In 2022, there were 313,017 cases filed by the NCIC where the race of the reported missing was White. In the same year, 18,928 people were missing whose race was unknown.
What is the NCIC?
The National Crime Information Center (NCIC) is a digital database that stores crime data for the United States, so criminal justice agencies can access it. As a part of the FBI, it helps criminal justice professionals find criminals, missing people, stolen property, and terrorists. The NCIC database is broken down into 21 files. Seven files belong to stolen property and items, and 14 belong to persons, including the National Sex Offender Register, Missing Person, and Identify Theft. It works alongside federal, tribal, state, and local agencies. The NCIC’s goal is to maintain a centralized information system between local branches and offices, so information is easily accessible nationwide.
Missing people in the United States
A person is considered missing when they have disappeared and their location is unknown. A person who is considered missing might have left voluntarily, but that is not always the case. The number of the NCIC unidentified person files in the United States has fluctuated since 1990, and in 2022, there were slightly more NCIC missing person files for males as compared to females. Fortunately, the number of NCIC missing person files has been mostly decreasing since 1998.
https://www.usa.gov/government-workshttps://www.usa.gov/government-works
Note: Reporting of new COVID-19 Case Surveillance data will be discontinued July 1, 2024, to align with the process of removing SARS-CoV-2 infections (COVID-19 cases) from the list of nationally notifiable diseases. Although these data will continue to be publicly available, the dataset will no longer be updated.
Authorizations to collect certain public health data expired at the end of the U.S. public health emergency declaration on May 11, 2023. The following jurisdictions discontinued COVID-19 case notifications to CDC: Iowa (11/8/21), Kansas (5/12/23), Kentucky (1/1/24), Louisiana (10/31/23), New Hampshire (5/23/23), and Oklahoma (5/2/23). Please note that these jurisdictions will not routinely send new case data after the dates indicated. As of 7/13/23, case notifications from Oregon will only include pediatric cases resulting in death.
This case surveillance public use dataset has 12 elements for all COVID-19 cases shared with CDC and includes demographics, any exposure history, disease severity indicators and outcomes, presence of any underlying medical conditions and risk behaviors, and no geographic data.
The COVID-19 case surveillance database includes individual-level data reported to U.S. states and autonomous reporting entities, including New York City and the District of Columbia (D.C.), as well as U.S. territories and affiliates. On April 5, 2020, COVID-19 was added to the Nationally Notifiable Condition List and classified as “immediately notifiable, urgent (within 24 hours)” by a Council of State and Territorial Epidemiologists (CSTE) Interim Position Statement (Interim-20-ID-01). CSTE updated the position statement on August 5, 2020, to clarify the interpretation of antigen detection tests and serologic test results within the case classification (Interim-20-ID-02). The statement also recommended that all states and territories enact laws to make COVID-19 reportable in their jurisdiction, and that jurisdictions conducting surveillance should submit case notifications to CDC. COVID-19 case surveillance data are collected by jurisdictions and reported voluntarily to CDC.
For more information:
NNDSS Supports the COVID-19 Response | CDC.
The deidentified data in the “COVID-19 Case Surveillance Public Use Data” include demographic characteristics, any exposure history, disease severity indicators and outcomes, clinical data, laboratory diagnostic test results, and presence of any underlying medical conditions and risk behaviors. All data elements can be found on the COVID-19 case report form located at www.cdc.gov/coronavirus/2019-ncov/downloads/pui-form.pdf.
COVID-19 case reports have been routinely submitted using nationally standardized case reporting forms. On April 5, 2020, CSTE released an Interim Position Statement with national surveillance case definitions for COVID-19 included. Current versions of these case definitions are available here: https://ndc.services.cdc.gov/case-definitions/coronavirus-disease-2019-2021/.
All cases reported on or after were requested to be shared by public health departments to CDC using the standardized case definitions for laboratory-confirmed or probable cases. On May 5, 2020, the standardized case reporting form was revised. Case reporting using this new form is ongoing among U.S. states and territories.
To learn more about the limitations in using case surveillance data, visit FAQ: COVID-19 Data and Surveillance.
CDC’s Case Surveillance Section routinely performs data quality assurance procedures (i.e., ongoing corrections and logic checks to address data errors). To date, the following data cleaning steps have been implemented:
To prevent release of data that could be used to identify people, data cells are suppressed for low frequency (<5) records and indirect identifiers (e.g., date of first positive specimen). Suppression includes rare combinations of demographic characteristics (sex, age group, race/ethnicity). Suppressed values are re-coded to the NA answer option; records with data suppression are never removed.
For questions, please contact Ask SRRG (eocevent394@cdc.gov).
COVID-19 data are available to the public as summary or aggregate count files, including total counts of cases and deaths by state and by county. These
Note: DPH is updating and streamlining the COVID-19 cases, deaths, and testing data. As of 6/27/2022, the data will be published in four tables instead of twelve. The COVID-19 Cases, Deaths, and Tests by Day dataset contains cases and test data by date of sample submission. The death data are by date of death. This dataset is updated daily and contains information back to the beginning of the pandemic. The data can be found at https://data.ct.gov/Health-and-Human-Services/COVID-19-Cases-Deaths-and-Tests-by-Day/g9vi-2ahj. The COVID-19 State Metrics dataset contains over 93 columns of data. This dataset is updated daily and currently contains information starting June 21, 2022 to the present. The data can be found at https://data.ct.gov/Health-and-Human-Services/COVID-19-State-Level-Data/qmgw-5kp6 . The COVID-19 County Metrics dataset contains 25 columns of data. This dataset is updated daily and currently contains information starting June 16, 2022 to the present. The data can be found at https://data.ct.gov/Health-and-Human-Services/COVID-19-County-Level-Data/ujiq-dy22 . The COVID-19 Town Metrics dataset contains 16 columns of data. This dataset is updated daily and currently contains information starting June 16, 2022 to the present. The data can be found at https://data.ct.gov/Health-and-Human-Services/COVID-19-Town-Level-Data/icxw-cada . To protect confidentiality, if a town has fewer than 5 cases or positive NAAT tests over the past 7 days, those data will be suppressed. COVID-19 cases and associated deaths that have been reported among Connecticut residents, broken down by race and ethnicity. All data in this report are preliminary; data for previous dates will be updated as new reports are received and data errors are corrected. Deaths reported to the either the Office of the Chief Medical Examiner (OCME) or Department of Public Health (DPH) are included in the COVID-19 update. The following data show the number of COVID-19 cases and associated deaths per 100,000 population by race and ethnicity. Crude rates represent the total cases or deaths per 100,000 people. Age-adjusted rates consider the age of the person at diagnosis or death when estimating the rate and use a standardized population to provide a fair comparison between population groups with different age distributions. Age-adjustment is important in Connecticut as the median age of among the non-Hispanic white population is 47 years, whereas it is 34 years among non-Hispanic blacks, and 29 years among Hispanics. Because most non-Hispanic white residents who died were over 75 years of age, the age-adjusted rates are lower than the unadjusted rates. In contrast, Hispanic residents who died tend to be younger than 75 years of age which results in higher age-adjusted rates. The population data used to calculate rates is based on the CT DPH population statistics for 2019, which is available online here: https://portal.ct.gov/DPH/Health-Information-Systems--Reporting/Population/Population-Statistics. Prior to 5/10/2021, the population estimates from 2018 were used. Rates are standardized to the 2000 US Millions Standard population (data available here: https://seer.cancer.gov/stdpopulations/). Standardization was done using 19 age groups (0, 1-4, 5-9, 10-14, ..., 80-84, 85 years and older). More information about direct standardization for age adjustment is available here: https://www.cdc.gov/nchs/data/statnt/statnt06rv.pdf Categories are mutually exclusive. The category “multiracial” includes people who answered ‘yes’ to more than one race category. Counts may not add up to total case counts as data on race and ethnicity may be missing. Age adjusted rates calculated only for groups with more than 20 deaths. Abbreviation: NH=Non-Hispanic. Data on Connecticut deaths were obtained from the Connecticut Deaths Registry maintained by the DPH Office of Vital Records. Cause of death was determined by a death certifier (e.g., physician, APRN, medical
https://www.usa.gov/government-workshttps://www.usa.gov/government-works
Note: Reporting of new COVID-19 Case Surveillance data will be discontinued July 1, 2024, to align with the process of removing SARS-CoV-2 infections (COVID-19 cases) from the list of nationally notifiable diseases. Although these data will continue to be publicly available, the dataset will no longer be updated.
Authorizations to collect certain public health data expired at the end of the U.S. public health emergency declaration on May 11, 2023. The following jurisdictions discontinued COVID-19 case notifications to CDC: Iowa (11/8/21), Kansas (5/12/23), Kentucky (1/1/24), Louisiana (10/31/23), New Hampshire (5/23/23), and Oklahoma (5/2/23). Please note that these jurisdictions will not routinely send new case data after the dates indicated. As of 7/13/23, case notifications from Oregon will only include pediatric cases resulting in death.
This case surveillance public use dataset has 19 elements for all COVID-19 cases shared with CDC and includes demographics, geography (county and state of residence), any exposure history, disease severity indicators and outcomes, and presence of any underlying medical conditions and risk behaviors.
Currently, CDC provides the public with three versions of COVID-19 case surveillance line-listed data: this 19 data element dataset with geography, a 12 data element public use dataset, and a 33 data element restricted access dataset.
The following apply to the public use datasets and the restricted access dataset:
Overview
The COVID-19 case surveillance database includes individual-level data reported to U.S. states and autonomous reporting entities, including New York City and the District of Columbia (D.C.), as well as U.S. territories and affiliates. On April 5, 2020, COVID-19 was added to the Nationally Notifiable Condition List and classified as “immediately notifiable, urgent (within 24 hours)” by a Council of State and Territorial Epidemiologists (CSTE) Interim Position Statement (Interim-20-ID-01). CSTE updated the position statement on August 5, 2020, to clarify the interpretation of antigen detection tests and serologic test results within the case classification (Interim-20-ID-02). The statement also recommended that all states and territories enact laws to make COVID-19 reportable in their jurisdiction, and that jurisdictions conducting surveillance should submit case notifications to CDC. COVID-19 case surveillance data are collected by jurisdictions and reported voluntarily to CDC.
For more information:
NNDSS Supports the COVID-19 Response | CDC.
COVID-19 Case Reports COVID-19 case reports are routinely submitted to CDC by public health jurisdictions using nationally standardized case reporting forms. On April 5, 2020, CSTE released an Interim Position Statement with national surveillance case definitions for COVID-19. Current versions of these case definitions are available at: https://ndc.services.cdc.gov/case-definitions/coronavirus-disease-2019-2021/. All cases reported on or after were requested to be shared by public health departments to CDC using the standardized case definitions for lab-confirmed or probable cases. On May 5, 2020, the standardized case reporting form was revised. States and territories continue to use this form.
Access Addressing Gaps in Public Health Reporting of Race and Ethnicity for COVID-19, a report from the Council of State and Territorial Epidemiologists, to better understand the challenges in completing race and ethnicity data for COVID-19 and recommendations for improvement.
To learn more about the limitations in using case surveillance data, visit FAQ: COVID-19 Data and Surveillance.
CDC’s Case Surveillance Section routinely performs data quality assurance procedures (i.e., ongoing corrections and logic checks to address data errors). To date, the following data cleaning steps have been implemented:
To prevent release of data that could be used to identify people, data cells are suppressed for low frequency (<11 COVID-19 case records with a given values). Suppression includes low frequency combinations of case month, geographic characteristics (county and state of residence), and demographic characteristics (sex, age group, race, and ethnicity). Suppressed values are re-coded to the NA answer option; records with data suppression are never removed.
COVID-19 data are available to the public as summary or aggregate count files, including total counts of cases and deaths by state and by county. These and other COVID-19 data are available from multiple public locations: COVID Data Tracker; United States COVID-19 Cases and Deaths by State; COVID-19 Vaccination Reporting Data Systems; and COVID-19 Death Data and Resources.
Notes:
March 1, 2022: The "COVID-19 Case Surveillance Public Use Data with Geography" will be updated on a monthly basis.
April 7, 2022: An adjustment was made to CDC’s cleaning algorithm for COVID-19 line level case notification data. An assumption in CDC's algorithm led to misclassifying deaths that were not COVID-19 related. The algorithm has since been revised, and this dataset update reflects corrected individual level information about death status for all cases collected to date.
June 25, 2024: An adjustment
A. SUMMARY This dataset includes COVID-19 tests by resident neighborhood and specimen collection date (the day the test was collected). Specifically, this dataset includes tests of San Francisco residents who listed a San Francisco home address at the time of testing. These resident addresses were then geo-located and mapped to neighborhoods. The resident address associated with each test is hand-entered and susceptible to errors, therefore neighborhood data should be interpreted as an approximation, not a precise nor comprehensive total.
In recent months, about 5% of tests are missing addresses and therefore cannot be included in any neighborhood totals. In earlier months, more tests were missing address data. Because of this high percentage of tests missing resident address data, this neighborhood testing data for March, April, and May should be interpreted with caution (see below)
Percentage of tests missing address information, by month in 2020 Mar - 33.6% Apr - 25.9% May - 11.1% Jun - 7.2% Jul - 5.8% Aug - 5.4% Sep - 5.1% Oct (Oct 1-12) - 5.1%
To protect the privacy of residents, the City does not disclose the number of tests in neighborhoods with resident populations of fewer than 1,000 people. These neighborhoods are omitted from the data (they include Golden Gate Park, John McLaren Park, and Lands End).
Tests for residents that listed a Skilled Nursing Facility as their home address are not included in this neighborhood-level testing data. Skilled Nursing Facilities have required and repeated testing of residents, which would change neighborhood trends and not reflect the broader neighborhood's testing data.
This data was de-duplicated by individual and date, so if a person gets tested multiple times on different dates, all tests will be included in this dataset (on the day each test was collected).
The total number of positive test results is not equal to the total number of COVID-19 cases in San Francisco. During this investigation, some test results are found to be for persons living outside of San Francisco and some people in San Francisco may be tested multiple times (which is common). To see the number of new confirmed cases by neighborhood, reference this map: https://sf.gov/data/covid-19-case-maps#new-cases-maps
B. HOW THE DATASET IS CREATED COVID-19 laboratory test data is based on electronic laboratory test reports. Deduplication, quality assurance measures and other data verification processes maximize accuracy of laboratory test information. All testing data is then geo-coded by resident address. Then data is aggregated by analysis neighborhood and specimen collection date.
Data are prepared by close of business Monday through Saturday for public display.
C. UPDATE PROCESS Updates automatically at 05:00 Pacific Time each day. Redundant runs are scheduled at 07:00 and 09:00 in case of pipeline failure.
D. HOW TO USE THIS DATASET San Francisco population estimates for geographic regions can be found in a view based on the San Francisco Population and Demographic Census dataset. These population estimates are from the 2016-2020 5-year American Community Survey (ACS).
Due to the high degree of variation in the time needed to complete tests by different labs there is a delay in this reporting. On March 24 the Health Officer ordered all labs in the City to report complete COVID-19 testing information to the local and state health departments.
In order to track trends over time, a data user can analyze this data by "specimen_collection_date".
Calculating Percent Positivity: The positivity rate is the percentage of tests that return a positive result for COVID-19 (positive tests divided by the sum of positive and negative tests). Indeterminate results, which could not conclusively determine whether COVID-19 virus was present, are not included in the calculation of pe
Open Database License (ODbL) v1.0https://www.opendatacommons.org/licenses/odbl/1.0/
License information was derived automatically
The Austin Animal Center is the largest no-kill animal shelter in the United States that provides care and shelter to over 18,000 animals each year. As part of the AAC's efforts to help and care for animals in need, the organization makes available its accumulated data and statistics as part of the city of Austin's Open Data Initiative.
The data contains intakes and outcomes of animals entering the Austin Animal Center from the beginning of October 2013 to the present day. The datasets are also freely available on the Socrata Open Data Access API and are updated daily.
The following are links to the datasets hosted on Socrata's Open Data:
The data contained in this dataset is the outcomes and intakes data as noted above, as well as a combined dataset. The merging of the outcomes and intakes data was done on a unique key that is a combination of the given Animal ID and the intake number. Several of the animals in the dataset have been taken into the shelter multiple times, which creates duplicate Animal IDs that causes problems when merging the two datasets.
Copied from the description of the Shelter Outcomes dataset, here are some definitions of the outcome types:
The data presented here is only possible through the hard work and dedication of the Austin Animal Center in saving and caring for animal lives.
Following from the first dataset I posted to Kaggle, Austin Animal Shelter Outcomes, which was initially filtered for just cats as part of an analysis I was performing, I wanted to post the complete outcome and complementing intake datasets. My hope is the great users of Kaggle will find this data interesting and want to explore shelter animal statistics further and perhaps get more involved in the animal welfare community. The analysis of this data and other shelter animal provided datasets helps uncover useful insights that have the potential to save lives directly.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Project Tycho datasets contain case counts for reported disease conditions for countries around the world. The Project Tycho data curation team extracts these case counts from various reputable sources, typically from national or international health authorities, such as the US Centers for Disease Control or the World Health Organization. These original data sources include both open- and restricted-access sources. For restricted-access sources, the Project Tycho team has obtained permission for redistribution from data contributors. All datasets contain case count data that are identical to counts published in the original source and no counts have been modified in any way by the Project Tycho team. The Project Tycho team has pre-processed datasets by adding new variables, such as standard disease and location identifiers, that improve data interpretabilty. We also formatted the data into a standard data format. Each Project Tycho dataset contains case counts for a specific condition (e.g. measles) and for a specific country (e.g. The United States). Case counts are reported per time interval. In addition to case counts, datsets include information about these counts (attributes), such as the location, age group, subpopulation, diagnostic certainty, place of aquisition, and the source from which we extracted case counts. One dataset can include many series of case count time intervals, such as "US measles cases as reported by CDC", or "US measles cases reported by WHO", or "US measles cases that originated abroad", etc. Depending on the intended use of a dataset, we recommend a few data processing steps before analysis:
Analyze missing data: Project Tycho datasets do not inlcude time intervals for which no case count was reported (for many datasets, time series of case counts are incomplete, due to incompleteness of source documents) and users will need to add time intervals for which no count value is available. Project Tycho datasets do include time intervals for which a case count value of zero was reported. Separate cumulative from non-cumulative time interval series. Case count time series in Project Tycho datasets can be "cumulative" or "fixed-intervals". Cumulative case count time series consist of overlapping case count intervals starting on the same date, but ending on different dates. For example, each interval in a cumulative count time series can start on January 1st, but end on January 7th, 14th, 21st, etc. It is common practice among public health agencies to report cases for cumulative time intervals. Case count series with fixed time intervals consist of mutually exxclusive time intervals that all start and end on different dates and all have identical length (day, week, month, year). Given the different nature of these two types of case count data, we indicated this with an attribute for each count value, named "PartOfCumulativeCountSeries".
After May 3, 2024, this dataset and webpage will no longer be updated because hospitals are no longer required to report data on COVID-19 hospital admissions, and hospital capacity and occupancy data, to HHS through CDC’s National Healthcare Safety Network. Data voluntarily reported to NHSN after May 1, 2024, will be available starting May 10, 2024, at COVID Data Tracker Hospitalizations. The following dataset provides state-aggregated data for hospital utilization in a timeseries format dating back to January 1, 2020. These are derived from reports with facility-level granularity across three main sources: (1) HHS TeleTracking, (2) reporting provided directly to HHS Protect by state/territorial health departments on behalf of their healthcare facilities and (3) National Healthcare Safety Network (before July 15). The file will be updated regularly and provides the latest values reported by each facility within the last four days for all time. This allows for a more comprehensive picture of the hospital utilization within a state by ensuring a hospital is represented, even if they miss a single day of reporting. No statistical analysis is applied to account for non-response and/or to account for missing data. The below table displays one value for each field (i.e., column). Sometimes, reports for a given facility will be provided to more than one reporting source: HHS TeleTracking, NHSN, and HHS Protect. When this occurs, to ensure that there are not duplicate reports, prioritization is applied to the numbers for each facility. On April 27, 2022 the following pediatric fields were added: all_pediatric_inpatient_bed_occupied all_pediatric_inpatient_bed_occupied_coverage all_pediatric_inpatient_beds all_pediatric_inpatient_beds_coverage previous_day_admission_pediatric_covid_confirmed_0_4 previous_day_admission_pediatric_covid_confirmed_0_4_coverage previous_day_admission_pediatric_covid_confirmed_12_17 previous_day_admission_pediatric_covid_confirmed_12_17_coverage previous_day_admission_pediatric_covid_confirmed_5_11 previous_day_admission_pediatric_covid_confirmed_5_11_coverage previous_day_admission_pediatric_covid_confirmed_unknown previous_day_admission_pediatric_covid_confirmed_unknown_coverage staffed_icu_pediatric_patients_confirmed_covid staffed_icu_pediatric_patients_confirmed_covid_coverage staffed_pediatric_icu_bed_occupancy staffed_pediatric_icu_bed_occupancy_coverage total_staffed_pediatric_icu_beds total_staffed_pediatric_icu_beds_coverage On January 19, 2022, the following fields have been added to this dataset: inpatient_beds_used_covid inpatient_beds_used_covid_coverage On September 17, 2021, this data set has had the following fields added: icu_patients_confirmed_influenza, icu_patients_confirmed_influenza_coverage, previous_day_admission_influenza_confirmed, previous_day_admission_influenza_confirmed_coverage, previous_day_deaths_covid_and_influenza, previous_day_deaths_covid_and_influenza_coverage, previous_day_deaths_influenza, previous_day_deaths_influenza_coverage, total_patients_hospitalized_confirmed_influenza, total_patients_hospitalized_confirmed_influenza_and_covid, total_patients_hospitalized_confirmed_influenza_and_covid_coverage, total_patients_hospitalized_confirmed_influenza_coverage On September 13, 2021, this data set has had the following fields added: on_hand_supply_therapeutic_a_casirivimab_imdevimab_courses, on_hand_supply_therapeutic_b_bamlanivimab_courses, on_hand_supply_therapeutic_c_bamlanivimab_etesevimab_courses, previous_week_therapeutic_a_casirivimab_imdevimab_courses_used, previous_week_therapeutic_b_bamlanivimab_courses_used, previous_week_therapeutic_c_bamlanivima
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Analysis of ‘Covid-19 Tests by Race Ethnicity and Date’ provided by Analyst-2 (analyst-2.ai), based on source dataset retrieved from https://catalog.data.gov/dataset/68410b4b-052f-4ce3-8d0c-873b5664f1a4 on 27 January 2022.
--- Dataset description provided by original source is as follows ---
Note: As of April 16, 2021, this dataset will update daily with a five-day data lag.
A. SUMMARY This dataset includes San Francisco COVID-19 tests by race/ ethnicity and date. For each day, this dataset represents the daily count of tests collected by race/ethnicity, and how many of those were positive, negative, and indeterminate. Tests in this dataset include all tests collected from San Francisco residents who listed a San Francisco home address at the time of testing, and tests that were collected in San Francisco but had a missing home address. Data are based on information collected at the time of testing.
For recent data, about 25-30% of tests are missing race/ ethnicity information. Tests where the race/ ethnicity of the patient is unknown are included in the dataset under the "Unknown" category.
This data was de-duplicated by individual and date, so if a person gets tested multiple times on different dates, all tests will be included in this dataset (on the day each test was collected).
The total number of positive test results is not equal to the total number of COVID-19 cases in San Francisco. Each positive test result is investigated. During this investigation, some test results are found to be for persons living outside of San Francisco and some people in San Francisco may be tested multiple times. In both cases, these results are not included in San Francisco’s total COVID-19 case count. To track the number of cases by race/ ethnicity, see this dashboard: https://data.sfgov.org/stories/s/w6za-6st8
B. HOW THE DATASET IS CREATED COVID-19 laboratory test data is based on electronic laboratory test reports. Deduplication, quality assurance measures and other data verification processes maximize accuracy of laboratory test information.
C. UPDATE PROCESS Updates automatically at 05:00 Pacific Time each day. Redundant runs are scheduled at 07:00 and 09:00 in case of pipeline failure.
D. HOW TO USE THIS DATASET Due to the high degree of variation in the time needed to complete tests by different labs there is a delay in this reporting. On March 24 the Health Officer ordered all labs in the City to report complete COVID-19 testing information to the local and state health departments.
In order to track trends over time, a data user can analyze this data by "specimen_collection_date".
Calculating Percent Positivity: The positivity rate is the percentage of tests that return a positive result for COVID-19 (positive tests divided by the sum of positive and negative tests). Indeterminate results, which could not conclusively determine whether COVID-19 virus was present, are not included in the calculation of percent positive. When there are fewer than 20 positives tests for a given race/ethnicity and time period, the positivity rate is not calculated for the public tracker because rates of small test counts are less reliable.
Calculating Testing Rates: To calculate the testing rate per 10,000 residents, divide the total number of tests collected (positive, negative, and indeterminate results) for the specified race/ ethnicity by the total number of residents who identify as that race/ ethnicity (according to the 2018 5-year estimates from the American Community Survey), then multiply by 10,000. When there are fewer than 20 total tests for a given race/ethnicity and time period, the testing rate is not calculated for the public tracker because rates of small test counts are less reliable.
Read more about how this data is updated and validated daily: https://data.sfgov.org/stories/s/nudz-9tg2
There are two other datasets related to tests: 1. COVID-19 Tests 2. <a href="https://data.sfgov.org/dataset/Covid-19-Testing-by
--- Original source retains full ownership of the source dataset ---
DPH is updating and streamlining the COVID-19 cases, deaths, and testing data. As of 6/27/2022, the data will be published in four tables instead of twelve. The COVID-19 Cases, Deaths, and Tests by Day dataset contains cases and test data by date of sample submission. The death data are by date of death. This dataset is updated daily and contains information back to the beginning of the pandemic. The data can be found at https://data.ct.gov/Health-and-Human-Services/COVID-19-Cases-Deaths-and-Tests-by-Day/g9vi-2ahj. The COVID-19 State Metrics dataset contains over 93 columns of data. This dataset is updated daily and currently contains information starting June 21, 2022 to the present. The data can be found at https://data.ct.gov/Health-and-Human-Services/COVID-19-State-Level-Data/qmgw-5kp6 . The COVID-19 County Metrics dataset contains 25 columns of data. This dataset is updated daily and currently contains information starting June 16, 2022 to the present. The data can be found at https://data.ct.gov/Health-and-Human-Services/COVID-19-County-Level-Data/ujiq-dy22 . The COVID-19 Town Metrics dataset contains 16 columns of data. This dataset is updated daily and currently contains information starting June 16, 2022 to the present. The data can be found at https://data.ct.gov/Health-and-Human-Services/COVID-19-Town-Level-Data/icxw-cada . To protect confidentiality, if a town has fewer than 5 cases or positive NAAT tests over the past 7 days, those data will be suppressed. COVID-19 test results by date of specimen collection, including total, positive, negative, and indeterminate for molecular and antigen tests. Molecular tests reported include polymerase chain reaction (PCR) and nucleic acid amplicfication (NAAT) tests. Test results may be reported several days after the result. Data are incomplete for the most recent days. Data from previous dates are routinely updated. Records with a null date field summarize tests reported that were missing the date of collection. Starting in July 2020, this dataset will be updated every weekday.
https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
The data is in CSV format and includes all historical data on the pandemic up to 03/01/2023, following a 1-line format per country and date.
In the pre-processing of these data, missing data were checked. It was observed, for example, that the missing data referring to new_cases was where the total number of cases had not been changed and that most of the missing data related to vaccination, which actually at the beginning of the pandemic there was no data. Therefore, to solve these cases of missing data it was decided to replace the data containing “NaN” by zero. Some of these features were combined to generate new features. This process that creates new features (data) from existing data, aiming to improve the data before applying machine learning algorithms, is called feature engineering. The new features created were: - Vaccination rate (vaccination_ratio'): total number of people who received at least one dose of vaccine divided by the population at risk. This dose number was chosen because it has a higher correlation with new deaths. - Prevalence: existing cases of the disease at a given time divided by the population at risk of having the disease. Formula: COVID-19 cases ÷ Population at risk * 100. Example: 168,331 ÷ 210,000,000 * 100 = 0.08. - Incidence: new cases of the disease in a defined population during a specific period (one day, for example) divided by the population at risk. Formula: New COVID-19 cases in one day ÷ Population - Total cases * 100. Example: 5,632 ÷ 209,837,301 * 100 = 0.0026.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Project Tycho datasets contain case counts for reported disease conditions for countries around the world. The Project Tycho data curation team extracts these case counts from various reputable sources, typically from national or international health authorities, such as the US Centers for Disease Control or the World Health Organization. These original data sources include both open- and restricted-access sources. For restricted-access sources, the Project Tycho team has obtained permission for redistribution from data contributors. All datasets contain case count data that are identical to counts published in the original source and no counts have been modified in any way by the Project Tycho team. The Project Tycho team has pre-processed datasets by adding new variables, such as standard disease and location identifiers, that improve data interpretabilty. We also formatted the data into a standard data format.
Each Project Tycho dataset contains case counts for a specific condition (e.g. measles) and for a specific country (e.g. The United States). Case counts are reported per time interval. In addition to case counts, datsets include information about these counts (attributes), such as the location, age group, subpopulation, diagnostic certainty, place of aquisition, and the source from which we extracted case counts. One dataset can include many series of case count time intervals, such as "US measles cases as reported by CDC", or "US measles cases reported by WHO", or "US measles cases that originated abroad", etc.
Depending on the intended use of a dataset, we recommend a few data processing steps before analysis:
https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
By Humanitarian Data Exchange [source]
This dataset contains five years of daily summaries of precipitation indicators in Sri Lanka. Data is compiled by the National Centers for Environmental Information (NCEI) in partnership with the United States government's National Oceanic and Atmospheric Administration (NOAA). These four indicators measure data collected from several stations across the country: Total Precipitation (TPCP), Maximum Snow Depth (MXSD), Total Snow Fall (TSNW), and Extreme Maximum Daily Precipitation (EMXP). Despite this dataset being comprehensive, it is important to recognize that due to late-arriving data, the number of recent records may be underestimated. Whether you are a researcher or climatologist, this dataset provides valuable insight into trends in Sri Lanka's weather patterns over the last five years
For more datasets, click here.
- 🚨 Your notebook can be here! 🚨!
This dataset contains the daily summaries on base stations across Sri Lanka for the past 5 years. It includes four indicators including: TPCP (Total Precipitation), MXSD (Max Snow Depth), TSNW (Total Snow Fall) and EMXP (Extreme Maximum Daily Precipitation). In this guide, we will show you how to use this dataset for your own purposes.
- Analyzing the trend of maximum snow depth over the years in Sri Lanka using monthly, quarterly and yearly aggregations.
- Estimating extreme maximum daily precipitation in different regions of Sri Lanka to understand the changing patterns over time.
- Visualizing average total snowfall fields across various base stations and comparing these outcomes with climate simulations to identify potential climate change impacts on extreme weather events in Sri Lanka
If you use this dataset in your research, please credit the original authors. Data Source
License: CC0 1.0 Universal (CC0 1.0) - Public Domain Dedication No Copyright - You can copy, modify, distribute and perform the work, even for commercial purposes, all without asking permission. See Other Information.
File: precipitation-lka-csv-1.csv | Column name | Description | |:--------------|:--------------------------------------------------------------------| | date | Date when data was collected. (Date) | | datatype | Type of data that has been collected. (String) | | station | Location where data was recorded. (String) | | value | Measurement value for each indicator for each day. (Float) | | fl_miss | Tells if any observations are missing from that day. (Boolean) | | fl_cmiss | Tells whether all observations are complete. (Boolean) | | country | Country from where the observed values have been recorded. (String) |
If you use this dataset in your research, please credit the original authors. If you use this dataset in your research, please credit Humanitarian Data Exchange.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Introduction
The 802.11 standard includes several management features and corresponding frame types. One of them are Probe Requests (PR), which are sent by mobile devices in an unassociated state to scan the nearby area for existing wireless networks. The frame part of PRs consists of variable-length fields, called Information Elements (IE), which represent the capabilities of a mobile device, such as supported data rates.
This dataset contains PRs collected over a seven-day period by four gateway devices in an uncontrolled urban environment in the city of Catania.
It can be used for various use cases, e.g., analyzing MAC randomization, determining the number of people in a given location at a given time or in different time periods, analyzing trends in population movement (streets, shopping malls, etc.) in different time periods, etc.
Related dataset
Same authors also produced the Labeled dataset of IEEE 802.11 probe requests with same data layout and recording equipment.
Measurement setup
The system for collecting PRs consists of a Raspberry Pi 4 (RPi) with an additional WiFi dongle to capture WiFi signal traffic in monitoring mode (gateway device). Passive PR monitoring is performed by listening to 802.11 traffic and filtering out PR packets on a single WiFi channel.
The following information about each received PR is collected: - MAC address - Supported data rates - extended supported rates - HT capabilities - extended capabilities - data under extended tag and vendor specific tag - interworking - VHT capabilities - RSSI - SSID - timestamp when PR was received.
The collected data was forwarded to a remote database via a secure VPN connection. A Python script was written using the Pyshark package to collect, preprocess, and transmit the data.
Data preprocessing
The gateway collects PRs for each successive predefined scan interval (10 seconds). During this interval, the data is preprocessed before being transmitted to the database. For each detected PR in the scan interval, the IEs fields are saved in the following JSON structure:
PR_IE_data = { 'DATA_RTS': {'SUPP': DATA_supp , 'EXT': DATA_ext}, 'HT_CAP': DATA_htcap, 'EXT_CAP': {'length': DATA_len, 'data': DATA_extcap}, 'VHT_CAP': DATA_vhtcap, 'INTERWORKING': DATA_inter, 'EXT_TAG': {'ID_1': DATA_1_ext, 'ID_2': DATA_2_ext ...}, 'VENDOR_SPEC': {VENDOR_1:{ 'ID_1': DATA_1_vendor1, 'ID_2': DATA_2_vendor1 ...}, VENDOR_2:{ 'ID_1': DATA_1_vendor2, 'ID_2': DATA_2_vendor2 ...} ...} }
Supported data rates and extended supported rates are represented as arrays of values that encode information about the rates supported by a mobile device. The rest of the IEs data is represented in hexadecimal format. Vendor Specific Tag is structured differently than the other IEs. This field can contain multiple vendor IDs with multiple data IDs with corresponding data. Similarly, the extended tag can contain multiple data IDs with corresponding data.
Missing IE fields in the captured PR are not included in PR_IE_DATA.
When a new MAC address is detected in the current scan time interval, the data from PR is stored in the following structure:
{'MAC': MAC_address, 'SSIDs': [ SSID ], 'PROBE_REQs': [PR_data] },
where PR_data is structured as follows:
{ 'TIME': [ DATA_time ], 'RSSI': [ DATA_rssi ], 'DATA': PR_IE_data }.
This data structure allows to store only 'TOA' and 'RSSI' for all PRs originating from the same MAC address and containing the same 'PR_IE_data'. All SSIDs from the same MAC address are also stored. The data of the newly detected PR is compared with the already stored data of the same MAC in the current scan time interval. If identical PR's IE data from the same MAC address is already stored, only data for the keys 'TIME' and 'RSSI' are appended. If identical PR's IE data from the same MAC address has not yet been received, then the PR_data structure of the new PR for that MAC address is appended to the 'PROBE_REQs' key. The preprocessing procedure is shown in Figure ./Figures/Preprocessing_procedure.png
At the end of each scan time interval, all processed data is sent to the database along with additional metadata about the collected data, such as the serial number of the wireless gateway and the timestamps for the start and end of the scan. For an example of a single PR capture, see the Single_PR_capture_example.json file.
Folder structure
For ease of processing of the data, the dataset is divided into 7 folders, each containing a 24-hour period. Each folder contains four files, each containing samples from that device.
The folders are named after the start and end time (in UTC). For example, the folder 2022-09-22T22-00-00_2022-09-23T22-00-00 contains samples collected between 23th of September 2022 00:00 local time, until 24th of September 2022 00:00 local time.
Files representing their location via mapping: - 1.json -> location 1 - 2.json -> location 2 - 3.json -> location 3 - 4.json -> location 4
Environments description
The measurements were carried out in the city of Catania, in Piazza Università and Piazza del Duomo The gateway devices (rPIs with WiFi dongle) were set up and gathering data before the start time of this dataset. As of September 23, 2022, the devices were placed in their final configuration and personally checked for correctness of installation and data status of the entire data collection system. Devices were connected either to a nearby Ethernet outlet or via WiFi to the access point provided.
Four Raspbery Pi-s were used: - location 1 -> Piazza del Duomo - Chierici building (balcony near Fontana dell’Amenano) - location 2 -> southernmost window in the building of Via Etnea near Piazza del Duomo - location 3 -> nothernmost window in the building of Via Etnea near Piazza Università - location 4 -> first window top the right of the entrance of the University of Catania
Locations were suggested by the authors and adjusted during deployment based on physical constraints (locations of electrical outlets or internet access) Under ideal circumstances, the locations of the devices and their coverage area would cover both squares and the part of Via Etna between them, with a partial overlap of signal detection. The locations of the gateways are shown in Figure ./Figures/catania.png.
Known dataset shortcomings
Due to technical and physical limitations, the dataset contains some identified deficiencies.
PRs are collected and transmitted in 10-second chunks. Due to the limited capabilites of the recording devices, some time (in the range of seconds) may not be accounted for between chunks if the transmission of the previous packet took too long or an unexpected error occurred.
Every 20 minutes the service is restarted on the recording device. This is a workaround for undefined behavior of the USB WiFi dongle, which can no longer respond. For this reason, up to 20 seconds of data will not be recorded in each 20-minute period.
The devices had a scheduled reboot at 4:00 each day which is shown as missing data of up to a few minutes.
Location 1 - Piazza del Duomo - Chierici
The gateway device (rPi) is located on the second floor balcony and is hardwired to the Ethernet port. This device appears to function stably throughout the data collection period. Its location is constant and is not disturbed, dataset seems to have complete coverage.
Location 2 - Via Etnea - Piazza del Duomo
The device is located inside the building. During working hours (approximately 9:00-17:00), the device was placed on the windowsill. However, the movement of the device cannot be confirmed. As the device was moved back and forth, power outages and internet connection issues occurred. The last three days in the record contain no PRs from this location.
Location 3 - Via Etnea - Piazza Università
Similar to Location 2, the device is placed on the windowsill and moved around by people working in the building. Similar behavior is also observed, e.g., it is placed on the windowsill and moved inside a thick wall when no people are present. This device appears to have been collecting data throughout the whole dataset period.
Location 4 - Piazza Università
This location is wirelessly connected to the access point. The device was placed statically on a windowsill overlooking the square. Due to physical limitations, the device had lost power several times during the deployment. The internet connection was also interrupted sporadically.
Recognitions
The data was collected within the scope of Resiloc project with the help of City of Catania and project partners.
https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
Coronavirus infection is currently the most important health topic. It surely tested and continues to test to the fullest extent the healthcare systems around the world. Although big progress is made in handling this pandemic, a tremendous number of questions are needed to be answered. I hereby present to you the local Bulgarian COVID-19 dataset with some context. It could be used as a comparator because it stands out compared to other countries and deserves analysis.
Context for Bulgarian population: Population - 6 948 445 Median age - 44.7 years Aged >65 - 20.801 % Aged >70 - 13.272%
Summary of the results: - first pandemic wave was weak, probably because of the early state of emergency (5 days after the first confirmed case). Whether this was a good decision or it was too early and just postpone the inevitable is debatable. -healthcare system collapses (probably due to delayed measures) in the second and third waves which resulted in Bulgaria gaining the top ranks for mortality and morbidity tables worldwide and in the EU. - low percentage of vaccinated people results in a prolonged epidemic and delaying the lifting of the preventive measures.
Some of the important moments that should be considered when interpreting the data: 08.03.2020 - Bulgaria confirmed its first two cases. The government issued a nationwide ban on closed-door public events (first lockdown); 13.03.2020- after 16 reported cases in one day, Bulgaria declared a state of emergency for one month until 13.04.2020. Schools, shopping centres, cinemas, restaurants, and other places of business were closed. All sports events were suspended. Only supermarkets, food markets, pharmacies, banks, and gas stations remain open. 03.04.2020 - The National Assembly approved the government's proposal to extend the state of emergency by one month until 13.05.2020; 14.05.2020 - the national emergency was lifted, and in its place was declared a state of an emergency epidemic situation. Schools and daycares remain closed, as well as shopping centers and indoor restaurants; 18.05.2020 - Shopping malls and fitness centers opened; 01.06.2020 - Restaurants and gaming halls opened; 10.07.2020 - discos and bars are closed, the sports events are without an audience; 29.10.2020 - High school and college students are transitioning to online learning; 27.11.2020 - the whole education is online, restaurants, nightclubs, bars, and discos are closed (second lockdown 27.11 - 21.12); 05.12.2020 - the 14-day mortality rate is the highest in the world; 16.01.2021 - some of the students went back to school; 01.03.2021 - restaurants and casinos opened; 22.03.2021 - restaurants, shopping malls, fitness centers, and schools are closed (third lockdown for 10 days - 22.03 - 31.03); 19.04.2021 - children daycare facilities, fitness centers, and nightclubs are opened;
This dataset consists of 447 rows with 29 columns and covers the period 08.03.2020 - 28.05.2021. In the beginning, there are some missing values until the proper statistical report was established.
A publication proposal is sent to anyone who wishes to collaborate. Based on the results and the value of the findings and the relevance of the topic it is expected to publish: - in a local journal (guaranteed); - in a SCOPUS journal (highly probable); - in an IF journal (if the results are really insightful).
The topics could be, but not limited to: - descriptive analysis of the pandemic outbreak in the country; - prediction of the pandemic or the vaccination rate; - discussion about the numbers compared to other countries/world; - discussion about the government decisions; - estimating cut-off values for step-down or step-up of the restrictions.
If you find an error, have a question, or wish to make a suggestion, I encourage you to reach me.
This dataset reports the daily reported number of the 7-day moving average rates of Deaths involving COVID-19 by vaccination status and by age group. Learn how the Government of Ontario is helping to keep Ontarians safe during the 2019 Novel Coronavirus outbreak. Effective November 14, 2024 this page will no longer be updated. Information about COVID-19 and other respiratory viruses is available on Public Health Ontario’s interactive respiratory virus tool: https://www.publichealthontario.ca/en/Data-and-Analysis/Infectious-Disease/Respiratory-Virus-Tool Data includes: * Date on which the death occurred * Age group * 7-day moving average of the last seven days of the death rate per 100,000 for those not fully vaccinated * 7-day moving average of the last seven days of the death rate per 100,000 for those fully vaccinated * 7-day moving average of the last seven days of the death rate per 100,000 for those vaccinated with at least one booster ##Additional notes As of June 16, all COVID-19 datasets will be updated weekly on Thursdays by 2pm. As of January 12, 2024, data from the date of January 1, 2024 onwards reflect updated population estimates. This update specifically impacts data for the 'not fully vaccinated' category. On November 30, 2023 the count of COVID-19 deaths was updated to include missing historical deaths from January 15, 2020 to March 31, 2023. CCM is a dynamic disease reporting system which allows ongoing update to data previously entered. As a result, data extracted from CCM represents a snapshot at the time of extraction and may differ from previous or subsequent results. Public Health Units continually clean up COVID-19 data, correcting for missing or overcounted cases and deaths. These corrections can result in data spikes and current totals being different from previously reported cases and deaths. Observed trends over time should be interpreted with caution for the most recent period due to reporting and/or data entry lags. The data does not include vaccination data for people who did not provide consent for vaccination records to be entered into the provincial COVaxON system. This includes individual records as well as records from some Indigenous communities where those communities have not consented to including vaccination information in COVaxON. “Not fully vaccinated” category includes people with no vaccine and one dose of double-dose vaccine. “People with one dose of double-dose vaccine” category has a small and constantly changing number. The combination will stabilize the results. Spikes, negative numbers and other data anomalies: Due to ongoing data entry and data quality assurance activities in Case and Contact Management system (CCM) file, Public Health Units continually clean up COVID-19, correcting for missing or overcounted cases and deaths. These corrections can result in data spikes, negative numbers and current totals being different from previously reported case and death counts. Public Health Units report cause of death in the CCM based on information available to them at the time of reporting and in accordance with definitions provided by Public Health Ontario. The medical certificate of death is the official record and the cause of death could be different. Deaths are defined per the outcome field in CCM marked as “Fatal”. Deaths in COVID-19 cases identified as unrelated to COVID-19 are not included in the Deaths involving COVID-19 reported. Rates for the most recent days are subject to reporting lags All data reflects totals from 8 p.m. the previous day. This dataset is subject to change.
CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
COVID-19 Cases information is reported through the Pennsylvania State Department’s National Electronic Disease Surveillance System (PA-NEDSS). As new cases are passed to the Allegheny County Health Department they are investigated by case investigators. During investigation some cases which are initially determined by the State to be in the Allegheny County jurisdiction may change, which can account for differences between publication of the files on the number of cases, deaths and tests. Additionally, information is not always reported to the State in a timely manner, delays can range from days to weeks, which can also account for discrepancies between previous and current files. Test and Case information will be updated daily. This resource contains individuals who received a COVID-19 test and individuals whom are probable cases. Every day, these records are overwritten with updates. Each row in the data reflects a person that is tested, not tests that are conducted. People that are tested more than once will have their testing and case data updated using the following rules:
Note: On April 4th 2022 the Pennsylvania Department of Health no longer required labs to report negative AG tests. Therefore aggregated counts that included AG tests have been removed from the Municipality/Neighborhood files going forward. Versions of this data up to this cut-off have been retained as archived files.
Individual Test information is also updated daily. This resource contains the details and results of individual tests along with demographic information of the individual tested. Only PCR and AG tests are included. Every day, these records are overwritten with updates. This resource should be used to determine positivity rates.
The remaining datasets provide statistics on death demographics. Demographic, municipality and neighborhood information for deaths are reported on a weekly schedule and are not included with individual cases or tests. This has been done to protect the privacy and security of individuals and their families in accordance with the Health Insurance Portability and Accountability Act (HIPAA). Municipality or City of Pittsburgh Neighborhood is based off the geocoded home address of the individual tested.
Individuals whose home address is incomplete may not be in Allegheny County but whose temporary residency, work or other mitigating circumstance are determined to be in Allegheny County by the Pennsylvania Department of Health are counted as "Undefined".
Since the start of the pandemic, the ACHD has mapped every day’s COVID tests, cases, and deaths to their Allegheny County municipality and neighborhood. Tests were mapped to patient address, and if this was not available, to the provider location. This has recently resulted in apparent testing rates that exceeded the populations of various municipalities -- mostly those with healthcare providers. As this was brought to our attention, the health department and our data partners began researching and comparing methods to most accurately display the data. This has led us to leave those with missing home addresses off the map. Although these data will still appear in test, case and death counts, there will be over 20,000 fewer tests and almost 1000 fewer cases on the map. In addition to these map changes, we have identified specific health systems and laboratories that had data uploading errors that resulted in missing locations, and are working with them to correct these errors.
Due to minor discrepancies in the Municipal boundary and the City of Pittsburgh Neighborhood files individuals whose City Neighborhood cannot be identified are be counted as “Undefined (Pittsburgh)”.
On May 19, 2023, with the rescinding of the COVID-19 public health emergency, changes in data and reporting mechanisms prompted a change to an annual data sharing schedule for tests, cases, hospitalizations, and deaths. Dates for annual release are TBD. The weekly municipal counts and individual data produced before this changed are maintained as archive files.
Support for Health Equity datasets and tools provided by Amazon Web Services (AWS) through their Health Equity Initiative.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Project Tycho datasets contain case counts for reported disease conditions for countries around the world. The Project Tycho data curation team extracts these case counts from various reputable sources, typically from national or international health authorities, such as the US Centers for Disease Control or the World Health Organization. These original data sources include both open- and restricted-access sources. For restricted-access sources, the Project Tycho team has obtained permission for redistribution from data contributors. All datasets contain case count data that are identical to counts published in the original source and no counts have been modified in any way by the Project Tycho team. The Project Tycho team has pre-processed datasets by adding new variables, such as standard disease and location identifiers, that improve data interpretabilty. We also formatted the data into a standard data format. Each Project Tycho dataset contains case counts for a specific condition (e.g. measles) and for a specific country (e.g. The United States). Case counts are reported per time interval. In addition to case counts, datsets include information about these counts (attributes), such as the location, age group, subpopulation, diagnostic certainty, place of aquisition, and the source from which we extracted case counts. One dataset can include many series of case count time intervals, such as "US measles cases as reported by CDC", or "US measles cases reported by WHO", or "US measles cases that originated abroad", etc. Depending on the intended use of a dataset, we recommend a few data processing steps before analysis:
Analyze missing data: Project Tycho datasets do not inlcude time intervals for which no case count was reported (for many datasets, time series of case counts are incomplete, due to incompleteness of source documents) and users will need to add time intervals for which no count value is available. Project Tycho datasets do include time intervals for which a case count value of zero was reported. Separate cumulative from non-cumulative time interval series. Case count time series in Project Tycho datasets can be "cumulative" or "fixed-intervals". Cumulative case count time series consist of overlapping case count intervals starting on the same date, but ending on different dates. For example, each interval in a cumulative count time series can start on January 1st, but end on January 7th, 14th, 21st, etc. It is common practice among public health agencies to report cases for cumulative time intervals. Case count series with fixed time intervals consist of mutually exxclusive time intervals that all start and end on different dates and all have identical length (day, week, month, year). Given the different nature of these two types of case count data, we indicated this with an attribute for each count value, named "PartOfCumulativeCountSeries".
DPH is updating and streamlining the COVID-19 cases, deaths, and testing data. As of 6/27/2022, the data will be published in four tables instead of twelve. The COVID-19 Cases, Deaths, and Tests by Day dataset contains cases and test data by date of sample submission. The death data are by date of death. This dataset is updated daily and contains information back to the beginning of the pandemic. The data can be found at https://data.ct.gov/Health-and-Human-Services/COVID-19-Cases-Deaths-and-Tests-by-Day/g9vi-2ahj. The COVID-19 State Metrics dataset contains over 93 columns of data. This dataset is updated daily and currently contains information starting June 21, 2022 to the present. The data can be found at https://data.ct.gov/Health-and-Human-Services/COVID-19-State-Level-Data/qmgw-5kp6 . The COVID-19 County Metrics dataset contains 25 columns of data. This dataset is updated daily and currently contains information starting June 16, 2022 to the present. The data can be found at https://data.ct.gov/Health-and-Human-Services/COVID-19-County-Level-Data/ujiq-dy22 . The COVID-19 Town Metrics dataset contains 16 columns of data. This dataset is updated daily and currently contains information starting June 16, 2022 to the present. The data can be found at https://data.ct.gov/Health-and-Human-Services/COVID-19-Town-Level-Data/icxw-cada . To protect confidentiality, if a town has fewer than 5 cases or positive NAAT tests over the past 7 days, those data will be suppressed. COVID-19 state summary including the following metrics, including the change from the data reported the previous day: COVID-19 Cases (confirmed and probable) COVID-19 Tests Reported (molecular and antigen) Daily Test Positivity Patients Currently Hospitalized with COVID-19 COVID-19-Associated Deaths Additional notes: The cumulative count of tests reported for 1/17/2021 includes 286,103 older tests from previous dates, which had been missing from previous reports due to a data processing error. The older tests were added to the cumulative count of tests reported, but they were not included in the calculation of change from the previous reporting day or daily percent test positivity. Starting 5/10/2021, the date field will represent the date this data was updated on data.ct.gov. Previously the date the data was pulled by DPH was listed, which typically coincided with the date before the data was published on data.ct.gov. This change was made to standardize the COVID-19 data sets on data.ct.gov. Starting April 4, 2022, negative rapid antigen and rapid PCR test results for SARS-CoV-2 are no longer required to be reported to the Connecticut Department of Public Health as of April 4. Negative test results from laboratory based molecular (PCR/NAAT) results are still required to be reported as are all positive test results from both molecular (PCR/NAAT) and antigen tests.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Project Tycho datasets contain case counts for reported disease conditions for countries around the world. The Project Tycho data curation team extracts these case counts from various reputable sources, typically from national or international health authorities, such as the US Centers for Disease Control or the World Health Organization. These original data sources include both open- and restricted-access sources. For restricted-access sources, the Project Tycho team has obtained permission for redistribution from data contributors. All datasets contain case count data that are identical to counts published in the original source and no counts have been modified in any way by the Project Tycho team. The Project Tycho team has pre-processed datasets by adding new variables, such as standard disease and location identifiers, that improve data interpretabilty. We also formatted the data into a standard data format. Each Project Tycho dataset contains case counts for a specific condition (e.g. measles) and for a specific country (e.g. The United States). Case counts are reported per time interval. In addition to case counts, datsets include information about these counts (attributes), such as the location, age group, subpopulation, diagnostic certainty, place of aquisition, and the source from which we extracted case counts. One dataset can include many series of case count time intervals, such as "US measles cases as reported by CDC", or "US measles cases reported by WHO", or "US measles cases that originated abroad", etc. Depending on the intended use of a dataset, we recommend a few data processing steps before analysis:
Analyze missing data: Project Tycho datasets do not inlcude time intervals for which no case count was reported (for many datasets, time series of case counts are incomplete, due to incompleteness of source documents) and users will need to add time intervals for which no count value is available. Project Tycho datasets do include time intervals for which a case count value of zero was reported. Separate cumulative from non-cumulative time interval series. Case count time series in Project Tycho datasets can be "cumulative" or "fixed-intervals". Cumulative case count time series consist of overlapping case count intervals starting on the same date, but ending on different dates. For example, each interval in a cumulative count time series can start on January 1st, but end on January 7th, 14th, 21st, etc. It is common practice among public health agencies to report cases for cumulative time intervals. Case count series with fixed time intervals consist of mutually exxclusive time intervals that all start and end on different dates and all have identical length (day, week, month, year). Given the different nature of these two types of case count data, we indicated this with an attribute for each count value, named "PartOfCumulativeCountSeries".
In 2022, there were 313,017 cases filed by the NCIC where the race of the reported missing was White. In the same year, 18,928 people were missing whose race was unknown.
What is the NCIC?
The National Crime Information Center (NCIC) is a digital database that stores crime data for the United States, so criminal justice agencies can access it. As a part of the FBI, it helps criminal justice professionals find criminals, missing people, stolen property, and terrorists. The NCIC database is broken down into 21 files. Seven files belong to stolen property and items, and 14 belong to persons, including the National Sex Offender Register, Missing Person, and Identify Theft. It works alongside federal, tribal, state, and local agencies. The NCIC’s goal is to maintain a centralized information system between local branches and offices, so information is easily accessible nationwide.
Missing people in the United States
A person is considered missing when they have disappeared and their location is unknown. A person who is considered missing might have left voluntarily, but that is not always the case. The number of the NCIC unidentified person files in the United States has fluctuated since 1990, and in 2022, there were slightly more NCIC missing person files for males as compared to females. Fortunately, the number of NCIC missing person files has been mostly decreasing since 1998.