Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset tabulates the Brownstown population distribution across 18 age groups. It lists the population in each age group along with the percentage population relative of the total population for Brownstown. The dataset can be utilized to understand the population distribution of Brownstown by age. For example, using this dataset, we can identify the largest age group in Brownstown.
Key observations
The largest age group in Brownstown, IN was for the group of age 70-74 years with a population of 384 (12.77%), according to the 2021 American Community Survey. At the same time, the smallest age group in Brownstown, IN was the 80-84 years with a population of 82 (2.73%). Source: U.S. Census Bureau American Community Survey (ACS) 2017-2021 5-Year Estimates.
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2017-2021 5-Year Estimates.
Age groups:
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for Brownstown Population by Age. You can refer the same here
Facebook
TwitterWelcome to the Kaggle dataset on The Impact of COVID-19 on Veterans in the United States! This dataset contains data on confirmed cases of COVID-19 in counties across the United States, as well as information on the percentage of each county's population that are veterans. With this dataset, you can investigate how the pandemic has impacted veterans specifically, and compare veteran case rates to the general population. How do veteran cases differ across age groups? Are there any geographical patterns? What can we learn about risk factors for COVID-19 among veterans? Download the dataset and explore for yourself today!
This dataset includes information on the number of confirmed cases of COVID-19 by county, as well as the percentage of the population in each county that are veterans. This data can be used to examine the relationship between veteran cases and the proportion of population who are veterans.
To do this, simply look at the 'CASES' and 'VET_CASES' columns for each county. The 'CASES' column represents the total number of confirmed cases of COVID-19 in that county, while the 'VET_CASES' column represents the number of confirmed cases among veterans. To compare these two values, simply divide 'VET_CASES' by 'CASES'. This will give you a ratio of veteran cases to total cases for each county.
You can then use this ratio to compare counties and see which ones have a higher proportion of veteran cases. This data can be used to help understand where more outreach may be needed to support veterans during this pandemic
File: CountyVACOVID.csv | Column name | Description | |:---------------------------|:-----------------------------------------------------------------------------------------------------------------------| | FIPS | Federal Information Processing Standards code that uniquely identifies counties within the USA. (String) | | COUNTY | County name. (String) | | STATE | State name. (String) | | POP | County population. (Integer) | | VETS | Number of veterans in the county. (Integer) | | VET_PERCENT | Percentage of the population that are veterans. (Float) | | CASES | Number of confirmed cases of COVID-19 in the county. (Integer) | | YESTER_CASES | Number of confirmed cases of COVID-19 in the county from the previous day. (Integer) | | VET_CASES | Number of confirmed cases of COVID-19 in veterans in the county. (Integer) | | VET_YESTER | Number of confirmed cases of COVID-19 in veterans in the county from the previous day. (Integer) | | LOWER_Hospitalizations | Lower bound of the 95% confidence interval for the number of hospitalizations due to COVID-19 in the county. (Integer) | | UPPER_Hospitalizations | Upper bound of the 95% confidence interval for the number of hospitalizations due to COVID-19 in the county. (Integer) | | DATE | Date of data. (Date) |
File: VAChart.csv | Column name | Description | |:------------------------|:----------------------------------------------------------------------------------| | DATE | Date of data. (Date) | | US Cases | The number of confirmed cases of COVID-19 in the United States. (Integer) | | **New US ...
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset tabulates the United States population over the last 20 plus years. It lists the population for each year, along with the year on year change in population, as well as the change in percentage terms for each year. The dataset can be utilized to understand the population change of United States across the last two decades. For example, using this dataset, we can identify if the population is declining or increasing. If there is a change, when the population peaked, or if it is still growing and has not reached its peak. We can also compare the trend with the overall trend of United States population over the same period of time.
Key observations
In 2022, the population of United States was 333,287,557, a 0.38% increase year-by-year from 2021. Previously, in 2021, United States population was 332,031,554, an increase of 0.16% compared to a population of 331,511,512 in 2020. Over the last 20 plus years, between 2000 and 2022, population of United States increased by 51,125,146. In this period, the peak population was 333,287,557 in the year 2022. The numbers suggest that the population has not reached its peak yet and is showing a trend of further growth. Source: U.S. Census Bureau Population Estimates Program (PEP).
When available, the data consists of estimates from the U.S. Census Bureau Population Estimates Program (PEP).
Data Coverage:
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for United States Population by Year. You can refer the same here
Facebook
TwitterBy Danny [source]
This dataset contains US county-level demographic data from 2016, giving insight into the health and economic conditions of counties in the United States. Aggregated and filtered from various sources such as the US Census Small Area Income and Poverty Estimates (SAIPE) Program, American Community Survey, CDC National Center for Health Statistics, and more, this comprehensive dataset provides information on population as well as desert population for each county. Additionally, data is split between metropolitan and nonmetropolitan areas according to the Office of Management and Budget's 2013 classification scheme. Valuable information pertaining to infant mortality rates and total population are also included in this detailed set of data. Use this dataset to gain a better understanding of one of our nation's most essential regions
For more datasets, click here.
- 🚨 Your notebook can be here! 🚨!
- Look at the information within the 'About this Dataset' section to have an understanding of what data sources were used to create this dataset as well as any transformations that may have been done while creating it.
- Familiarize yourself with the columns provided in the data set to understand what information is available for each county such as total population (totpop), parental education level (educationLvl), median household income (medianIncome), etc.,
- Use a combination of filtering and sorting techniques to narrow down results and focus in on more specific county demographics that you are looking for such as total households living below poverty line by state or median household income per capita between two counties etc.,
- Keep in mind any additional transformations/simplifications/aggregations done during step 2 when using your data for analysis. For example, if certain variables were pivoted during step two from being rows into columns because it was easier to work with multiple years of income levels by having them all consolidated into one column then be aware that some states may not appear in all records due to those transformations being applied differently between regions which could result in missing values or other inconsistencies when doing downstream analysis on your selected variables.
- Utilize resources such as Wikipedia and government census estimates if you need more detailed information surrounding these demographic characteristics beyond what's available within our current dataset – these can be helpful when conducting further research outside of solely relying on our provided spreadsheet values alone!
- Creating a US county-level heat map of infant mortality rates, offering insight into which areas are most at risk for poor health outcomes.
- Generating predictive models from the population data to anticipate and prepare for future population trends in different states or regions.
- Developing an interactive web-based tool for school districts to explore potential impacts of student mobility on their area's population stability and diversity
If you use this dataset in your research, please credit the original authors. Data Source
License: Dataset copyright by authors - You are free to: - Share - copy and redistribute the material in any medium or format for any purpose, even commercially. - Adapt - remix, transform, and build upon the material for any purpose, even commercially. - You must: - Give appropriate credit - Provide a link to the license, and indicate if changes were made. - ShareAlike - You must distribute your contributions under the same license as the original. - Keep intact - all notices that refer to this license, including copyright notices.
File: Food Desert.csv | Column name | Description | |:--------------------|:----------------------------------------------------------------------------------| | year | The year the data was collected. (Integer) | | fips | The Federal Information Processing Standard (FIPS) code for the county. (Integer) | | state_fips | The FIPS code for the state. (Integer) | | county_fips | The FIPS code for the county. (Integer)...
Facebook
TwitterThis dataset presents a rich collection of physicochemical parameters from 147 reservoirs distributed across the conterminous U.S. One hundred and eight of the reservoirs were selected using a statistical survey design and can provide unbiased inferences to the condition of all U.S. reservoirs. These data could be of interest to local water management specialists or those assessing the ecological condition of reservoirs at the national scale. These data have been reviewed in accordance with U.S. Environmental Protection Agency policy and approved for publication. This dataset is not publicly accessible because: It is too large. It can be accessed through the following means: https://portal-s.edirepository.org/nis/mapbrowse?scope=edi&identifier=2033&revision=1. Format: This dataset presents water quality and related variables for 147 reservoirs distributed across the U.S. Water quality parameters were measured during the summers of 2016, 2018, and 2020 – 2023. Measurements include nutrient concentration, algae abundance, dissolved oxygen concentration, and water temperature, among many others. Dataset includes links to other national and global scale data sets that provide additional variables.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
This list ranks the 51 states in the United States by Some Other Race (SOR) population, as estimated by the United States Census Bureau. It also highlights population changes in each states over the past five years.
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 5-Year Estimates, including:
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
Facebook
TwitterProject Tycho datasets contain case counts for reported disease conditions for countries around the world. The Project Tycho data curation team extracts these case counts from various reputable sources, typically from national or international health authorities, such as the US Centers for Disease Control or the World Health Organization. These original data sources include both open- and restricted-access sources. For restricted-access sources, the Project Tycho team has obtained permission for redistribution from data contributors. All datasets contain case count data that are identical to counts published in the original source and no counts have been modified in any way by the Project Tycho team. The Project Tycho team has pre-processed datasets by adding new variables, such as standard disease and location identifiers, that improve data interpretability. We also formatted the data into a standard data format.
Each Project Tycho dataset contains case counts for a specific condition (e.g. measles) and for a specific country (e.g. The United States). Case counts are reported per time interval. In addition to case counts, datasets include information about these counts (attributes), such as the location, age group, subpopulation, diagnostic certainty, place of acquisition, and the source from which we extracted case counts. One dataset can include many series of case count time intervals, such as "US measles cases as reported by CDC", or "US measles cases reported by WHO", or "US measles cases that originated abroad", etc.
Depending on the intended use of a dataset, we recommend a few data processing steps before analysis: - Analyze missing data: Project Tycho datasets do not include time intervals for which no case count was reported (for many datasets, time series of case counts are incomplete, due to incompleteness of source documents) and users will need to add time intervals for which no count value is available. Project Tycho datasets do include time intervals for which a case count value of zero was reported. - Separate cumulative from non-cumulative time interval series. Case count time series in Project Tycho datasets can be "cumulative" or "fixed-intervals". Cumulative case count time series consist of overlapping case count intervals starting on the same date, but ending on different dates. For example, each interval in a cumulative count time series can start on January 1st, but end on January 7th, 14th, 21st, etc. It is common practice among public health agencies to report cases for cumulative time intervals. Case count series with fixed time intervals consist of mutually exclusive time intervals that all start and end on different dates and all have identical length (day, week, month, year). Given the different nature of these two types of case count data, we indicated this with an attribute for each count value, named "PartOfCumulativeCountSeries".
Facebook
TwitterBy Substance Abuse and Mental Health Services Organization [source]
This dataset contains estimates of serious mental illness in the US by state and substate region from 2012-2014. This data helps to understand better the mental health disparities that exist between states and different regions within states. By looking at this data, researchers can identify the parts of the country with particularly high or low rates of serious mental illness, which can help prioritize resources for affected areas.
The dataset includes estimates along with 95% confidence intervals based on a survey-weighted hierarchical Bayes estimation approach and are generated by Markov Chain Monte Carlo techniques. Columns labeled Map Group can be used to distinguish substate regions included in corresponding maps as well as numerical order for sorting original sort order. For definitions in Substate Region, refer to the National Survey on Drug Use and Health's Substate Region Definitions found here: https://www.samhsa.gov/data/sites/default/files/NSDUHsubstateRegionDefs2014/NSDUHsubstateRegionDefs2014.pdf
This reliable information is provided by SAMHSA, Center for Behavioral Health Statistics and Quality through their National Survey on Drug Use and Health from 2012-2014; helping us gain insights into America’s overall mental health picture – revealing more about where help is needed most urgently so that we can take steps towards a healthier future for all Americans!
For more datasets, click here.
- 🚨 Your notebook can be here! 🚨!
Welcome to this dataset! This dataset contains estimates of Serious Mental Illnesses in the United States by state and substate region from 2012 to 2014. It is designed for researchers, analysts, and data scientists looking for information about the prevalence of Serious Mental Illnesses across the US.
- Performing a trend analysis to identify changes in the estimates of serious mental illnesses over time and across different geographic regions.
- Exploring disparities in serious mental illnesses among certain minority groups or deprived socio-economic subgroups by comparing estimates at the substate level.
- Developing targeted public health strategies and interventions for states with higher than average rates of serious mental illness prevalence
If you use this dataset in your research, please credit the original authors. Data Source
License: Dataset copyright by authors - You are free to: - Share - copy and redistribute the material in any medium or format for any purpose, even commercially. - Adapt - remix, transform, and build upon the material for any purpose, even commercially. - You must: - Give appropriate credit - Provide a link to the license, and indicate if changes were made. - ShareAlike - You must distribute your contributions under the same license as the original. - Keep intact - all notices that refer to this license, including copyright notices.
File: 2012-2014_Substate_SAE_Table_24.csv | Column name | Description | |:--------------------|:----------------------------------------------------------------------------------------------------------------------------------------------| | Order | A numerical order that can be used to sort the data back to its original order. (Numeric) | | State | The US state associated with the data. (String) | | Substate Region | The substate region associated with the data. (String) | | 95% CI (Lower) | The lower bound of the 95 percent confidence interval for the estimated number of people with serious mental illness in the region. (Numeric) | | 95% CI (Upper) | The upper bound of the 95 percent confidence interval for the estimated number of people with serious mental illness in the region. (Numeric) | | Map Group | A numerical value which can distinguish between different substate regions included in the maps. (Numeric) |
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset tabulates the Azusa population distribution across 18 age groups. It lists the population in each age group along with the percentage population relative of the total population for Azusa. The dataset can be utilized to understand the population distribution of Azusa by age. For example, using this dataset, we can identify the largest age group in Azusa.
Key observations
The largest age group in Azusa, CA was for the group of age 20 to 24 years years with a population of 4,973 (10.08%), according to the ACS 2019-2023 5-Year Estimates. At the same time, the smallest age group in Azusa, CA was the 85 years and over years with a population of 407 (0.83%). Source: U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates
Age groups:
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for Azusa Population by Age. You can refer the same here
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Project Tycho datasets contain case counts for reported disease conditions for countries around the world. The Project Tycho data curation team extracts these case counts from various reputable sources, typically from national or international health authorities, such as the US Centers for Disease Control or the World Health Organization. These original data sources include both open- and restricted-access sources. For restricted-access sources, the Project Tycho team has obtained permission for redistribution from data contributors. All datasets contain case count data that are identical to counts published in the original source and no counts have been modified in any way by the Project Tycho team. The Project Tycho team has pre-processed datasets by adding new variables, such as standard disease and location identifiers, that improve data interpretability. We also formatted the data into a standard data format.
Each Project Tycho dataset contains case counts for a specific condition (e.g. measles) and for a specific country (e.g. The United States). Case counts are reported per time interval. In addition to case counts, datasets include information about these counts (attributes), such as the location, age group, subpopulation, diagnostic certainty, place of acquisition, and the source from which we extracted case counts. One dataset can include many series of case count time intervals, such as "US measles cases as reported by CDC", or "US measles cases reported by WHO", or "US measles cases that originated abroad", etc.
Depending on the intended use of a dataset, we recommend a few data processing steps before analysis: - Analyze missing data: Project Tycho datasets do not include time intervals for which no case count was reported (for many datasets, time series of case counts are incomplete, due to incompleteness of source documents) and users will need to add time intervals for which no count value is available. Project Tycho datasets do include time intervals for which a case count value of zero was reported. - Separate cumulative from non-cumulative time interval series. Case count time series in Project Tycho datasets can be "cumulative" or "fixed-intervals". Cumulative case count time series consist of overlapping case count intervals starting on the same date, but ending on different dates. For example, each interval in a cumulative count time series can start on January 1st, but end on January 7th, 14th, 21st, etc. It is common practice among public health agencies to report cases for cumulative time intervals. Case count series with fixed time intervals consist of mutually exclusive time intervals that all start and end on different dates and all have identical length (day, week, month, year). Given the different nature of these two types of case count data, we indicated this with an attribute for each count value, named "PartOfCumulativeCountSeries".
Facebook
TwitterProject Tycho datasets contain case counts for reported disease conditions for countries around the world. The Project Tycho data curation team extracts these case counts from various reputable sources, typically from national or international health authorities, such as the US Centers for Disease Control or the World Health Organization. These original data sources include both open- and restricted-access sources. For restricted-access sources, the Project Tycho team has obtained permission for redistribution from data contributors. All datasets contain case count data that are identical to counts published in the original source and no counts have been modified in any way by the Project Tycho team. The Project Tycho team has pre-processed datasets by adding new variables, such as standard disease and location identifiers, that improve data interpretability. We also formatted the data into a standard data format.
Each Project Tycho dataset contains case counts for a specific condition (e.g. measles) and for a specific country (e.g. The United States). Case counts are reported per time interval. In addition to case counts, datasets include information about these counts (attributes), such as the location, age group, subpopulation, diagnostic certainty, place of acquisition, and the source from which we extracted case counts. One dataset can include many series of case count time intervals, such as "US measles cases as reported by CDC", or "US measles cases reported by WHO", or "US measles cases that originated abroad", etc.
Depending on the intended use of a dataset, we recommend a few data processing steps before analysis: - Analyze missing data: Project Tycho datasets do not include time intervals for which no case count was reported (for many datasets, time series of case counts are incomplete, due to incompleteness of source documents) and users will need to add time intervals for which no count value is available. Project Tycho datasets do include time intervals for which a case count value of zero was reported. - Separate cumulative from non-cumulative time interval series. Case count time series in Project Tycho datasets can be "cumulative" or "fixed-intervals". Cumulative case count time series consist of overlapping case count intervals starting on the same date, but ending on different dates. For example, each interval in a cumulative count time series can start on January 1st, but end on January 7th, 14th, 21st, etc. It is common practice among public health agencies to report cases for cumulative time intervals. Case count series with fixed time intervals consist of mutually exclusive time intervals that all start and end on different dates and all have identical length (day, week, month, year). Given the different nature of these two types of case count data, we indicated this with an attribute for each count value, named "PartOfCumulativeCountSeries".
Facebook
TwitterTHIS DATASET WAS LAST UPDATED AT 7:11 AM EASTERN ON DEC. 1
2019 had the most mass killings since at least the 1970s, according to the Associated Press/USA TODAY/Northeastern University Mass Killings Database.
In all, there were 45 mass killings, defined as when four or more people are killed excluding the perpetrator. Of those, 33 were mass shootings . This summer was especially violent, with three high-profile public mass shootings occurring in the span of just four weeks, leaving 38 killed and 66 injured.
A total of 229 people died in mass killings in 2019.
The AP's analysis found that more than 50% of the incidents were family annihilations, which is similar to prior years. Although they are far less common, the 9 public mass shootings during the year were the most deadly type of mass murder, resulting in 73 people's deaths, not including the assailants.
One-third of the offenders died at the scene of the killing or soon after, half from suicides.
The Associated Press/USA TODAY/Northeastern University Mass Killings database tracks all U.S. homicides since 2006 involving four or more people killed (not including the offender) over a short period of time (24 hours) regardless of weapon, location, victim-offender relationship or motive. The database includes information on these and other characteristics concerning the incidents, offenders, and victims.
The AP/USA TODAY/Northeastern database represents the most complete tracking of mass murders by the above definition currently available. Other efforts, such as the Gun Violence Archive or Everytown for Gun Safety may include events that do not meet our criteria, but a review of these sites and others indicates that this database contains every event that matches the definition, including some not tracked by other organizations.
This data will be updated periodically and can be used as an ongoing resource to help cover these events.
To get basic counts of incidents of mass killings and mass shootings by year nationwide, use these queries:
To get these counts just for your state:
Mass murder is defined as the intentional killing of four or more victims by any means within a 24-hour period, excluding the deaths of unborn children and the offender(s). The standard of four or more dead was initially set by the FBI.
This definition does not exclude cases based on method (e.g., shootings only), type or motivation (e.g., public only), victim-offender relationship (e.g., strangers only), or number of locations (e.g., one). The time frame of 24 hours was chosen to eliminate conflation with spree killers, who kill multiple victims in quick succession in different locations or incidents, and to satisfy the traditional requirement of occurring in a “single incident.”
Offenders who commit mass murder during a spree (before or after committing additional homicides) are included in the database, and all victims within seven days of the mass murder are included in the victim count. Negligent homicides related to driving under the influence or accidental fires are excluded due to the lack of offender intent. Only incidents occurring within the 50 states and Washington D.C. are considered.
Project researchers first identified potential incidents using the Federal Bureau of Investigation’s Supplementary Homicide Reports (SHR). Homicide incidents in the SHR were flagged as potential mass murder cases if four or more victims were reported on the same record, and the type of death was murder or non-negligent manslaughter.
Cases were subsequently verified utilizing media accounts, court documents, academic journal articles, books, and local law enforcement records obtained through Freedom of Information Act (FOIA) requests. Each data point was corroborated by multiple sources, which were compiled into a single document to assess the quality of information.
In case(s) of contradiction among sources, official law enforcement or court records were used, when available, followed by the most recent media or academic source.
Case information was subsequently compared with every other known mass murder database to ensure reliability and validity. Incidents listed in the SHR that could not be independently verified were excluded from the database.
Project researchers also conducted extensive searches for incidents not reported in the SHR during the time period, utilizing internet search engines, Lexis-Nexis, and Newspapers.com. Search terms include: [number] dead, [number] killed, [number] slain, [number] murdered, [number] homicide, mass murder, mass shooting, massacre, rampage, family killing, familicide, and arson murder. Offender, victim, and location names were also directly searched when available.
This project started at USA TODAY in 2012.
Contact AP Data Editor Justin Myers with questions, suggestions or comments about this dataset at jmyers@ap.org. The Northeastern University researcher working with AP and USA TODAY is Professor James Alan Fox, who can be reached at j.fox@northeastern.edu or 617-416-4400.
Facebook
Twitterhttp://www.gnu.org/licenses/old-licenses/gpl-2.0.en.htmlhttp://www.gnu.org/licenses/old-licenses/gpl-2.0.en.html
This dataset has records for the awarding of the United States Medal of Honor. The Medal of Honor is the United States of America’s highest military honor, awarded for personal acts of valor above and beyond the call of duty. The medal is awarded by the President of the United States in the name of the U.S. Congress to U.S. military personnel only. There are three versions of the medal, one for the Army, one for the Navy, and one for the Air Force.[5] Personnel of the Marine Corps and Coast Guard receive the Navy version. The dataset was collected from the official military site, and includes records about how the medal was awarded and characteristics of the recipient. Unfortunately, because of the nature of century-old record keeping, many of the records are incomplete. While a very interesting dataset, it does have some missing data.
| Key | List of... | Comment | Example Value |
|---|---|---|---|
| death | Boolean | $MISSING_FIELD | True |
| name | String | $MISSING_FIELD | "Sagelhurst, John C." |
| awarded.General Order number | Integer | $MISSING_FIELD | -1 |
| awarded.accredited to | String | $MISSING_FIELD | "" |
| awarded.citation | String | $MISSING_FIELD | "Under a heavy fire from the enemy carried off the field a commissioned officer who was severely wounded and also led a charge on the enemy's rifle pits." |
| awarded.issued | String | $MISSING_FIELD | "01/03/1906" |
| birth.location name | String | $MISSING_FIELD | "Buffalo, N.Y." |
| metadata.link | String | $MISSING_FIELD | "http://www.cmohs.org/recipient-detail/1176/sagelhurst-john-c.php" |
| military record.company | String | $MISSING_FIELD | "Company B" |
| military record.division | String | $MISSING_FIELD | "1st New Jersey Cavalry" |
| military record.entered service at | String | $MISSING_FIELD | "Buffalo, N.Y." |
| military record.organization | String | $MISSING_FIELD | "U.S. Army" |
| military record.rank | String | $MISSING_FIELD | "Sergeant" |
| awarded.date.day | Integer | $MISSING_FIELD | 6 |
| awarded.date.full | String | $MISSING_FIELD | "1865-2-6" |
| awarded.date.month | Integer | $MISSING_FIELD | 2 |
| awarded.date.year | Integer | $MISSING_FIELD | 1865 |
| awarded.location.latitude | Integer | $MISSING_FIELD | 38 |
| awarded.location.longitude | Integer | $MISSING_FIELD | -77 |
| awarded.location.name | String | $MISSING_FIELD | "Hatchers Run Court, Stafford, VA 22554, USA" |
| birth.date.day | Integer | $MISSING_FIELD | -1 |
| birth.date.month | Integer | $MISSING_FIELD | -1 |
| birth.date.year | Integer | $MISSING_FIELD | -1 |
Foto von Samuel Branch auf Unsplash
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset tabulates the Oklahoma population distribution across 18 age groups. It lists the population in each age group along with the percentage population relative of the total population for Oklahoma. The dataset can be utilized to understand the population distribution of Oklahoma by age. For example, using this dataset, we can identify the largest age group in Oklahoma.
Key observations
The largest age group in Oklahoma, PA was for the group of age 60 to 64 years years with a population of 154 (15.98%), according to the ACS 2018-2022 5-Year Estimates. At the same time, the smallest age group in Oklahoma, PA was the 85 years and over years with a population of 10 (1.04%). Source: U.S. Census Bureau American Community Survey (ACS) 2018-2022 5-Year Estimates
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2018-2022 5-Year Estimates
Age groups:
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for Oklahoma Population by Age. You can refer the same here
Facebook
TwitterBy Health [source]
The Behavioral Risk Factor Surveillance System (BRFSS) offers an expansive collection of data on the health-related quality of life (HRQOL) from 1993 to 2010. Over this time period, the Health-Related Quality of Life dataset consists of a comprehensive survey reflecting the health and well-being of non-institutionalized US adults aged 18 years or older. The data collected can help track and identify unmet population health needs, recognize trends, identify disparities in healthcare, determine determinants of public health, inform decision making and policy development, as well as evaluate programs within public healthcare services.
The HRQOL surveillance system has developed a compact set of HRQOL measures such as a summary measure indicating unhealthy days which have been validated for population health surveillance purposes and have been widely implemented in practice since 1993. Within this study's dataset you will be able to access information such as year recorded, location abbreviations & descriptions, category & topic overviews, questions asked in surveys and much more detailed information including types & units regarding data values retrieved from respondents along with their sample sizes & geographical locations involved!
For more datasets, click here.
- 🚨 Your notebook can be here! 🚨!
This dataset tracks the Health-Related Quality of Life (HRQOL) from 1993 to 2010 using data from the Behavioral Risk Factor Surveillance System (BRFSS). This dataset includes information on the year, location abbreviation, location description, type and unit of data value, sample size, category and topic of survey questions.
Using this dataset on BRFSS: HRQOL data between 1993-2010 will allow for a variety of analyses related to population health needs. The compact set of HRQOL measures can be used to identify trends in population health needs as well as determine disparities among various locations. Additionally, responses to survey questions can be used to inform decision making and program and policy development in public health initiatives.
- Analyzing trends in HRQOL over the years by location to identify disparities in health outcomes between different populations and develop targeted policy interventions.
- Developing new models for predicting HRQOL indicators at a regional level, and using this information to inform medical practice and public health implementation efforts.
- Using the data to understand differences between states in terms of their HRQOL scores and establish best practices for healthcare provision based on that understanding, including areas such as access to care, preventative care services availability, etc
If you use this dataset in your research, please credit the original authors. Data Source
See the dataset description for more information.
File: rows.csv | Column name | Description | |:-------------------------------|:----------------------------------------------------------| | Year | Year of survey. (Integer) | | LocationAbbr | Abbreviation of location. (String) | | LocationDesc | Description of location. (String) | | Category | Category of survey. (String) | | Topic | Topic of survey. (String) | | Question | Question asked in survey. (String) | | DataSource | Source of data. (String) | | Data_Value_Unit | Unit of data value. (String) | | Data_Value_Type | Type of data value. (String) | | Data_Value_Footnote_Symbol | Footnote symbol for data value. (String) | | Data_Value_Std_Err | Standard error of the data value. (Float) | | Sample_Size | Sample size used in sample. (Integer) | | Break_Out | Break out categories used. (String) | | Break_Out_Category | Type break out assessed. (String) | | **GeoLocation*...
Facebook
Twitterhttps://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
For a quick summary of the case study, please click "US Economy Powerpoint" and download the Powerpoint.
This dataset was inspired by rising prices for essential goods, the abnormally high inflation rate in March of 7.9 percent of this year, and the 30 trillion-dollar debt that we have. I was extremely curious to see how sustainable this is for the average American and if wages are increasing at the same rate to help combat this inflation. This is not politically driven in the slightest nor was this made to put the blame on Americans. This dataset was inspired by rising prices for essential goods and the abnormally high inflation rate in March of 7.9 percent of this year. I was extremely curious to see how sustainable this is for the average American and if wages are increasing at the same rate to help combat this inflation. This is not politically driven in the slightest nor was this made to put the blame on Americans. All of the datasets were obtained from third party sources websites such as https://dqydj.com/household-income-by-year/ and https://www.usinflationcalculator.com/inflation/historical-inflation-rates/ and only excluding https://fred.stlouisfed.org/series/ASPUS, which is first-party data.
This dataset was inspired by rising prices for essential goods and the abnormally high inflation rate in March of 7.9 percent of this year. I was extremely curious to see how sustainable this is for the average American and if wages are increasing at the same rate to help combat this inflation. This is not politically driven in the slightest nor was this made to put the blame on Americans. This dataset was inspired by rising prices for essential goods and the abnormally high inflation rate in March of 7.9 percent of this year. I was extremely curious to see how sustainable this is for the average American and if wages are increasing at the same rate to help combat this inflation. This is not politically driven in the slightest nor was this made to put the blame on Americans. All of the datasets were obtained from third party sources websites such as https://dqydj.com/household-income-by-year/ and https://www.usinflationcalculator.com/inflation/historical-inflation-rates/ and only excluding https://fred.stlouisfed.org/series/ASPUS, which is first-party data.
I labeled all of the datasets to be self-explanatory based off of the title of the datasets. The US Economy Notebook has most of the code that I used as well as the four of the six phases of data analysis. The last two phases are in the US Economy Powerpoint. The "US Historical Inflation Rates" dataset could have also been labeled "The Inflation Of The US Dollar Month By Month". Lastly, the Average Sales of Houses in Jan is just a filtered version of "Average Sales of Houses in the US" dataset.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset tabulates the Florida City population distribution across 18 age groups. It lists the population in each age group along with the percentage population relative of the total population for Florida City. The dataset can be utilized to understand the population distribution of Florida City by age. For example, using this dataset, we can identify the largest age group in Florida City.
Key observations
The largest age group in Florida City, FL was for the group of age 5-9 years with a population of 1,729 (13.46%), according to the 2021 American Community Survey. At the same time, the smallest age group in Florida City, FL was the 85+ years with a population of 95 (0.74%). Source: U.S. Census Bureau American Community Survey (ACS) 2017-2021 5-Year Estimates.
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2017-2021 5-Year Estimates.
Age groups:
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for Florida City Population by Age. You can refer the same here
Facebook
Twitterhttps://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
This dataset combines historical U.S. economic and financial indicators, spanning the last 50 years, to facilitate time series analysis and uncover patterns in macroeconomic trends. It is designed for exploring relationships between interest rates, inflation, economic growth, stock market performance, and industrial production.
Interest Rate (Interest_Rate):
Inflation (Inflation):
GDP (GDP):
Unemployment Rate (Unemployment):
Stock Market Performance (S&P500):
Industrial Production (Ind_Prod):
Interest_Rate: Monthly Federal Funds Rate (%) Inflation: CPI (All Urban Consumers, Index) GDP: Real GDP (Billions of Chained 2012 Dollars) Unemployment: Unemployment Rate (%) Ind_Prod: Industrial Production Index (2017=100) S&P500: Monthly Average of S&P 500 Adjusted Close Prices This project explores the interconnected dynamics of key macroeconomic indicators and financial market trends over the past 50 years, leveraging data from the Federal Reserve Economic Data (FRED) and Yahoo Finance. The dataset integrates critical variables such as the Federal Funds Rate, Inflation (CPI), Real GDP, Unemployment Rate, Industrial Production, and the S&P 500 Index, providing a holistic view of the U.S. economy and financial markets.
The analysis focuses on uncovering relationships between these variables through time-series visualization, correlation analysis, and trend decomposition. Key findings are included in the Insights section. This project serves as a robust resource for understanding long-term economic trends, policy impacts, and market behavior. It is particularly valuable for students, researchers, policymakers, and financial analysts seeking to connect macroeconomic theory with real-world data.
https://github.com/user-attachments/assets/1b40e0ca-7d2e-4fbc-8cfd-df3f09e4fdb8">
To ensure sufficient power, the dataset covers last 50 years of monthly data i.e., around 600 entries.
https:/...
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset tabulates the population of Hagerstown by race. It includes the population of Hagerstown across racial categories (excluding ethnicity) as identified by the Census Bureau. The dataset can be utilized to understand the population distribution of Hagerstown across relevant racial categories.
Key observations
The percent distribution of Hagerstown population by race (across all racial categories recognized by the U.S. Census Bureau): 97.08% are white, 0.29% are Asian and 2.63% are multiracial.
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates.
Racial categories include:
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for Hagerstown Population by Race & Ethnicity. You can refer the same here
Facebook
TwitterAttribution-ShareAlike 4.0 (CC BY-SA 4.0)https://creativecommons.org/licenses/by-sa/4.0/
License information was derived automatically
The Open Data 500, funded by the John S. and James L. Knight Foundation (http://www.knightfoundation.org/) and conducted by the GovLab, is the first comprehensive study of U.S. companies that use open government data to generate new business and develop new products and services.
Provide a basis for assessing the economic value of government open data
Encourage the development of new open data companies
Foster a dialogue between government and business on how government data can be made more useful
The Open Data 500 study is conducted by the GovLab at New York University with funding from the John S. and James L. Knight Foundation. The GovLab works to improve people’s lives by changing how we govern, using technology-enabled solutions and a collaborative, networked approach. As part of its mission, the GovLab studies how institutions can publish the data they collect as open data so that businesses, organizations, and citizens can analyze and use this information.
The Open Data 500 team has compiled our list of companies through (1) outreach campaigns, (2) advice from experts and professional organizations, and (3) additional research.
Outreach Campaign
Mass email to over 3,000 contacts in the GovLab network
Mass email to over 2,000 contacts OpenDataNow.com
Blog posts on TheGovLab.org and OpenDataNow.com
Social media recommendations
Media coverage of the Open Data 500
Attending presentations and conferences
Expert Advice
Recommendations from government and non-governmental organizations
Guidance and feedback from Open Data 500 advisors
Research
Companies identified for the book, Open Data Now
Companies using datasets from Data.gov
Directory of open data companies developed by Deloitte
Online Open Data Userbase created by Socrata
General research from publicly available sources
The Open Data 500 is not a rating or ranking of companies. It covers companies of different sizes and categories, using various kinds of data.
The Open Data 500 is not a competition, but an attempt to give a broad, inclusive view of the field.
The Open Data 500 study also does not provide a random sample for definitive statistical analysis. Since this is the first thorough scan of companies in the field, it is not yet possible to determine the exact landscape of open data companies.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset tabulates the Brownstown population distribution across 18 age groups. It lists the population in each age group along with the percentage population relative of the total population for Brownstown. The dataset can be utilized to understand the population distribution of Brownstown by age. For example, using this dataset, we can identify the largest age group in Brownstown.
Key observations
The largest age group in Brownstown, IN was for the group of age 70-74 years with a population of 384 (12.77%), according to the 2021 American Community Survey. At the same time, the smallest age group in Brownstown, IN was the 80-84 years with a population of 82 (2.73%). Source: U.S. Census Bureau American Community Survey (ACS) 2017-2021 5-Year Estimates.
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2017-2021 5-Year Estimates.
Age groups:
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for Brownstown Population by Age. You can refer the same here