Over the course of the 20th century, the number of operational motor vehicles in the United States grew significantly, from just 8,000 automobiles in the year 1900 to more than 183 million private and commercial vehicles in the late 1980s. Generally, the number of vehicles increased in each year, with the most notable exceptions during the Great Depression and Second World War.
https://www.usa.gov/government-workshttps://www.usa.gov/government-works
How many people are staying at home? How far are people traveling when they don’t stay home? Which states and counties have more people taking trips? The Bureau of Transportation Statistics (BTS) now provides answers to those questions through our mobility statistics program.
The "Trips by Distance" data and number of people staying home and not staying home are estimated for the Bureau of Transportation Statistics by the Maryland Transportation Institute and Center for Advanced Transportation Technology Laboratory at the University of Maryland. The travel statistics are produced from an anonymized national panel of mobile device data from multiple sources. All data sources used in the creation of the metrics contain no personal information. Data analysis is conducted at the aggregate national, state, and county levels. A weighting procedure expands the sample of millions of mobile devices, so the results are representative of the entire population in a nation, state, or county. To assure confidentiality and support data quality, no data are reported for a county if it has fewer than 50 devices in the sample on any given day.
Trips are defined as movements that include a stay of longer than 10 minutes at an anonymized location away from home. Home locations are imputed on a weekly basis. A movement with multiple stays of longer than 10 minutes before returning home is counted as multiple trips. Trips capture travel by all modes of transportation. including driving, rail, transit, and air.
The daily travel estimates are from a mobile device data panel from merged multiple data sources that address the geographic and temporal sample variation issues often observed in a single data source. The merged data panel only includes mobile devices whose anonymized location data meet a set of data quality standards, which further ensures the overall data quality and consistency. The data quality standards consider both temporal frequency and spatial accuracy of anonymized location point observations, temporal coverage and representativeness at the device level, spatial representativeness at the sample and county level, etc. A multi-level weighting method that employs both device and trip-level weights expands the sample to the underlying population at the county and state levels, before travel statistics are computed.
These data are experimental and may not meet all of our quality standards. Experimental data products are created using new data sources or methodologies that benefit data users in the absence of other relevant products. We are seeking feedback from data users and stakeholders on the quality and usefulness of these new products. Experimental data products that meet our quality standards and demonstrate sufficient user demand may enter regular production if resources permit.
These data are made available under a public domain license. Data should be attributed to the "Maryland Transportation Institute and Center for Advanced Transportation Technology Laboratory at the University of Maryland and the United States Bureau of Transportation Statistics."
Daily data for a given week will be uploaded to the BTS website within 9-10 days of the end of the week in question (e.g., data for Sunday September 17-Saturday September 23 would be updated on Tuesday, October 3). All BTS visualizations and tables that rely on these data will update at approximately 10am ET on days when new data are received, processed, and uploaded.
The methodology used to develop these data can be found at: https://rosap.ntl.bts.gov/view/dot/67520.
https://fred.stlouisfed.org/legal/#copyright-public-domainhttps://fred.stlouisfed.org/legal/#copyright-public-domain
Graph and download economic data for Vehicle Miles Traveled (TRFVOLUSM227NFWA) from Jan 1970 to Jan 2025 about miles, travel, vehicles, and USA.
**This data set was last updated 3:30 PM ET Monday, January 4, 2021. The last date of data in this dataset is December 31, 2020. **
Data shows that mobility declined nationally since states and localities began shelter-in-place strategies to stem the spread of COVID-19. The numbers began climbing as more people ventured out and traveled further from their homes, but in parallel with the rise of COVID-19 cases in July, travel declined again.
This distribution contains county level data for vehicle miles traveled (VMT) from StreetLight Data, Inc, updated three times a week. This data offers a detailed look at estimates of how much people are moving around in each county.
Data available has a two day lag - the most recent data is from two days prior to the update date. Going forward, this dataset will be updated by AP at 3:30pm ET on Monday, Wednesday and Friday each week.
This data has been made available to members of AP’s Data Distribution Program. To inquire about access for your organization - publishers, researchers, corporations, etc. - please click Request Access in the upper right corner of the page or email kromano@ap.org. Be sure to include your contact information and use case.
01_vmt_nation.csv - Data summarized to provide a nationwide look at vehicle miles traveled. Includes single day VMT across counties, daily percent change compared to January and seven day rolling averages to smooth out the trend lines over time.
02_vmt_state.csv - Data summarized to provide a statewide look at vehicle miles traveled. Includes single day VMT across counties, daily percent change compared to January and seven day rolling averages to smooth out the trend lines over time.
03_vmt_county.csv - Data providing a county level look at vehicle miles traveled. Includes VMT estimate, percent change compared to January and seven day rolling averages to smooth out the trend lines over time.
* Filter for specific state - filters 02_vmt_state.csv
daily data for specific state.
* Filter counties by state - filters 03_vmt_county.csv
daily data for counties in specific state.
* Filter for specific county - filters 03_vmt_county.csv
daily data for specific county.
The AP has designed an interactive map to show percent change in vehicle miles traveled by county since each counties lowest point during the pandemic:
@(https://interactives.ap.org/vmt-map/)
This data can help put your county's mobility in context with your state and over time. The data set contains different measures of change - daily comparisons and seven day rolling averages. The rolling average allows for a smoother trend line for comparison across counties and states. To get the full picture, there are also two available baselines - vehicle miles traveled in January 2020 (pre-pandemic) and vehicle miles traveled at each geography's low point during the pandemic.
In 2021, about 17.44 million U.S. licensed drivers were aged between 20 and 24 years, a dip compared to 2013 licensed driver figures. At almost 20.9 million people, drivers aged between 30 and 34 represented the largest group of licensed drivers.
https://fred.stlouisfed.org/legal/#copyright-public-domainhttps://fred.stlouisfed.org/legal/#copyright-public-domain
Graph and download economic data for Moving 12-Month Total Vehicle Miles Traveled (M12MTVUSM227NFWA) from Dec 1970 to Jan 2025 about miles, travel, vehicles, and USA.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This table contains data on the percent of residents aged 16 years and older mode of transportation to work for California, its regions, counties, cities/towns, and census tracts. Data is from the U.S. Census Bureau, Decennial Census and American Community Survey. The table is part of a series of indicators in the Healthy Communities Data and Indicators Project of the Office of Health Equity. Commute trips to work represent 19% of travel miles in the United States. The predominant mode – the automobile - offers extraordinary personal mobility and independence, but it is also associated with health hazards, such as air pollution, motor vehicle crashes, pedestrian injuries and fatalities, and sedentary lifestyles. Automobile commuting has been linked to stress-related health problems. Active modes of transport – bicycling and walking alone and in combination with public transit – offer opportunities for physical activity, which is associated with lowering rates of heart disease and stroke, diabetes, colon and breast cancer, dementia and depression. Risk of injury and death in collisions are higher in urban areas with more concentrated vehicle and pedestrian activity. Bus and rail passengers have a lower risk of injury in collisions than motorcyclists, pedestrians, and bicyclists. Minority communities bear a disproportionate share of pedestrian-car fatalities; Native American male pedestrians experience four times the death rate Whites or Asian pedestrians, and African-Americans and Latinos experience twice the rate as Whites or Asians. More information about the data table and a data dictionary can be found in the About/Attachments section.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This table contains data on the annual miles traveled by place of occurrence and by mode of transportation (vehicle, pedestrian, bicycle), for California, its regions, counties, and cities/towns. The ratio uses data from the California Department of Transportation, the U.S. Department of Transportation, and the U.S. Census Bureau. The table is part of a series of indicators in the Healthy Communities Data and Indicators Project of the Office of Health Equity. Miles traveled by individuals and their choice of mode – car, truck, public transit, walking or bicycling – have a major impact on mobility and population health. Miles traveled by automobile offers extraordinary personal mobility and independence, but it is also associated with air pollution, greenhouse gas emissions linked to global warming, road traffic injuries, and sedentary lifestyles. Active modes of transport – bicycling and walking alone and in combination with public transit – offer opportunities for physical activity, which has many documented health benefits. More information about the data table and a data dictionary can be found in the About/Attachments section.
Changes to tables including car mileage data (NTS0901, NTS0904)
Following a user engagement exercise, the presentation of the car mileage estimates has changed for 2023, to include more car types and fuel types (subject to availability of data) and to discontinue providing a private or company car breakdown. These changes have resulted in revisions to the estimates in the backseries. Please see table notes for more details.
Previous versions of these tables (up to 2022) are available.
NTS0901: https://assets.publishing.service.gov.uk/media/66ce0f47face0992fa41f65b/nts0901.ods">Annual mileage of cars by ownership, fuel type and trip purpose: England, 2002 onwards (ODS, 12.8 KB)
NTS0904: https://assets.publishing.service.gov.uk/media/66ce0f5e4e046525fa39cf7e/nts0904.ods">Annual mileage band of cars: England, 2002 onwards (ODS, 14 KB)
NTS0905: https://assets.publishing.service.gov.uk/media/66ce0f6f25c035a11941f655/nts0905.ods">Average car or van occupancy and lone driver rate by trip purpose: England, 2002 onwards (ODS, 18 KB)
NTS0908: https://assets.publishing.service.gov.uk/media/66ce0f89bc00d93a0c7e1f74/nts0908.ods">Where vehicle parked overnight by rural-urban classification of residence: England, 2002 onwards (ODS, 14.7 KB)
National Travel Survey statistics
Email mailto:national.travelsurvey@dft.gov.uk">national.travelsurvey@dft.gov.uk
To hear more about DfT statistical publications as they are released, follow us on X at https://x.com/dftstats" class="govuk-link">DfTstats.
Number of vehicles travelling between Canada and the United States, by trip characteristics, length of stay and type of transportation. Data available monthly.
This layer shows which parts of the United States and Puerto Rico fall within ten minutes' walk of one or more grocery stores. It is estimated that 20% of U.S. population live within a 10 minute walk of a grocery store, and 92% of the population live within a 10 minute drive of a grocery store. The layer is suitable for looking at access at a neighborhood scale.When you add this layer to your web map, along with the drivable access layer and the SafeGraph grocery store layer, it becomes easier to spot grocery stores that sit within a highly populated area, and grocery stores that sit in a shopping center far away from populated areas. Add the Census block points layer to show a popup with the count of stores within 10 minutes' walk and drive. This view of a city begins to hint at the question: how many people have each type of access to grocery stores? And, what if they are unable to walk a mile regularly, or don't own a car?How to Use This Layer in a Web MapUse this layer in a web map to introduce the concepts of access to grocery stores in your city or town. This is the kind of map where people will want to look up their home or work address to validate what the map is saying. See this example web map which you can use in your projects, storymaps, apps and dashboards.The layer was built with that use in mind. Many maps of access use straight-line, as-the-crow-flies distance, which ignores real-world barriers to walkability like rivers, lakes, interstates and other characteristics of the built environment. Block analysis using a network data set and Origin-Destination analysis factors these barriers in, resulting in a more realistic depiction of access.Lastly, this layer can serve as backdrop to other community resources, like food banks, farmers markets (example), and transit (example). Add a transit layer to immediately gauge its impact on the population's grocery access. You can also use this map to see how it relates to communities of concern. Add a layer of any block group or tract demographics, such as Percent Senior Population (examples), or Percent of Households with Access to 0 Vehicles (examples).The layer is a useful visual resource for helping community leaders, business and government leaders see their town from the perspective of its residents, and begin asking questions about how their community could be improved.Data sourcesPopulation data is from the 2010 U.S. Census blocks. Each census block has a count of stores within a 10 minute walk, and a count of stores within a ten minute drive. Census blocks known to be unpopulated are given a score of 0. The layer is available as a hosted feature layer.Grocery store locations are from SafeGraph, reflecting what was in the data as of October 2020. Access to the layer was obtained from the SafeGraph offering in ArcGIS Marketplace. For this project, ArcGIS StreetMap Premium was used for the street network in the origin-destination analysis work, because it already has the necessary attributes on each street segment to identify which streets are considered walkable, and supports a wide variety of driving parameters.The walkable access layer and drivable access layers are rasters, whose colors were chosen to allow the drivable access layer to serve as backdrop to the walkable access layer. Alternative versions of these layers are available. These pairs use different colors but are otherwise identical in content.Data PreparationArcGIS Network Analyst was used to set up a network street layer for analysis. ArcGIS StreetMap Premium was installed to a local hard drive and selected in the Origin-Destination workflow as the network data source. This allows the origins (Census block centroids) and destinations (SafeGraph grocery stores) to be connected to that network, to allow origin-destination analysis.The Census blocks layer contains the centroid of each Census block. The data allows a simple popup to be created. This layer's block figures can be summarized further, to tract, county and state levels.The SafeGraph grocery store locations were created by querying the SafeGraph source layer based on primary NAICS code. After connecting to the layer in ArcGIS Pro, a definition query was set to only show records with NAICS code 445110 as an initial screening. The layer was exported to a local disk drive for further definition query refinement, to eliminate any records that were obviously not grocery stores. The final layer used in the analysis had approximately 53,600 records. In this map, this layer is included as a vector tile layer.MethodologyEvery census block in the U.S. was assigned two access scores, whose numbers are simply how many grocery stores are within a 10 minute walk and a 10 minute drive of that census block. Every census block has a score of 0 (no stores), 1, 2 or more stores. The count of accessible stores was determined using Origin-Destination Analysis in ArcGIS Network Analyst, in ArcGIS Pro. A set of Tools in this ArcGIS Pro package allow a similar analysis to be conducted for any city or other area. The Tools step through the data prep and analysis steps. Download the Pro package, open it and substitute your own layers for Origins and Destinations. Parcel centroids are a suggested option for Origins, for example. Origin-Destination analysis was configured, using ArcGIS StreetMap Premium as the network data source. Census block centroids with population greater than zero were used as the Origins, and grocery store locations were used as the Destinations. A cutoff of 10 minutes was used with the Walk Time option. Only one restriction was applied to the street network: Walkable, which means Interstates and other non-walkable street segments were treated appropriately. You see the results in the map: wherever freeway overpasses and underpasses are present near a grocery store, the walkable area extends across/through that pass, but not along the freeway.A cutoff of 10 minutes was used with the Drive Time option. The default restrictions were applied to the street network, which means a typical vehicle's access to all types of roads was factored in.The results for each analysis were captured in the Lines layer, which shows which origins are within the cutoff of each destination over the street network, given the assumptions about that network (walking, or driving a vehicle).The Lines layer was then summarized by census block ID to capture the Maximum value of the Destination_Rank field. A census block within 10 minutes of 3 stores would have 3 records in the Lines layer, but only one value in the summarized table, with a MAX_Destination_Rank field value of 3. This is the number of stores accessible to that census block in the 10 minutes measured, for walking and driving. These data were joined to the block centroids layer and given unique names. At this point, all blocks with zero population or null values in the MAX_Destination_Rank fields were given a store count of 0, to help the next step.Walkable and Drivable areas are calculated into a raster layer, using Nearest Neighbor geoprocessing tool on the count of stores within a 10 minute walk, and a count of stores within a ten minute drive, respectively. This tool uses a 200 meter grid and interpolates the values between each census block. A census tracts layer containing all water polygons "erased" from the census tract boundaries was used as an environment setting, to help constrain interpolation into/across bodies of water. The same layer use used to "shoreline" the Nearest Neighbor results, to eliminate any interpolation into the ocean or Great Lakes. This helped but was not perfect.Notes and LimitationsThe map provides a baseline for discussing access to grocery stores in a city. It does not presume local population has the desire or means to walk or drive to obtain groceries. It does not take elevation gain or loss into account. It does not factor time of day nor weather, seasons, or other variables that affect a person's commute choices. Walking and driving are just two ways people get to a grocery store. Some people ride a bike, others take public transit, have groceries delivered, or rely on a friend with a vehicle. Thank you to Melinda Morang on the Network Analyst team for guidance and suggestions at key moments along the way; to Emily Meriam for reviewing the previous version of this map and creating new color palettes and marker symbols specific to this project. Additional ReadingThe methods by which access to food is measured and reported have improved in the past decade or so, as has the uses of such measurements. Some relevant papers and articles are provided below as a starting point.Measuring Food Insecurity Using the Food Abundance Index: Implications for Economic, Health and Social Well-BeingHow to Identify Food Deserts: Measuring Physical and Economic Access to Supermarkets in King County, WashingtonAccess to Affordable and Nutritious Food: Measuring and Understanding Food Deserts and Their ConsequencesDifferent Measures of Food Access Inform Different SolutionsThe time cost of access to food – Distance to the grocery store as measured in minutes
This dataset is a list of Department of Transportation (DOT) Artificial Intelligence (AI) use cases. Artificial intelligence (AI) promises to drive the growth of the United States economy and improve the quality of life of all Americans. Pursuant to Section 5 of Executive Order (EO) 13960, "Promoting the Use of Trustworthy Artificial Intelligence in the Federal Government," Federal agencies are required to inventory their AI use cases and share their inventories with other government agencies and the public. In accordance with the requirements of EO 13960, this spreadsheet provides the mechanism for federal agencies to create their inaugural AI use case inventories. https://www.federalregister.gov/documents/2020/12/08/2020-27065/promoting-the-use-of-trustworthy-artificial-intelligence-in-the-federal-government
Your Source for Reliable US Phone Number Data
Accurate Append is your trusted provider of comprehensive US mobile phone numbers, helping businesses connect with consumers through telemarketing and SMS campaigns. Our extensive database includes millions of verified mobile numbers, postal addresses, and email addresses, giving you the tools to power your marketing campaigns, lead generation, and customer engagement efforts. With options for batch processing or real-time API integration, we offer flexible delivery methods to suit your business needs.
Maximize Your Telemarketing & SMS Campaigns
Our mobile phone number data is designed to help businesses execute highly effective telemarketing and SMS campaigns. Accurate Append ensures that the numbers you use are current, reliable, and compliant with industry standards. Whether you're reaching out to prospects, following up with leads, or engaging with existing customers, our verified mobile phone numbers give you the confidence to execute multi-channel campaigns with precision.
Key Benefits for Telemarketing and SMS Campaigns
Real-Time Validation: Keep your outreach efforts on target with real-time validated mobile phone numbers. This ensures your telemarketing and SMS messages reach the right audience, increasing engagement and response rates. Batch Processing & API Integration: Access our data through batch processing for large-scale campaigns or utilize our real-time API to integrate mobile phone numbers directly into your CRM or marketing software. High Match Rate: Our data offers one of the highest match rates in the industry, helping you maximize the number of valid contacts in your database for more effective telemarketing and SMS campaigns. Comprehensive US Coverage: Accurate Append’s database includes mobile phone numbers from millions of consumers across the United States, allowing you to target specific geographic areas with precision. Use Cases for US Mobile Phone Numbers
Accurate Append’s mobile phone number data supports a wide range of marketing and outreach applications, including:
Telemarketing Campaigns: Reach prospects directly via phone calls with verified mobile numbers, ensuring higher contact rates and more successful conversations. SMS Marketing: Drive engagement with personalized SMS campaigns. Our verified mobile phone numbers allow you to send targeted, timely messages to the right audience, increasing conversion rates. Lead Generation: Use our mobile phone number data to identify and reach high-potential leads across the US. Accurate data enables you to connect with consumers in specific locations, boosting the effectiveness of your prospecting efforts. Customer Retargeting: Reconnect with previous customers or prospects who have shown interest in your products or services. Accurate mobile numbers enable you to retarget effectively through telemarketing or SMS outreach. Why Choose Accurate Append for Mobile Phone Numbers?
Reliable Data Quality: Our mobile phone numbers are continuously updated and validated, minimizing the risk of invalid or outdated numbers in your campaigns. Compliance & Privacy: We prioritize data compliance and ensure that our mobile phone numbers meet industry standards, keeping your telemarketing and SMS campaigns within legal guidelines. Customizable Solutions: Whether you need a one-time data append or ongoing access via API, we offer customizable data solutions to fit your business requirements. Telemarketing & SMS Campaigns Made Easy
Accurate Append makes it easy to enhance your telemarketing and SMS campaigns with verified mobile phone numbers. Whether you're launching a new outreach initiative or enriching your customer database, our data helps ensure your messages reach the right people at the right time. By combining mobile phone numbers with postal and email data, you can create multi-channel campaigns that engage consumers through their preferred contact methods.
Unlock the Potential of Mobile Phone Data with Accurate Append
With Accurate Append’s extensive database of US mobile phone numbers, you can confidently target and engage consumers across the country. From telemarketing and SMS to multi-channel marketing strategies, our reliable data empowers your business to achieve better results and drive growth. Let us help you unlock new opportunities for lead generation, customer retention, and conversion.
Contact Us Today
Learn how Accurate Append’s mobile phone number data can enhance your telemarketing and SMS campaigns. Reach out to us today and discover how our solutions can help you improve your marketing strategies and connect with consumers more effectively.
Measure and Map Access to Grocery StoresFrom the perspective of the people living in each neighborhoodHow do people in your city get to the grocery store? The answer to that question depends on the person and where they live. This web map helps answer the question in this app.Some live in cities and stop by a grocery store within a short walk or bike ride of home or work. Others live in areas where car ownership is more prevalent, and so they drive to a store. Some do not own a vehicle, and rely on a friend or public transit. Others rely on grocery delivery for their needs. And, many live in rural areas far from town, so a trip to a grocery store is an infrequent event involving a long drive.This map from Esri shows which areas are within a ten minute walk or ten minute drive of a grocery store in the United States and Puerto Rico. Darker color indicates access to more stores. The chart shows how many people can walk to a grocery store if they wanted to or needed to.It is estimated that 20% of U.S. population live within a 10 minute walk of a grocery store, and 92% of the population live within a 10 minute drive of a grocery store.Look up your city to see how the numbers change as you move around the map. Or, draw a neighborhood boundary on the map to get numbers for that area.Every census block is scored with a count of walkable and drivable stores nearby, making this a map suitable for a dashboard for any city, or any of the 50 states, DC and Puerto Rico. Two colorful layers visualize this definition of access, one for walkable access (suitable for looking at a city neighborhood by neighborhood) and one for drivable access (suitable for looking across a city, county, region or state).On the walkable layer, shades of green define areas within a ten minute walk of one or more grocery stores. The colors become more intense and trend to a blue-green color for the busiest neighborhoods, such as downtown San Francisco. As you zoom in, a layer of Census block points visualizes the local population with or without walkable access.As you zoom out to see the entire city, the map adds a light blue - to dark blue layer, showing which parts of the region fall within ten minutes' drive of one or more grocery stores. As a result, the map is useful at all scales, from national to regional, state and local levels. It becomes easier to spot grocery stores that sit within a highly populated area, and grocery stores that sit in a shopping center far away from populated areas. This view of a city begins to hint at the question: how many people have each type of access to grocery stores? And, what if they are unable to walk a mile regularly, or don't own a car?How to Use This MapUse this map to introduce the concepts of access to grocery stores in your city or town. This is the kind of map where people will want to look up their home or work address to validate what the map is saying.The map was built with that use in mind. Many maps of access use straight-line, as-the-crow-flies distance, which ignores real-world barriers to walkability like rivers, lakes, interstates and other characteristics of the built environment. Block analysis using a network data set and Origin-Destination analysis factors these barriers in, resulting in a more realistic depiction of access.There is data behind the map, which can be summarized to show how many people have walkable access to local grocery stores. The map includes a feature layer of population in Census block points, which are visible when you zoom in far enough. This feature layer can be plugged into an app like this one that summarizes the population with/without walkable or drivable access.Lastly, this map can serve as backdrop to other community resources, like food banks, farmers markets (example), and transit (example). Add a transit layer to immediately gauge its impact on the population's grocery access. You can also use this map to see how it relates to communities of concern. Add a layer of any block group or tract demographics, such as Percent Senior Population (examples), or Percent of Households with Access to 0 Vehicles (examples).The map is a useful visual and analytic resource for helping community leaders, business and government leaders see their town from the perspective of its residents, and begin asking questions about how their community could be improved.Data sourcesPopulation data is from the 2010 U.S. Census blocks. Each census block has a count of stores within a 10 minute walk, and a count of stores within a ten minute drive. Census blocks known to be unpopulated are given a score of 0. The layer is available as a hosted feature layer.Grocery store locations are from SafeGraph, reflecting what was in the data as of October 2020. Access to the layer was obtained from the SafeGraph offering in ArcGIS Marketplace. For this project, ArcGIS StreetMap Premium was used for the street network in the origin-destination analysis work, because it already has the necessary attributes on each street segment to identify which streets are considered walkable, and supports a wide variety of driving parameters.The walkable access layer and drivable access layers are rasters, whose colors were chosen to allow the drivable access layer to serve as backdrop to the walkable access layer. Alternative versions of these layers are available. These pairs use different colors but are otherwise identical in content.Data PreparationArcGIS Network Analyst was used to set up a network street layer for analysis. ArcGIS StreetMap Premium was installed to a local hard drive and selected in the Origin-Destination workflow as the network data source. This allows the origins (Census block centroids) and destinations (SafeGraph grocery stores) to be connected to that network, to allow origin-destination analysis.The Census blocks layer contains the centroid of each Census block. The data allows a simple popup to be created. This layer's block figures can be summarized further, to tract, county and state levels.The SafeGraph grocery store locations were created by querying the SafeGraph source layer based on primary NAICS code. After connecting to the layer in ArcGIS Pro, a definition query was set to only show records with NAICS code 445110 as an initial screening. The layer was exported to a local disk drive for further definition query refinement, to eliminate any records that were obviously not grocery stores. The final layer used in the analysis had approximately 53,600 records. In this map, this layer is included as a vector tile layer.MethodologyEvery census block in the U.S. was assigned two access scores, whose numbers are simply how many grocery stores are within a 10 minute walk and a 10 minute drive of that census block. Every census block has a score of 0 (no stores), 1, 2 or more stores. The count of accessible stores was determined using Origin-Destination Analysis in ArcGIS Network Analyst, in ArcGIS Pro. A set of Tools in this ArcGIS Pro package allow a similar analysis to be conducted for any city or other area. The Tools step through the data prep and analysis steps. Download the Pro package, open it and substitute your own layers for Origins and Destinations. Parcel centroids are a suggested option for Origins, for example. Origin-Destination analysis was configured, using ArcGIS StreetMap Premium as the network data source. Census block centroids with population greater than zero were used as the Origins, and grocery store locations were used as the Destinations. A cutoff of 10 minutes was used with the Walk Time option. Only one restriction was applied to the street network: Walkable, which means Interstates and other non-walkable street segments were treated appropriately. You see the results in the map: wherever freeway overpasses and underpasses are present near a grocery store, the walkable area extends across/through that pass, but not along the freeway.A cutoff of 10 minutes was used with the Drive Time option. The default restrictions were applied to the street network, which means a typical vehicle's access to all types of roads was factored in.The results for each analysis were captured in the Lines layer, which shows which origins are within the cutoff of each destination over the street network, given the assumptions about that network (walking, or driving a vehicle).The Lines layer was then summarized by census block ID to capture the Maximum value of the Destination_Rank field. A census block within 10 minutes of 3 stores would have 3 records in the Lines layer, but only one value in the summarized table, with a MAX_Destination_Rank field value of 3. This is the number of stores accessible to that census block in the 10 minutes measured, for walking and driving. These data were joined to the block centroids layer and given unique names. At this point, all blocks with zero population or null values in the MAX_Destination_Rank fields were given a store count of 0, to help the next step.Walkable and Drivable areas are calculated into a raster layer, using Nearest Neighbor geoprocessing tool on the count of stores within a 10 minute walk, and a count of stores within a ten minute drive, respectively. This tool uses a 200 meter grid and interpolates the values between each census block. A census tracts layer containing all water polygons "erased" from the census tract boundaries was used as an environment setting, to help constrain interpolation into/across bodies of water. The same layer use used to "shoreline" the Nearest Neighbor results, to eliminate any interpolation into the ocean or Great Lakes. This helped but was not perfect.Notes and LimitationsThe map provides a baseline for discussing access to grocery stores in a city. It does not presume local population has the desire or means to walk or drive to obtain groceries. It does not take elevation gain or loss into account. It does not factor time of day nor weather, seasons, or other variables that affect a
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset tabulates the population of Las Vegas by race. It includes the population of Las Vegas across racial categories (excluding ethnicity) as identified by the Census Bureau. The dataset can be utilized to understand the population distribution of Las Vegas across relevant racial categories.
Key observations
The percent distribution of Las Vegas population by race (across all racial categories recognized by the U.S. Census Bureau): 55.53% are white, 11.49% are Black or African American, 1.01% are American Indian and Alaska Native, 6.81% are Asian, 0.81% are Native Hawaiian and other Pacific Islander, 13.22% are some other race and 11.14% are multiracial.
https://i.neilsberg.com/ch/las-vegas-nv-population-by-race.jpeg" alt="Las Vegas population by race">
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2017-2021 5-Year Estimates.
Racial categories include:
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for Las Vegas Population by Race & Ethnicity. You can refer the same here
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Contains data from the World Bank's data portal. There is also a consolidated country dataset on HDX.
Private markets drive economic growth, tapping initiative and investment to create productive jobs and raise incomes. Trade is also a driver of economic growth as it integrates developing countries into the world economy and generates benefits for their people. Data on the private sector and trade are from the World Bank Group's Private Participation in Infrastructure Project Database, Enterprise Surveys, and Doing Business Indicators, as well as from the International Monetary Fund's Balance of Payments database and International Financial Statistics, the UN Commission on Trade and Development, the World Trade Organization, and various other sources.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Contains data from the World Bank's data portal. There is also a consolidated country dataset on HDX.
Private markets drive economic growth, tapping initiative and investment to create productive jobs and raise incomes. Trade is also a driver of economic growth as it integrates developing countries into the world economy and generates benefits for their people. Data on the private sector and trade are from the World Bank Group's Private Participation in Infrastructure Project Database, Enterprise Surveys, and Doing Business Indicators, as well as from the International Monetary Fund's Balance of Payments database and International Financial Statistics, the UN Commission on Trade and Development, the World Trade Organization, and various other sources.
Open Database License (ODbL) v1.0https://www.opendatacommons.org/licenses/odbl/1.0/
License information was derived automatically
This dataset shows the Battery Electric Vehicles (BEVs) and Plug-in Hybrid Electric Vehicles (PHEVs) that are currently registered through Washington State Department of Licensing (DOL).
Publicly accessible open spaces provide valuable opportunities for people to exercise, play, socialize, and build community. People are more likely to use public open spaces that are close (ideally within walking distance) to their homes, and larger open spaces often provide more amenities. To assess the spatial distribution of access to open space for recreation in the southeastern United States, we constructed an index of open space access based on the size of the largest publicly accessible open space of at least 10 acres within 10 miles of each point on the landscape, using three distance categories to represent whether people can reach the open spaces by walking (within 0.5 mile), via a short drive (within 3 miles), or via a longer drive (within 10 miles).
(This is taken directly from the github) This is the data for the paper: Jin, Di, et al. "What Disease does this Patient Have? A Large-scale Open Domain Question Answering Dataset from Medical Exams." arXiv preprint arXiv:2009.13081 (2020). If you would like to use the data, please cite the paper.
Data The data that contains both the QAs and textbooks can be downloaded from this google drive folder. A bit of details of data are explained as below:
For QAs, we have three sources: US, Mainland of China, and Taiwan District, which are put in folders, respectively. All files for QAs are in jsonl file format, where each line is a data sample as a dict. The "XX_qbank.jsonl" files contain all data samples while we also provide an official random split into train, dev, and test sets. Those files in the "metamap" folders are extracted medical related phrases using the Metamap tool.
For QAs, we also include the "4_options" version in for US and Mainland of China since we reported results for 4 options in the paper.
For textbooks, we have two languages: English and simplified Chinese. For simplified Chinese, we provide two kinds of sentence splitting: one is split by sentences, and the other is split by paragraphs.
MIT License
Copyright (c) 2022 Di Jin
Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
Over the course of the 20th century, the number of operational motor vehicles in the United States grew significantly, from just 8,000 automobiles in the year 1900 to more than 183 million private and commercial vehicles in the late 1980s. Generally, the number of vehicles increased in each year, with the most notable exceptions during the Great Depression and Second World War.