique insights into different dimensions of healthcare. These topics range from Medicare and Medicaid service metrics, patient demographics, provider information, financial data, and much more. The breadth of information ensures that users can find relevant data for nearly any healthcare-related analysis. - As CMS releases new report feeds, they are automatically added to this dataset, keeping it current and expanding its utility for users.

    25.8 Billion Rows of Data:

    • With over 25.8 billion rows of data, this dataset provides a comprehensive view of the U.S. healthcare system. This extensive volume of data allows for granular analysis, enabling users to uncover insights that might be missed in smaller datasets. The data is also meticulously cleaned and aligned, ensuring accuracy and ease of use.

    Historical Data Since 2007: - The dataset spans from 2007 to the present, offering a rich historical perspective that is essential for tracking long-term trends and changes in healthcare delivery, policy impacts, and patient outcomes. This historical data is particularly valuable for conducting longitudinal studies and evaluating the effects of various healthcare interventions over time.

    Monthly Updates:

    • To ensure that users have access to the most current information, the dataset is updated monthly. These updates include new reports as well as revisions to existing data, making the dataset a continuously evolving resource that stays relevant and accurate.

    Data Sourced from CMS:

    • The data in this dataset is sourced directly from the Centers for Medicare & Medicaid Services (CMS). After collection, the data is meticulously cleaned and its attributes are aligned, ensuring consistency, accuracy, and ease of use for any application. Furthermore, any new updates or releases from CMS are automatically integrated into the dataset, keeping it comprehensive and current.

    Use Cases:

    Market Analysis:

    • The dataset is ideal for market analysts who need to understand the dynamics of the healthcare industry. The extensive historical data allows for detailed segmentation and analysis, helping users identify trends, market shifts, and growth opportunities. The comprehensive nature of the data enables users to perform in-depth analyses of specific market segments, making it a valuable tool for strategic decision-making.

    Healthcare Research:

    • Researchers will find the All CMS Data Feeds dataset to be a robust foundation for academic and commercial research. The historical data, combined with the breadth of coverage across various healthcare metrics, supports rigorous, in-depth analysis. Researchers can explore the effects of healthcare policies, study patient outcomes, analyze provider performance, and more, all within a single, comprehensive dataset.

    Performance Tracking:

    • Healthcare providers and organizations can use the dataset to track performance metrics over time. By comparing data across different periods, organizations can identify areas for improvement, monitor the effectiveness of initiatives, and ensure compliance with regulatory standards. The dataset provides the detailed, reliable data needed to track and analyze key performance indicators.

    Compliance and Regulatory Reporting:

    • The dataset is also an essential tool for compliance officers and those involved in regulatory reporting. With detailed data on provider performance, patient outcomes, and healthcare utilization, the dataset helps organizations meet regulatory requirements, prepare for audits, and ensure adherence to best practices. The accuracy and comprehensiveness of the data make it a trusted resource for regulatory compliance.

    Data Quality and Reliability:

    The All CMS Data Feeds dataset is designed with a strong emphasis on data quality and reliability. Each row of data is meticulously cleaned and aligned, ensuring that it is both accurate and consistent. This attention to detail makes the dataset a trusted resource for high-stakes applications, where data quality is critical.

    Integration and Usability:

    Ease of Integration:

    • The dataset is provided in a CSV format, which is widely compatible with most data analysis tools and platforms. This ensures that users can easily integrate the data into their existing wo...
  9. CMS Insurance Plan Enrollment by State

    • kaggle.com
    zip
    Updated Apr 15, 2019
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Centers for Medicare & Medicaid Services (2019). CMS Insurance Plan Enrollment by State [Dataset]. https://www.kaggle.com/cms/cms-insurance-plan-enrollment-by-state
    Explore at:
    zip(10248 bytes)Available download formats
    Dataset updated
    Apr 15, 2019
    Dataset authored and provided by
    Centers for Medicare & Medicaid Services
    License

    https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/

    Description

    Content

    The Affordable Care Act created the new Pre-Existing Condition Insurance Plan (PCIP) program to make health insurance available to Americans denied coverage by private insurance companies because of a pre-existing condition. Coverage for people living with such conditions as diabetes, asthma, cancer, and HIV/AIDS has often been priced out of the reach of most Americans who buy their own insurance, and this has resulted in a lack of coverage for millions. The temporary program covers a broad range of health benefits and is designed as a bridge for people with pre-existing conditions who cannot obtain health insurance coverage in today’s private insurance market. To learn more, visit PCIP.gov or HealthCare.gov.

    Note: * Massachusetts and Vermont are guarantee issue states that have already implemented many of the broader market reforms included in the Affordable Care Act that take effect in 2014. Existing commercial plans offering guaranteed coverage at premiums comparable to PCIP are already available in both states.

    Context

    This is a dataset hosted by the Centers for Medicare & Medicaid Services (CMS). The organization has an open data platform found here and they update their information according the amount of data that is brought in. Explore CMS's Data using Kaggle and all of the data sources available through the CMS organization page!

    • Update Frequency: This dataset is updated daily.

    Acknowledgements

    This dataset is maintained using Socrata's API and Kaggle's API. Socrata has assisted countless organizations with hosting their open data and has been an integral part of the process of bringing more data to the public.

    Cover photo by Lily Banse on Unsplash
    Unsplash Images are distributed under a unique Unsplash License.

  10. Dual Medi-Cal Enrollment and Medicare Advantage Enrollment in the Medicare...

    • data.chhs.ca.gov
    • data.ca.gov
    • +2more
    csv, pdf, zip
    Updated Nov 7, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Department of Health Care Services (2025). Dual Medi-Cal Enrollment and Medicare Advantage Enrollment in the Medicare Population in California Counties [Dataset]. https://data.chhs.ca.gov/dataset/dual-medi-cal-and-medicare-advantage-enrollment-in-the-medicare-population-in-californian-counties
    Explore at:
    pdf(1482850), csv(3357), csv(3092), csv(3368), zipAvailable download formats
    Dataset updated
    Nov 7, 2025
    Dataset provided by
    California Department of Health Care Serviceshttp://www.dhcs.ca.gov/
    Authors
    Department of Health Care Services
    Area covered
    California
    Description

    This data set accompanies the Profile of the California Medicare Population chartbook, published by the Office of Medicare Innovation and Integration in February 2022, and available at (https://www.dhcs.ca.gov/services/Documents/OMII-Medicare-Databook-February-18-2022.pdf). The three data files in this data set were analyzed from federal administrative data (the Medicare Master Beneficiary Summary File) for beneficiary characteristics as of March 2021. These datasets include: Medicare enrollment, Medicare Advantage enrollment (and its converse fee-for-service Medicare enrollment), dual Medi-Cal eligibility and enrollment (and its converse Medicare-only enrollment), by county. Medicare Savings Program enrollees were considered Medicare-only and not dually enrolled in Medi-Cal. All Medicare Part C beneficiaries, including PACE, Cal MediConnect and Special Needs Plans, were considered to have Medicare Advantage.

    DHCS partnered with The SCAN Foundation and ATI Advisory in 2021 and 2022 to develop a series of chartbooks that provide information about Medicare beneficiaries in California. This work is supported by a grant from The SCAN Foundation to advance a coordinated and easily navigated system of high-quality services for older adults that preserve dignity and independence. For more information, visit www.TheSCANFoundation.org.

  11. Case Mix Index

    • data.chhs.ca.gov
    • data.ca.gov
    • +2more
    docx, pdf, xlsx, zip
    Updated Nov 6, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Department of Health Care Access and Information (2025). Case Mix Index [Dataset]. https://data.chhs.ca.gov/dataset/case-mix-index
    Explore at:
    docx, pdf, xlsx(192727), zipAvailable download formats
    Dataset updated
    Nov 6, 2025
    Dataset authored and provided by
    Department of Health Care Access and Information
    Description

    The Case Mix Index (CMI) is the average relative DRG weight of a hospital’s inpatient discharges, calculated by summing the Medicare Severity-Diagnosis Related Group (MS-DRG) weight for each discharge and dividing the total by the number of discharges. The CMI reflects the diversity, clinical complexity, and resource needs of all the patients in the hospital. A higher CMI indicates a more complex and resource-intensive case load. Although the MS-DRG weights, provided by the Centers for Medicare & Medicaid Services (CMS), were designed for the Medicare population, they are applied here to all discharges regardless of payer. Note: It is not meaningful to add the CMI values together.

  12. g

    Weather conditions and Legionellosis: A nationwide case-crossover study...

    • gimi9.com
    Updated Sep 19, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2023). Weather conditions and Legionellosis: A nationwide case-crossover study among Medicare recipients | gimi9.com [Dataset]. https://gimi9.com/dataset/data-gov_weather-conditions-and-legionellosis-a-nationwide-case-crossover-study-among-medicare-reci/
    Explore at:
    Dataset updated
    Sep 19, 2023
    Description

    Data consist of CMS Medicare data files which are restricted access and cannot be released publicly. This dataset is not publicly accessible because: EPA cannot release personally identifiable information regarding living individuals, according to the Privacy Act and the Freedom of Information Act (FOIA). This dataset contains information about human research subjects. Because there is potential to identify individual participants and disclose personal information, either alone or in combination with other datasets, individual level data are not appropriate to post for public access. Restricted access may be granted to authorized persons by contacting the party listed. EPA cannot release CBI, or data protected by copyright, patent, or otherwise subject to trade secret restrictions. Request for access to CBI data may be directed to the dataset owner by an authorized person by contacting the party listed. It can be accessed through the following means: CMS Medicare data are available from: https://www.cms.gov/data-research/files-for-order/data-disclosures-and-data-use-agreements-duas/limited-data-set-lds with the requirement of a signed Data Use Agreement. . Weather data are available at https://prism.oregonstate.edu/. Format: The data that support the findings of this study are available from the Centers for Medicare and Medicaid Services (CMS). Restrictions apply to the availability of these data, which were provided under a Data Use Agreement specific to this study. Data are available from: https://www.cms.gov/data-research/files-for-order/data-disclosures-and-data-use-agreements-duas/limited-data-set-lds with the requirement of a signed Data Use Agreement. Data do not contain personally identifiable information but contain are classified as Limited Data Set files and their distribution require an agreement and between CMS and the requester and approval by CMS. Weather data are available at https://prism.oregonstate.edu/. Because the data do not contain identifiable private information and were not obtained through interaction or intervention with individuals, the Institutional Review Board for the University of North Carolina and the US Environmental Protection Agency Human Research Protocol Officer determined that use of this data does not constitute human subjects research. This dataset is associated with the following publication: Wade, T., and C. Herbert. Weather conditions and legionellosis: a nationwide case-crossover study among Medicare recipients. EPIDEMIOLOGY AND INFECTION. Cambridge University Press, Cambridge, UK, 152: E125, (2024).

  13. MarketScan Medicare Supplemental

    • redivis.com
    • stanford.redivis.com
    application/jsonl +7
    Updated Jun 27, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Stanford Center for Population Health Sciences (2025). MarketScan Medicare Supplemental [Dataset]. http://doi.org/10.57761/vyp5-jj62
    Explore at:
    spss, application/jsonl, arrow, parquet, csv, stata, sas, avroAvailable download formats
    Dataset updated
    Jun 27, 2025
    Dataset provided by
    Redivis Inc.
    Authors
    Stanford Center for Population Health Sciences
    Time period covered
    Dec 31, 2006 - Aug 30, 2024
    Description

    Abstract

    The MarketScan Medicare Supplemental Database provides detailed cost, use and outcomes data for healthcare services performed in both inpatient and outpatient settings.

    It Include Medicare Supplemental records for all years, and Medicare Advantage records starting in 2020. This page also contains the MarketScan Medicare Lab Database starting in 2018.

    Starting in 2026, there will be a data access fee for using the full dataset. Please refer to the 'Usage Notes' section of this page for more information.

    Methodology

    MarketScan Research Databases are a family of data sets that fully integrate many types of data for healthcare research, including:

    • De-identified records of more than 250 million patients (medical, drug and dental)

    %3C!-- --%3E

    • Laboratory results

    %3C!-- --%3E

    • Hospital discharges

    %3C!-- --%3E

    The MarketScan Databases track millions of patients throughout the healthcare system. The data are contributed by large employers, managed care organizations, hospitals, EMR providers and Medicare.

    Usage

    This page contains the MarketScan Medicare Database.

    We also have the following on other pages:

    %3C!-- --%3E

    **Starting in 2026, there will be a data access fee for using the full dataset **

    (though the 1% sample will remain free to use). The pricing structure and other

    **relevant information can be found in this **FAQ Sheet.

    Before Manuscript Submission

    All manuscripts (and other items you'd like to publish) must be submitted to

    support@stanfordphs.freshdesk.com for approval prior to journal submission.

    We will check your cell sizes and citations.

    For more information about how to cite PHS and PHS datasets, please visit:

    https:/phsdocs.developerhub.io/need-help/citing-phs-data-core

    Data Documentation

    Data access is required to view this section.

    Section 2

    Metadata access is required to view this section.

    Section 3

    Metadata access is required to view this section.

  14. US Health Insurance

    • kaggle.com
    zip
    Updated Jan 7, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    The Devastator (2023). US Health Insurance [Dataset]. https://www.kaggle.com/datasets/thedevastator/comprehensive-analysis-of-us-health-insurance-ma
    Explore at:
    zip(15726377 bytes)Available download formats
    Dataset updated
    Jan 7, 2023
    Authors
    The Devastator
    Area covered
    United States
    Description

    US Health Insurance

    Exploring Rates, Benefits, and Providers

    By Data Society [source]

    About this dataset

    This fascinating dataset from the Centers for Medicare & Medicaid Services provides an in-depth analysis of health insurance plans offered throughout the United States. Exploring this data, you can gain insights into how plan rates and benefits vary across states, explore how plan benefits relate to plan rates, and investigate how plans vary across insurance network providers.

    The top-level directory includes six CSV files which contain information about: BenefitsCostSharing.csv; BusinessRules.csv; Network.csv; PlanAttributes.csv; Rate.csv; and ServiceArea.csv - as well as two additional CSV files which facilitate joining data across years: Crosswalk2015.csv (joining 2014 and 2015 data) and Crosswalk2016

    More Datasets

    For more datasets, click here.

    Featured Notebooks

    • 🚨 Your notebook can be here! 🚨!

    How to use the dataset

    This Kaggle dataset contains comprehensive data on US health insurance Marketplace plans. The data was obtained from the Centers for Medicare & Medicaid Services and contains information such as plan rates and benefits, metal levels, dental coverage, and child/adult-only coverages.

    In order to use this dataset effectively, it is important to understand the different columns/variables that make up the dataset. The columns are state, dental plan, multistate plan (2015 and 2016), metal level (2014-2016), child/adult-only coverage (2014-2016), FIPS code (Federal Information Processing Standard code for the particular state), zipcode, crosswalk level (level of crosswalk between 2014-2016 data sets), reason for crosswalk parameter.

    Using this dataset can help you answer interesting questions about US health insurance Marketplace plans across different variables such as state or rate information. It may also be interesting to compare certain variables over time with respect to how they affect certain types of people or how they differ across states or regions. Additionally, an analysis of the different price points associated with various kinds of coverage could provide insights into which kinds of plans are most attractive in various marketplaces based on cost savings alone

    Once you have a good understanding of your data by studying individual parameters in depth across multiple states or regions you can begin looking at correlations between different parameters You can identify patterns that emerge around common characteristics or trends within areas or across markets over time when you have gathered sufficient historical data:

    • Does higher out of pocket limits tend to come with higher premiums?
    • Are there more multi-state markets in some states than others?
    • What type of metal levels does each region prefer?

    Research Ideas

    • Examining the impacts of age, metal levels and plan benefits on insurance rates in different states.
    • Analyzing how dental plans vary across different states/regions and examining whether there are correlations between affordability and quality of care among plans with dental coverage options.
    • Investigating how the Crosswalk level affects insurance rates by comparing insurance premiums from different metals level across states with varying Crosswalk Levels (e.g., how does a Bronze plan differ in cost for two states with differing Crosswalk Level 1 vs 2)

    Acknowledgements

    If you use this dataset in your research, please credit the original authors. Data Source

    License

    License: Dataset copyright by authors - You are free to: - Share - copy and redistribute the material in any medium or format for any purpose, even commercially. - Adapt - remix, transform, and build upon the material for any purpose, even commercially. - You must: - Give appropriate credit - Provide a link to the license, and indicate if changes were made. - ShareAlike - You must distribute your contributions under the same license as the original. - Keep intact - all notices that refer to this license, including copyright notices.

    Columns

    File: Crosswalk2016.csv | Column name | Description | |:------------------------------|:------------------------------------------------------------------------------------------------------------------------------| | State | The state in which...

  15. IPPS DRG Provider Summary

    • kaggle.com
    zip
    Updated Jan 23, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    The Devastator (2023). IPPS DRG Provider Summary [Dataset]. https://www.kaggle.com/datasets/thedevastator/ipps-drg-provider-summary
    Explore at:
    zip(8432015 bytes)Available download formats
    Dataset updated
    Jan 23, 2023
    Authors
    The Devastator
    License

    Open Database License (ODbL) v1.0https://www.opendatacommons.org/licenses/odbl/1.0/
    License information was derived automatically

    Description

    IPPS DRG Provider Summary

    Average Discharges, Charges, and Medicare Payments

    By Health [source]

    About this dataset

    This dataset is a valuable resource for gaining insight into Inpatient Prospective Payment System (IPPS) utilization, average charges and average Medicare payments across the top 100 Diagnosis-Related Groups (DRG). With column categories such as DRG Definition, Hospital Referral Region Description, Total Discharges, Average Covered Charges, Average Medicare Payments and Average Medicare Payments 2 this dataset enables researchers to discover and assess healthcare trends in areas such as provider payment comparsons by geographic location or compare service cost across hospital. Visualize the data using various methods to uncover unique information and drive further hospital research

    More Datasets

    For more datasets, click here.

    Featured Notebooks

    • 🚨 Your notebook can be here! 🚨!

    How to use the dataset

    This dataset provides a provider level summary of Inpatient Prospective Payment System (IPPS) discharges, average charges and average Medicare payments for the Top 100 Diagnosis-Related Groups (DRG). This data can be used to analyze cost and utilization trends across hospital DRGs.

    To make the most use of this dataset, here are some steps to consider:

    • Understand what each column means in the table: Each column provides different information from the DRG Definition to Hospital Referral Region Description and Average Medicare Payments.
    • Analyze the data by looking for patterns amongst the relevant columns: Compare different aspects such as total discharges or average Medicare payments by hospital referral region or DRG Definition. This can help identify any potential trends amongst different categories within your analysis.
    • Generate visualizations: Create charts, graphs, or maps that display your data in an easy-to-understand format using tools such as Microsoft Excel or Tableau. Such visuals may reveal more insights into patterns within your data than simply reading numerical values on a spreadsheet could provide alone.

    Research Ideas

    • Identifying potential areas of cost savings by drilling down to particular DRGs and hospital regions with the highest average covered charges compared to average Medicare payments.
    • Establishing benchmarks for typical charges and payments across different DRGs and hospital regions to help providers set market-appropriate prices.
    • Analyzing trends in total discharges, charges and Medicare payments over time, allowing healthcare organizations to measure their performance against regional peers

    Acknowledgements

    If you use this dataset in your research, please credit the original authors. Data Source

    License

    License: Open Database License (ODbL) v1.0 - You are free to: - Share - copy and redistribute the material in any medium or format. - Adapt - remix, transform, and build upon the material for any purpose, even commercially. - You must: - Give appropriate credit - Provide a link to the license, and indicate if changes were made. - ShareAlike - You must distribute your contributions under the same license as the original. - Keep intact - all notices that refer to this license, including copyright notices. - No Derivatives - If you remix, transform, or build upon the material, you may not distribute the modified material. - No additional restrictions - You may not apply legal terms or technological measures that legally restrict others from doing anything the license permits.

    Columns

    File: 97k6-zzx3.csv | Column name | Description | |:-----------------------------------------|:------------------------------------------------------| | drg_definition | Diagnosis-Related Group (DRG) definition. (String) | | average_medicare_payments | Average Medicare payments for each DRG. (Numeric) | | hospital_referral_region_description | Description of the hospital referral region. (String) | | total_discharges | Total number of discharges for each DRG. (Numeric) | | average_covered_charges | Average covered charges for each DRG. (Numeric) | | average_medicare_payments_2 | Average Medicare payments for each DRG. (Numeric) |

    **File: Inpatient_Prospective_Payment_System_IPPS_Provider_Summary_for_the_Top_100_Diagnosis-Related_Groups_DRG...

  16. Medicare and Medicaid Services

    • kaggle.com
    zip
    Updated Apr 22, 2020
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Google BigQuery (2020). Medicare and Medicaid Services [Dataset]. https://www.kaggle.com/datasets/bigquery/sdoh-hrsa-shortage-areas
    Explore at:
    zip(0 bytes)Available download formats
    Dataset updated
    Apr 22, 2020
    Dataset provided by
    BigQueryhttps://cloud.google.com/bigquery
    Authors
    Google BigQuery
    Description

    Context

    This public dataset was created by the Centers for Medicare & Medicaid Services. The data summarize counts of enrollees who are dually-eligible for both Medicare and Medicaid program, including those in Medicare Savings Programs. “Duals” represent 20 percent of all Medicare beneficiaries, yet they account for 34 percent of all spending by the program, according to the Commonwealth Fund . As a representation of this high-needs, high-cost population, these data offer a view of regions ripe for more intensive care coordination that can address complex social and clinical needs. In addition to the high cost savings opportunity to deliver upstream clinical interventions, this population represents the county-by-county volume of patients who are eligible for both state level (Medicaid) and federal level (Medicare) reimbursements and potential funding streams to address unmet social needs across various programs, waivers, and other projects. The dataset includes eligibility type and enrollment by quarter, at both the state and county level. These data represent monthly snapshots submitted by states to the CMS, which are inherently lower than ever-enrolled counts (which include persons enrolled at any time during a calendar year.) For more information on dually eligible beneficiaries

    Querying BigQuery tables

    You can use the BigQuery Python client library to query tables in this dataset in Kernels. Note that methods available in Kernels are limited to querying data. Tables are at bigquery-public-data.sdoh_cms_dual_eligible_enrollment.

    Sample Query

    In what counties in Michigan has the number of dual-eligible individuals increased the most from 2015 to 2018? Find the counties in Michigan which have experienced the largest increase of dual enrollment households

    duals_Jan_2015 AS ( SELECT Public_Total AS duals_2015, County_Name, FIPS FROM bigquery-public-data.sdoh_cms_dual_eligible_enrollment.dual_eligible_enrollment_by_county_and_program WHERE State_Abbr = "MI" AND Date = '2015-12-01' ),

    duals_increase AS ( SELECT d18.FIPS, d18.County_Name, d15.duals_2015, d18.duals_2018, (d18.duals_2018 - d15.duals_2015) AS total_duals_diff FROM duals_Jan_2018 d18 JOIN duals_Jan_2015 d15 ON d18.FIPS = d15.FIPS )

    SELECT * FROM duals_increase WHERE total_duals_diff IS NOT NULL ORDER BY total_duals_diff DESC

  17. r

    Outpatient Lab Results Claims and Encounters

    • redivis.com
    • stanford.redivis.com
    Updated Sep 15, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Stanford Center for Population Health Sciences (2025). Outpatient Lab Results Claims and Encounters [Dataset]. https://redivis.com/datasets/jv2x-25dm36err
    Explore at:
    Dataset updated
    Sep 15, 2025
    Dataset authored and provided by
    Stanford Center for Population Health Sciences
    Time period covered
    2018 - 2023
    Description

    The table Outpatient Lab Results Claims and Encounters is part of the dataset MarketScan Medicare Supplemental, available at https://stanford.redivis.com/datasets/jv2x-25dm36err. It contains 152552087 rows across 44 variables.

  18. Data from: Medicare Spending per Beneficiary

    • kaggle.com
    zip
    Updated Jan 22, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    The Devastator (2023). Medicare Spending per Beneficiary [Dataset]. https://www.kaggle.com/datasets/thedevastator/medicare-spending-per-beneficiary
    Explore at:
    zip(31096 bytes)Available download formats
    Dataset updated
    Jan 22, 2023
    Authors
    The Devastator
    Description

    Medicare Spending per Beneficiary

    Detailed Hospital Expense Breakdown

    By Health [source]

    About this dataset

    This file allows healthcare executives and analysts to make informed decisions regarding how well continued improvements are being made over time so that they can understand how efficient they are fulfilling treatments while staying within budgetary constraints. Additionally, it’ll also help them map out trends amongst different hospitals and spot anomalies that could indicate areas where decisions should be reassessed as needed

    More Datasets

    For more datasets, click here.

    Featured Notebooks

    • 🚨 Your notebook can be here! 🚨!

    How to use the dataset

    This dataset can provide valuable insights into how Medicare is spending per patient at specific hospitals in the United States. It can be used to gain a better understanding of the types of services covered under Medicare, and to what extent those services are being used. By comparing the average Medicare spending across different hospitals, users can also gain insight into potential disparities in care delivery or availability.

    To use this dataset, first identify which hospital you are interested in analyzing. Then locate the row for that hospital in the dataset and review its associated values: value, footnote (optional), and start/end dates (optional). The Value column refers to how much Medicare spends on each particular patient; this is a numerical value represented as a decimal number up to 6 decimal places. The Footnote (optional) provides more information about any special circumstances that may need attention when interpreting the value data points. Finally, if Start Date and End Date fields are present they will specify over what timeframe these values were aggregated over.

    Once all relevant data elements have been reviewed successively for all hospitals of interest then comparison analysis among them can be conducted based on Value, Footnote or Start/End dates as necessary to answer specific research questions or formulate conclusions about how Medicare is spending per patient at various hospitals nationwide

    Research Ideas

    • Developing a cost comparison tool for hospitals that allows patients to compare how much Medicare spends per patient across different hospitals.
    • Creating an algorithm to help predict Medicare spending at different facilities over time and build strategies on how best to manage those costs.
    • Identifying areas in which a hospital can save money by reducing unnecessary spending in order to reduce overall Medicare expenses

    Acknowledgements

    If you use this dataset in your research, please credit the original authors. Data Source

    License

    License: Dataset copyright by authors - You are free to: - Share - copy and redistribute the material in any medium or format for any purpose, even commercially. - Adapt - remix, transform, and build upon the material for any purpose, even commercially. - You must: - Give appropriate credit - Provide a link to the license, and indicate if changes were made. - ShareAlike - You must distribute your contributions under the same license as the original. - Keep intact - all notices that refer to this license, including copyright notices.

    Columns

    File: Medicare_hospital_spending_per_patient_Medicare_Spending_per_Beneficiary_Additional_Decimal_Places.csv | Column name | Description | |:---------------|:--------------------------------------------------------------------------------------| | Value | The amount of Medicare spending per patient for a given hospital or region. (Numeric) | | Footnote | Any additional notes or information related to the value. (Text) | | Start_Date | The start date of the period for which the value applies. (Date) | | End_Date | The end date of the period for which the value applies. (Date) |

    Acknowledgements

    If you use this dataset in your research, please credit the original authors. If you use this dataset in your research, please credit Health.

  19. Health Insurance Marketplaces

    • kaggle.com
    zip
    Updated Jan 23, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    The Devastator (2023). Health Insurance Marketplaces [Dataset]. https://www.kaggle.com/datasets/thedevastator/health-insurance-marketplaces
    Explore at:
    zip(15726377 bytes)Available download formats
    Dataset updated
    Jan 23, 2023
    Authors
    The Devastator
    Description

    Health Insurance Marketplaces

    Rates, Benefits, Coverage and Networks

    By Data Society [source]

    About this dataset

    Do you want to explore the complexities of Health Insurance Marketplace and uncover insights into plan rates, benefits, and networks? Look no further! With this dataset from the Centers for Medicare & Medicaid Services (CMS), you can investigate trends in plan rates, access coverage across states and zip codes, compare metal level plans (across years), as well as analyze benefit information all in one place.

    We’ve provided six CSV files containing combined data from across all years: BenefitsCostSharing.csv provides details on benefits, BusinessRules.csv provides details about premium payment requirements for a plan or set of plans, Network.csv offers details about health plans’ networks of providers who offer services at different cost levels to members enrolled in a given plan or set of plans; PlanAttributes.csv gives attributes like age off dates for various plans; Rate.csv delivers information on rate changes; ServiceArea.csv reveals demographic characteristics related to each service area associated with a specific issuer and two CSV files that join data across years (Crosswalk2015 & Crosswalk2016).

    So come on board and use your creativity to unlock the mysteries behind changes in benefits in relation to costs while exploring network providers within different regions!!!

    More Datasets

    For more datasets, click here.

    Featured Notebooks

    • 🚨 Your notebook can be here! 🚨!

    How to use the dataset

    This dataset contains information about the health insurance plans offered in the US Health Insurance Marketplace. It includes data on plan benefits, cost-sharing, networks, rates and service areas for different states. The data can be used to compare and analyze plan characteristics across different states and ages which will help guide users decision making when purchasing a health insurance plan.

    To begin using the dataset, you should start by looking at the columns available. These include State, Dental Plan, Multistate Plan (2015 & 2016), Metal Level (2015 & 2016), Child/Adult Only (2015 & 2016), FIPS Code, Zip Code Crosswalk Level, Reason for Crosswalk, Multistate Plan Ageoff (2016 & 2015) and MetalLevel Ageoff (2016 & 2015). These columns provide important information on each plan that can be used to compare them across states or between years.

    Using this data you can explore several interesting questions such as: How do benefit levels vary among states? Are there any differences in network providers between states? What factors influence plan rates?

    In order to answer these questions you should join together relevant tables from across years using Crosswalk 2015/2016 CSV files then organize your data accordingly so that it is easier to visualize differences in features between plans sold across different states or years. Once the information is organized it might be helpful to use visualizations such as line graphs or bar charts to view comparison between feature values of two plans versus one another more clearly in order differentiate variations of plans among Consumers.

    By doing this you can gain a better understanding of how certain factors may affect rate changes over time or how certain benefit levels might differ by state which will allow Consumers make an informed choice when selecting their next health insurance plan

    Research Ideas

    • Analyzing the effectiveness of different plan benefits and how they affect premiums to determine a fair price point for different types of healthcare plans.
    • Examining the variation in rates, benefits and coverage by state or zip code to identify potential trends or disparities in access to quality health care services across regions.
    • Developing an algorithm that can predict premium prices based on certain factors such as age groups, type of plan (metal levels), multistate coverage, etc., to help consumers more easily understand the true cost of their health insurance plans before committing to purchase them

    Acknowledgements

    If you use this dataset in your research, please credit the original authors. Data Source

    License

    License: Dataset copyright by authors - You are free to: - Share - copy and redistribute the material in any medium or format for any purpose, even commercially. - Adapt - remix, transform, and build upon the material for any purpose, even commercially. - You must: - Give appropriate credit -...

  20. CMS Opt Out Affidavits

    • kaggle.com
    zip
    Updated Apr 15, 2019
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Centers for Medicare & Medicaid Services (2019). CMS Opt Out Affidavits [Dataset]. https://www.kaggle.com/cms/cms-opt-out-affidavits
    Explore at:
    zip(931160 bytes)Available download formats
    Dataset updated
    Apr 15, 2019
    Dataset authored and provided by
    Centers for Medicare & Medicaid Services
    Description

    Content

    A list of practitioners who have opted out of Medicare.*

    Source: Provider Enrollment, Chain and Ownership System (PECOS) as of January 31st, 2019

    Context

    This is a dataset hosted by the Centers for Medicare & Medicaid Services (CMS). The organization has an open data platform found here and they update their information according the amount of data that is brought in. Explore CMS's Data using Kaggle and all of the data sources available through the CMS organization page!

    • Update Frequency: This dataset is updated daily.

    Acknowledgements

    This dataset is maintained using Socrata's API and Kaggle's API. Socrata has assisted countless organizations with hosting their open data and has been an integral part of the process of bringing more data to the public.

    Cover photo by Hutomo Abrianto on Unsplash
    Unsplash Images are distributed under a unique Unsplash License.

    This dataset is distributed under NA

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Google BigQuery (2020). cms-medicare [Dataset]. https://www.kaggle.com/datasets/bigquery/cms-medicare
Organization logo

cms-medicare

Hospital General Information (List of hospitals registered with Medicare)

Explore at:
zip(0 bytes)Available download formats
Dataset updated
Apr 21, 2020
Dataset provided by
BigQueryhttps://cloud.google.com/bigquery
Authors
Google BigQuery
Description

Context

This dataset contains Hospital General Information from the U.S. Department of Health & Human Services. This is the BigQuery COVID-19 public dataset. This data contains a list of all hospitals that have been registered with Medicare. This list includes addresses, phone numbers, hospital types and quality of care information. The quality of care data is provided for over 4,000 Medicare-certified hospitals, including over 130 Veterans Administration (VA) medical centers, across the country. You can use this data to find hospitals and compare the quality of their care

Querying BigQuery tables

You can use the BigQuery Python client library to query tables in this dataset in Kernels. Note that methods available in Kernels are limited to querying data. Tables are at bigquery-public-data.cms_medicare.hospital_general_info.

Sample Query

How do the hospitals in Mountain View, CA compare to the average hospital in the US? With the hospital compare data you can quickly understand how hospitals in one geographic location compare to another location. In this example query we compare Google’s home in Mountain View, California, to the average hospital in the United States. You can also modify the query to learn how the hospitals in your city compare to the US national average.

“#standardSQL SELECT MTV_AVG_HOSPITAL_RATING, US_AVG_HOSPITAL_RATING FROM ( SELECT ROUND(AVG(CAST(hospital_overall_rating AS int64)),2) AS MTV_AVG_HOSPITAL_RATING FROM bigquery-public-data.cms_medicare.hospital_general_info WHERE city = 'MOUNTAIN VIEW' AND state = 'CA' AND hospital_overall_rating <> 'Not Available') MTV JOIN ( SELECT ROUND(AVG(CAST(hospital_overall_rating AS int64)),2) AS US_AVG_HOSPITAL_RATING FROM bigquery-public-data.cms_medicare.hospital_general_info WHERE hospital_overall_rating <> 'Not Available') ON 1 = 1”

What are the most common diseases treated at hospitals that do well in the category of patient readmissions? For hospitals that achieved “Above the national average” in the category of patient readmissions, it might be interesting to review the types of diagnoses that are treated at those inpatient facilities. While this query won’t provide the granular detail that went into the readmission calculation, it gives us a quick glimpse into the top disease related groups (DRG)
, or classification of inpatient stays that are found at those hospitals. By joining the general hospital information to the inpatient charge data, also provided by CMS, you could quickly identify DRGs that may warrant additional research. You can also modify the query to review the top diagnosis related groups for hospital metrics you might be interested in. “#standardSQL SELECT drg_definition, SUM(total_discharges) total_discharge_per_drg FROM bigquery-public-data.cms_medicare.hospital_general_info gi INNER JOIN bigquery-public-data.cms_medicare.inpatient_charges_2015 ic ON gi.provider_id = ic.provider_id WHERE readmission_national_comparison = 'Above the national average' GROUP BY drg_definition ORDER BY total_discharge_per_drg DESC LIMIT 10;”

Search
Clear search
Close search
Google apps
Main menu