In 2022, there were 313,017 cases filed by the NCIC where the race of the reported missing was White. In the same year, 18,928 people were missing whose race was unknown.
What is the NCIC?
The National Crime Information Center (NCIC) is a digital database that stores crime data for the United States, so criminal justice agencies can access it. As a part of the FBI, it helps criminal justice professionals find criminals, missing people, stolen property, and terrorists. The NCIC database is broken down into 21 files. Seven files belong to stolen property and items, and 14 belong to persons, including the National Sex Offender Register, Missing Person, and Identify Theft. It works alongside federal, tribal, state, and local agencies. The NCIC’s goal is to maintain a centralized information system between local branches and offices, so information is easily accessible nationwide.
Missing people in the United States
A person is considered missing when they have disappeared and their location is unknown. A person who is considered missing might have left voluntarily, but that is not always the case. The number of the NCIC unidentified person files in the United States has fluctuated since 1990, and in 2022, there were slightly more NCIC missing person files for males as compared to females. Fortunately, the number of NCIC missing person files has been mostly decreasing since 1998.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This dataset provides a comprehensive record of missing migrants and their tragic journeys towards international destinations , collected by the Missing Migrants Project, an initiative implemented by the International Organization for Migration (IOM) since 2014. The dataset documents deaths and disappearances, shedding light on the challenges migrants face during their journeys. Please note that due to the complexities of data collection, the figures presented are likely an undercount. The dataset serves as a tribute to the individuals who lost their lives, as well as the families and communities impacted by their absence.
- Incident Type: Type of migration incident
- Incident Year: Year when the incident occurred
- Reported Month: Month when the incident was reported
- Region of Origin: Geographical region where the migrants originated
- Region of Incident: Geographical region where the incident occurred
- Country of Origin: Country from which the migrants originated
- Number of Dead: Number of confirmed deceased migrants
- Minimum Estimated Number of Missing: Minimum estimated count of missing migrants
- Total Number of Dead and Missing: Total count of both deceased and missing migrants
- Number of Survivors: Number of migrants who survived the incident
- Number of Females: Number of female migrants involved
- Number of Males: Number of male migrants involved
- Number of Children: Number of children migrants involved
- Cause of Death: Cause of death for the migrants
- Migration Route: Route taken by migrants during their journey (if available)
- Location of Death: Approximate location where the incident occurred
- Information Source: Source of information about the incident
- Coordinates: Geographical coordinates of the incident location
- UNSD Geographical Grouping: Geographical grouping according to the United Nations Statistics Division
- Migration Patterns Analysis: Explore trends and patterns in migration incidents to understand the most affected regions and routes.
- Gender and Age Analysis: Investigate the demographics of migrants to identify gender and age-related vulnerabilities.
- Survival and Mortality Analysis: Analyze survival rates and causes of death to highlight risks and challenges migrants face.
- Temporal Analysis: Examine incidents over time to identify any temporal patterns or changes.
- Geospatial Analysis: Utilize geographical coordinates to map migration routes and incident locations.
If you find this dataset valuable, your support through votes is highly appreciated! ❤️ Thank you 🙂
https://dataful.in/terms-and-conditionshttps://dataful.in/terms-and-conditions
Ministry of Home Affairs, Government of India has defined missing child as 'a person below eighteen years of age, whose whereabouts are not known to the parents, legal guardians and any other persons who may be legally entrusted with the custody of the child, whatever may be the circumstances/causes of disappearance”. The dataset contains the state wise and gender-wise number of children reported missing in a particular year, total number of persons missing including those from previous years, number of persons recovered/traced and those unrecovered/untraced. The dataset also contains the percentage recovery of missing persons which is calculated as the percentage share of total number of persons traced over the total number of persons missing. NCRB started providing detailed data on missing & traced persons including children from 2016 onwards following the Supreme Court’s direction in a Writ Petition. It should also be noted that the data published by NCRB is restricted to those cases where FIRs have been registered by the police in respective States/UTs.
This dataset reflects reported incidents of crime (with the exception of murders where data exists for each victim) that have occurred in the City of Chicago over the past year, minus the most recent seven days of data. Data is extracted from the Chicago Police Department's CLEAR (Citizen Law Enforcement Analysis and Reporting) system. In order to protect the privacy of crime victims, addresses are shown at the block level only and specific locations are not identified. Should you have questions about this dataset, you may contact the Research & Development Division of the Chicago Police Department at 312.745.6071 or RandD@chicagopolice.org. Disclaimer: These crimes may be based upon preliminary information supplied to the Police Department by the reporting parties that have not been verified. The preliminary crime classifications may be changed at a later date based upon additional investigation and there is always the possibility of mechanical or human error. Therefore, the Chicago Police Department does not guarantee (either expressed or implied) the accuracy, completeness, timeliness, or correct sequencing of the information and the information should not be used for comparison purposes over time. The Chicago Police Department will not be responsible for any error or omission, or for the use of, or the results obtained from the use of this information. All data visualizations on maps should be considered approximate and attempts to derive specific addresses are strictly prohibited.
The Chicago Police Department is not responsible for the content of any off-site pages that are referenced by or that reference this web page other than an official City of Chicago or Chicago Police Department web page. The user specifically acknowledges that the Chicago Police Department is not responsible for any defamatory, offensive, misleading, or illegal conduct of other users, links, or third parties and that the risk of injury from the foregoing rests entirely with the user. The unauthorized use of the words "Chicago Police Department," "Chicago Police," or any colorable imitation of these words or the unauthorized use of the Chicago Police Department logo is unlawful. This web page does not, in any way, authorize such use. Data is updated daily Tuesday through Sunday. The dataset contains more than 65,000 records/rows of data and cannot be viewed in full in Microsoft Excel. Therefore, when downloading the file, select CSV from the Export menu. Open the file in an ASCII text editor, such as Wordpad, to view and search. To access a list of Chicago Police Department - Illinois Uniform Crime Reporting (IUCR) codes, go to http://bit.ly/rk5Tpc.
https://dataful.in/terms-and-conditionshttps://dataful.in/terms-and-conditions
The dataset contains the state-wise number of persons reported missing in a particular year, the total number of persons missing including those from previous years, the number of persons recovered/traced and those unrecovered/untraced. The dataset also contains the percentage recovery of missing persons which is calculated as the percentage share of total number of persons traced over the total number of persons missing. NCRB started providing detailed data on missing & traced persons including children from 2016 onwards following the Supreme Court’s direction in a Writ Petition. It should also be noted that the data published by NCRB is restricted to those cases where FIRs have been registered by the police in respective States/UTs.
Note: Figures for projected_mid_year_population are sourced from the Report of the Technical Group on Population Projections for India and States 2011-2036
CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
This project provides a comprehensive dataset of over 125,000 missing and unaccounted-for people in Mexico from the 1960s to 2025. The dataset is sourced from the publicly available records on the RNPDO website and represents individuals who were actively missing as of the date of collection (May 1, 2025). To protect individual identities, personal identifiers, such as names, have been removed.Dataset Features:The data has been cleaned and translated to facilitate analysis by a global audience.Fields include:SexDate of birthDate of incidenceState and municipality of the incidentData spans over six decades, offering insights into trends and regional disparities.Additional Materials:Python Script: A Python script to generate customizable visualizations based on the dataset. Users can specify the state to generate tailored charts.Sample Chart: An example chart showcasing the evolution of missing persons per 100,000 inhabitants in Mexico between 2006 and 2025.Requirements File: A requirements.txt file listing the necessary Python libraries to run the script seamlessly.This dataset and accompanying tools aim to support researchers, policymakers, and journalists in analyzing and addressing the issue of missing persons in Mexico.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset tabulates the population of Lost Nation by gender across 18 age groups. It lists the male and female population in each age group along with the gender ratio for Lost Nation. The dataset can be utilized to understand the population distribution of Lost Nation by gender and age. For example, using this dataset, we can identify the largest age group for both Men and Women in Lost Nation. Additionally, it can be used to see how the gender ratio changes from birth to senior most age group and male to female ratio across each age group for Lost Nation.
Key observations
Largest age group (population): Male # 50-54 years (27) | Female # 10-14 years (25). Source: U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates.
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates.
Age groups:
Scope of gender :
Please note that American Community Survey asks a question about the respondents current sex, but not about gender, sexual orientation, or sex at birth. The question is intended to capture data for biological sex, not gender. Respondents are supposed to respond with the answer as either of Male or Female. Our research and this dataset mirrors the data reported as Male and Female for gender distribution analysis.
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for Lost Nation Population by Gender. You can refer the same here
NamUs is the only national repository for missing, unidentified, and unclaimed persons cases. The program provides a singular resource hub for law enforcement, medical examiners, coroners, and investigating professionals. It is the only national database for missing, unidentified, and unclaimed persons that allows limited access to the public, empowering family members to take a more proactive role in the search for their missing loved ones.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset tabulates the population of Lost Springs by gender across 18 age groups. It lists the male and female population in each age group along with the gender ratio for Lost Springs. The dataset can be utilized to understand the population distribution of Lost Springs by gender and age. For example, using this dataset, we can identify the largest age group for both Men and Women in Lost Springs. Additionally, it can be used to see how the gender ratio changes from birth to senior most age group and male to female ratio across each age group for Lost Springs.
Key observations
Largest age group (population): Male # 60-64 years (1) | Female # 0-4 years (0). Source: U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates.
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates.
Age groups:
Scope of gender :
Please note that American Community Survey asks a question about the respondents current sex, but not about gender, sexual orientation, or sex at birth. The question is intended to capture data for biological sex, not gender. Respondents are supposed to respond with the answer as either of Male or Female. Our research and this dataset mirrors the data reported as Male and Female for gender distribution analysis.
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for Lost Springs Population by Gender. You can refer the same here
Note: DPH is updating and streamlining the COVID-19 cases, deaths, and testing data. As of 6/27/2022, the data will be published in four tables instead of twelve. The COVID-19 Cases, Deaths, and Tests by Day dataset contains cases and test data by date of sample submission. The death data are by date of death. This dataset is updated daily and contains information back to the beginning of the pandemic. The data can be found at https://data.ct.gov/Health-and-Human-Services/COVID-19-Cases-Deaths-and-Tests-by-Day/g9vi-2ahj. The COVID-19 State Metrics dataset contains over 93 columns of data. This dataset is updated daily and currently contains information starting June 21, 2022 to the present. The data can be found at https://data.ct.gov/Health-and-Human-Services/COVID-19-State-Level-Data/qmgw-5kp6 . The COVID-19 County Metrics dataset contains 25 columns of data. This dataset is updated daily and currently contains information starting June 16, 2022 to the present. The data can be found at https://data.ct.gov/Health-and-Human-Services/COVID-19-County-Level-Data/ujiq-dy22 . The COVID-19 Town Metrics dataset contains 16 columns of data. This dataset is updated daily and currently contains information starting June 16, 2022 to the present. The data can be found at https://data.ct.gov/Health-and-Human-Services/COVID-19-Town-Level-Data/icxw-cada . To protect confidentiality, if a town has fewer than 5 cases or positive NAAT tests over the past 7 days, those data will be suppressed. COVID-19 cases and associated deaths that have been reported among Connecticut residents, broken down by race and ethnicity. All data in this report are preliminary; data for previous dates will be updated as new reports are received and data errors are corrected. Deaths reported to the either the Office of the Chief Medical Examiner (OCME) or Department of Public Health (DPH) are included in the COVID-19 update. The following data show the number of COVID-19 cases and associated deaths per 100,000 population by race and ethnicity. Crude rates represent the total cases or deaths per 100,000 people. Age-adjusted rates consider the age of the person at diagnosis or death when estimating the rate and use a standardized population to provide a fair comparison between population groups with different age distributions. Age-adjustment is important in Connecticut as the median age of among the non-Hispanic white population is 47 years, whereas it is 34 years among non-Hispanic blacks, and 29 years among Hispanics. Because most non-Hispanic white residents who died were over 75 years of age, the age-adjusted rates are lower than the unadjusted rates. In contrast, Hispanic residents who died tend to be younger than 75 years of age which results in higher age-adjusted rates. The population data used to calculate rates is based on the CT DPH population statistics for 2019, which is available online here: https://portal.ct.gov/DPH/Health-Information-Systems--Reporting/Population/Population-Statistics. Prior to 5/10/2021, the population estimates from 2018 were used. Rates are standardized to the 2000 US Millions Standard population (data available here: https://seer.cancer.gov/stdpopulations/). Standardization was done using 19 age groups (0, 1-4, 5-9, 10-14, ..., 80-84, 85 years and older). More information about direct standardization for age adjustment is available here: https://www.cdc.gov/nchs/data/statnt/statnt06rv.pdf Categories are mutually exclusive. The category “multiracial” includes people who answered ‘yes’ to more than one race category. Counts may not add up to total case counts as data on race and ethnicity may be missing. Age adjusted rates calculated only for groups with more than 20 deaths. Abbreviation: NH=Non-Hispanic. Data on Connecticut deaths were obtained from the Connecticut Deaths Registry maintained by the DPH Office of Vital Records. Cause of death was determined by a death certifier (e.g., physician, APRN, medical
Open Government Licence - Canada 2.0https://open.canada.ca/en/open-government-licence-canada
License information was derived automatically
Under Section 8 of the Missing Persons Act, 2018, police services are required to report annually on their use of urgent demands for records under the Act and the Ministry of the Solicitor General is required to make the OPP’s annual report data publicly available. The data includes: * year in which the urgent demands were reported * category of records * description of records accessed under each category * total number of times each category of records was demanded * total number of missing persons investigations which had urgent demands for records * total number of urgent demands for records made by OPP in a year.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Analysis of ‘Missing Migrants Dataset’ provided by Analyst-2 (analyst-2.ai), based on source dataset retrieved from https://www.kaggle.com/jmataya/missingmigrants on 14 February 2022.
--- Dataset description provided by original source is as follows ---
This data is sourced from the International Organization for Migration. The data is part of a specific project called the Missing Migrants Project which tracks deaths of migrants, including refugees , who have gone missing along mixed migration routes worldwide. The research behind this project began with the October 2013 tragedies, when at least 368 individuals died in two shipwrecks near the Italian island of Lampedusa. Since then, Missing Migrants Project has developed into an important hub and advocacy source of information that media, researchers, and the general public access for the latest information.
Missing Migrants Project data are compiled from a variety of sources. Sources vary depending on the region and broadly include data from national authorities, such as Coast Guards and Medical Examiners; media reports; NGOs; and interviews with survivors of shipwrecks. In the Mediterranean region, data are relayed from relevant national authorities to IOM field missions, who then share it with the Missing Migrants Project team. Data are also obtained by IOM and other organizations that receive survivors at landing points in Italy and Greece. In other cases, media reports are used. IOM and UNHCR also regularly coordinate on such data to ensure consistency. Data on the U.S./Mexico border are compiled based on data from U.S. county medical examiners and sheriff’s offices, as well as media reports for deaths occurring on the Mexico side of the border. Estimates within Mexico and Central America are based primarily on media and year-end government reports. Data on the Bay of Bengal are drawn from reports by UNHCR and NGOs. In the Horn of Africa, data are obtained from media and NGOs. Data for other regions is drawn from a combination of sources, including media and grassroots organizations. In all regions, Missing Migrants Projectdata represents minimum estimates and are potentially lower than in actuality.
Updated data and visuals can be found here: https://missingmigrants.iom.int/
IOM defines a migrant as any person who is moving or has moved across an international border or within a State away from his/her habitual place of residence, regardless of
(1) the person’s legal status;
(2) whether the movement is voluntary or involuntary;
(3) what the causes for the movement are; or
(4) what the length of the stay is.[1]
Missing Migrants Project counts migrants who have died or gone missing at the external borders of states, or in the process of migration towards an international destination. The count excludes deaths that occur in immigration detention facilities, during deportation, or after forced return to a migrant’s homeland, as well as deaths more loosely connected with migrants’ irregular status, such as those resulting from labour exploitation. Migrants who die or go missing after they are established in a new home are also not included in the data, so deaths in refugee camps or housing are excluded. This approach is chosen because deaths that occur at physical borders and while en route represent a more clearly definable category, and inform what migration routes are most dangerous. Data and knowledge of the risks and vulnerabilities faced by migrants in destination countries, including death, should not be neglected, rather tracked as a distinct category.
Data on fatalities during the migration process are challenging to collect for a number of reasons, most stemming from the irregular nature of migratory journeys on which deaths tend to occur. For one, deaths often occur in remote areas on routes chosen with the explicit aim of evading detection. Countless bodies are never found, and rarely do these deaths come to the attention of authorities or the media. Furthermore, when deaths occur at sea, frequently not all bodies are recovered - sometimes with hundreds missing from one shipwreck - and the precise number of missing is often unknown. In 2015, over 50 per cent of deaths recorded by the Missing Migrants Project refer to migrants who are presumed dead and whose bodies have not been found, mainly at sea.
Data are also challenging to collect as reporting on deaths is poor, and the data that does exist are highly scattered. Few official sources are collecting data systematically. Many counts of death rely on media as a source. Coverage can be spotty and incomplete. In addition, the involvement of criminal actors in incidents means there may be fear among survivors to report deaths and some deaths may be actively covered-up. The irregular immigration status of many migrants, and at times their families as well, also impedes reporting of missing persons or deaths.
The varying quality and comprehensiveness of data by region in attempting to estimate deaths globally may exaggerate the share of deaths that occur in some regions, while under-representing the share occurring in others.
The available data can give an indication of changing conditions and trends related to migration routes and the people travelling on them, which can be relevant for policy making and protection plans. Data can be useful to determine the relative risks of irregular migration routes. For example, Missing Migrants Project data show that despite the increase in migrant flows through the eastern Mediterranean in 2015, the central Mediterranean remained the more deadly route. In 2015, nearly two people died out of every 100 travellers (1.85%) crossing the Central route, as opposed to one out of every 1,000 that crossed from Turkey to Greece (0.095%). From the data, we can also get a sense of whether groups like women and children face additional vulnerabilities on migration routes.
However, it is important to note that because of the challenges in data collection for the missing and dead, basic demographic information on the deceased is rarely known. Often migrants in mixed migration flows do not carry appropriate identification. When bodies are found it may not be possible to identify them or to determine basic demographic information. In the data compiled by Missing Migrants Project, sex of the deceased is unknown in over 80% of cases. Region of origin has been determined for the majority of the deceased. Even this information is at times extrapolated based on available information – for instance if all survivors of a shipwreck are of one origin it was assumed those missing also came from the same region.
The Missing Migrants Project dataset includes coordinates for where incidents of death took place, which indicates where the risks to migrants may be highest. However, it should be noted that all coordinates are estimates.
By counting lives lost during migration, even if the result is only an informed estimate, we at least acknowledge the fact of these deaths. What before was vague and ill-defined is now a quantified tragedy that must be addressed. Politically, the availability of official data is important. The lack of political commitment at national and international levels to record and account for migrant deaths reflects and contributes to a lack of concern more broadly for the safety and well-being of migrants, including asylum-seekers. Further, it drives public apathy, ignorance, and the dehumanization of these groups.
Data are crucial to better understand the profiles of those who are most at risk and to tailor policies to better assist migrants and prevent loss of life. Ultimately, improved data should contribute to efforts to better understand the causes, both direct and indirect, of fatalities and their potential links to broader migration control policies and practices.
Counting and recording the dead can also be an initial step to encourage improved systems of identification of those who die. Identifying the dead is a moral imperative that respects and acknowledges those who have died. This process can also provide a some sense of closure for families who may otherwise be left without ever knowing the fate of missing loved ones.
As mentioned above, the challenge remains to count the numbers of dead and also identify those counted. Globally, the majority of those who die during migration remain unidentified. Even in cases in which a body is found identification rates are low. Families may search for years or a lifetime to find conclusive news of their loved one. In the meantime, they may face psychological, practical, financial, and legal problems.
Ultimately Missing Migrants Project would like to see that every unidentified body, for which it is possible to recover, is adequately “managed”, analysed and tracked to ensure proper documentation, traceability and dignity. Common forensic protocols and standards should be agreed upon, and used within and between States. Furthermore, data relating to the dead and missing should be held in searchable and open databases at local, national and international levels to facilitate identification.
For more in-depth analysis and discussion of the numbers of missing and dead migrants around the world, and the challenges involved in identification and tracing, read our two reports on the issue, Fatal Journeys: Tracking Lives Lost during Migration (2014) and Fatal Journeys Volume 2, Identification and Tracing of Dead and Missing Migrants
The data set records
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset tabulates the population of Lost Nation by gender, including both male and female populations. This dataset can be utilized to understand the population distribution of Lost Nation across both sexes and to determine which sex constitutes the majority.
Key observations
There is a slight majority of female population, with 52.93% of total population being female. Source: U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates.
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates.
Scope of gender :
Please note that American Community Survey asks a question about the respondents current sex, but not about gender, sexual orientation, or sex at birth. The question is intended to capture data for biological sex, not gender. Respondents are supposed to respond with the answer as either of Male or Female. Our research and this dataset mirrors the data reported as Male and Female for gender distribution analysis. No further analysis is done on the data reported from the Census Bureau.
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for Lost Nation Population by Race & Ethnicity. You can refer the same here
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Analysis of ‘Covid-19 Tests by Race Ethnicity and Date’ provided by Analyst-2 (analyst-2.ai), based on source dataset retrieved from https://catalog.data.gov/dataset/68410b4b-052f-4ce3-8d0c-873b5664f1a4 on 27 January 2022.
--- Dataset description provided by original source is as follows ---
Note: As of April 16, 2021, this dataset will update daily with a five-day data lag.
A. SUMMARY This dataset includes San Francisco COVID-19 tests by race/ ethnicity and date. For each day, this dataset represents the daily count of tests collected by race/ethnicity, and how many of those were positive, negative, and indeterminate. Tests in this dataset include all tests collected from San Francisco residents who listed a San Francisco home address at the time of testing, and tests that were collected in San Francisco but had a missing home address. Data are based on information collected at the time of testing.
For recent data, about 25-30% of tests are missing race/ ethnicity information. Tests where the race/ ethnicity of the patient is unknown are included in the dataset under the "Unknown" category.
This data was de-duplicated by individual and date, so if a person gets tested multiple times on different dates, all tests will be included in this dataset (on the day each test was collected).
The total number of positive test results is not equal to the total number of COVID-19 cases in San Francisco. Each positive test result is investigated. During this investigation, some test results are found to be for persons living outside of San Francisco and some people in San Francisco may be tested multiple times. In both cases, these results are not included in San Francisco’s total COVID-19 case count. To track the number of cases by race/ ethnicity, see this dashboard: https://data.sfgov.org/stories/s/w6za-6st8
B. HOW THE DATASET IS CREATED COVID-19 laboratory test data is based on electronic laboratory test reports. Deduplication, quality assurance measures and other data verification processes maximize accuracy of laboratory test information.
C. UPDATE PROCESS Updates automatically at 05:00 Pacific Time each day. Redundant runs are scheduled at 07:00 and 09:00 in case of pipeline failure.
D. HOW TO USE THIS DATASET Due to the high degree of variation in the time needed to complete tests by different labs there is a delay in this reporting. On March 24 the Health Officer ordered all labs in the City to report complete COVID-19 testing information to the local and state health departments.
In order to track trends over time, a data user can analyze this data by "specimen_collection_date".
Calculating Percent Positivity: The positivity rate is the percentage of tests that return a positive result for COVID-19 (positive tests divided by the sum of positive and negative tests). Indeterminate results, which could not conclusively determine whether COVID-19 virus was present, are not included in the calculation of percent positive. When there are fewer than 20 positives tests for a given race/ethnicity and time period, the positivity rate is not calculated for the public tracker because rates of small test counts are less reliable.
Calculating Testing Rates: To calculate the testing rate per 10,000 residents, divide the total number of tests collected (positive, negative, and indeterminate results) for the specified race/ ethnicity by the total number of residents who identify as that race/ ethnicity (according to the 2018 5-year estimates from the American Community Survey), then multiply by 10,000. When there are fewer than 20 total tests for a given race/ethnicity and time period, the testing rate is not calculated for the public tracker because rates of small test counts are less reliable.
Read more about how this data is updated and validated daily: https://data.sfgov.org/stories/s/nudz-9tg2
There are two other datasets related to tests: 1. COVID-19 Tests 2. <a href="https://data.sfgov.org/dataset/Covid-19-Testing-by
--- Original source retains full ownership of the source dataset ---
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset tabulates the population of Lost Creek by gender, including both male and female populations. This dataset can be utilized to understand the population distribution of Lost Creek across both sexes and to determine which sex constitutes the majority.
Key observations
There is a majority of female population, with 61.83% of total population being female. Source: U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates.
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates.
Scope of gender :
Please note that American Community Survey asks a question about the respondents current sex, but not about gender, sexual orientation, or sex at birth. The question is intended to capture data for biological sex, not gender. Respondents are supposed to respond with the answer as either of Male or Female. Our research and this dataset mirrors the data reported as Male and Female for gender distribution analysis. No further analysis is done on the data reported from the Census Bureau.
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for Lost Creek Population by Race & Ethnicity. You can refer the same here
https://www.usa.gov/government-workshttps://www.usa.gov/government-works
On October 20, 2022, CDC began retrieving aggregate case and death data from jurisdictional and state partners weekly instead of daily. This dataset contains archived historical community transmission and related data elements by county. Although these data will continue to be publicly available, this dataset has not been updated since October 20, 2022. An archived dataset containing weekly historical community transmission data by county can also be found here: Weekly COVID-19 County Level of Community Transmission Historical Changes | Data | Centers for Disease Control and Prevention (cdc.gov).
Related data CDC has been providing the public with two versions of COVID-19 county-level community transmission level data: this historical dataset with the daily county-level transmission data from January 22, 2020, and a dataset with the daily values as originally posted on the COVID Data Tracker. Similar to this dataset, the original dataset with daily data as posted is archived on 10/20/2022. It will continue to be publicly available but will no longer be updated. A new dataset containing community transmission data by county as originally posted is now published weekly and can be found at: Weekly COVID-19 County Level of Community Transmission as Originally Posted | Data | Centers for Disease Control and Prevention (cdc.gov).
This public use dataset has 7 data elements reflecting historical data for community transmission levels for all available counties and jurisdictions. It contains historical data for the county level of community transmission and includes updated data submitted by states and jurisdictions. Each day, the dataset was updated to include the most recent days’ data and incorporate any historical changes made by jurisdictions. This dataset includes data since January 22, 2020. Transmission level is set to low, moderate, substantial, or high using the calculation rules below.
Methods for calculating county level of community transmission indicator The County Level of Community Transmission indicator uses two metrics: (1) total new COVID-19 cases per 100,000 persons in the last 7 days and (2) percentage of positive SARS-CoV-2 diagnostic nucleic acid amplification tests (NAAT) in the last 7 days. For each of these metrics, CDC classifies transmission values as low, moderate, substantial, or high (below and here). If the values for each of these two metrics differ (e.g., one indicates moderate and the other low), then the higher of the two should be used for decision-making.
CDC core metrics of and thresholds for community transmission levels of SARS-CoV-2
Total New Case Rate Metric: "New cases per 100,000 persons in the past 7 days" is calculated by adding the number of new cases in the county (or other administrative level) in the last 7 days divided by the population in the county (or other administrative level) and multiplying by 100,000. "New cases per 100,000 persons in the past 7 days" is considered to have transmission level of Low (0-9.99); Moderate (10.00-49.99); Substantial (50.00-99.99); and High (greater than or equal to 100.00).
Test Percent Positivity Metric: "Percentage of positive NAAT in the past 7 days" is calculated by dividing the number of positive tests in the county (or other administrative level) during the last 7 days by the total number of tests resulted over the last 7 days. "Percentage of positive NAAT in the past 7 days" is considered to have transmission level of Low (less than 5.00); Moderate (5.00-7.99); Substantial (8.00-9.99); and High (greater than or equal to 10.00).
If the two metrics suggest different transmission levels, the higher level is selected. If one metric is missing, the other metric is used for the indicator.
The reported transmission categories include:
Low Transmission Threshold: Counties with fewer than 10 total cases per 100,000 population in the past 7 days, and a NAAT percent test positivity in the past 7 days below 5%;
Moderate Transmission Threshold: Counties with 10-49 total cases per 100,000 population in the past 7 days or a NAAT test percent positivity in the past 7 days of 5.0-7.99%;
Substantial Transmission Threshold: Counties with 50-99 total cases per 100,000 population in the past 7 days or a NAAT test percent positivity in the past 7 days of 8.0-9.99%;
High Transmission Threshold: Counties with 100 or more total cases per 100,000 population in the past 7 days or a NAAT test percent positivity in the past 7 days of 10.0% or greater.
Blank: total new cases in the past 7 days are not reported (county data known to be unavailable) and the percentage of positive NAATs tests during the past 7 days (blank) are not reported.
Data Suppression To prevent the release of data that could be used to identify people, data cells are suppressed for low frequency. When the case counts used to calculate the total new case rate metric ("cases_per_100K_7_day_count_change") is greater than zero and less than 10, this metric is set to "suppressed" to protect individual privacy. If the case count is 0, the total new case rate metric is still displayed.
The data in this dataset are considered provisional by CDC and are subject to change until the data are reconciled and verified with the state and territorial data providers. This datasets are created using CDC’s Policy on Public Health Research and Nonresearch Data Management and Access.
Duplicate Records Issue A bug was found on 12/28/2021 that caused many records in the dataset to be duplicated. This issue was resolved on 01/06/2022.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Analysis of ‘MISSING MIGRANTS (2014-2021)’ provided by Analyst-2 (analyst-2.ai), based on source dataset retrieved from https://www.kaggle.com/methoomirza/missing-migrants-20142021 on 28 January 2022.
--- Dataset description provided by original source is as follows ---
Missing Migrants Project tracks deaths of migrants, including refugees and asylum-seekers, who have died or gone missing in the process of migration towards an international destination. Please note that these data represent minimum estimates, as many deaths during migration go unrecorded
Missing Migrants Project counts migrants who have died at the external borders of states, or in the process of migration towards an international destination, regardless of their legal status. The Project records only those migrants who die during their journey to a country different from their country of residence. Missing Migrants Project data include the deaths of migrants who die in transportation accidents, shipwrecks, violent attacks, or due to medical complications during their journeys. It also includes the number of corpses found at border crossings that are categorized as the bodies of migrants, on the basis of belongings and/or the characteristics of the death. For instance, a death of an unidentified person might be included if the decedent is found without any identifying documentation in an area known to be on a migration route. Deaths during migration may also be identified based on the cause of death, especially if is related to trafficking, smuggling, or means of travel such as on top of a train, in the back of a cargo truck, as a stowaway on a plane, in unseaworthy boats, or crossing a border fence. While the location and cause of death can provide strong evidence that an unidentified decedent should be included in Missing Migrants Project data, this should always be evaluated in conjunction with migration history and trends.
The count excludes deaths that occur in immigration detention facilities or after deportation to a migrant’s homeland, as well as deaths more loosely connected with migrants´ irregular status, such as those resulting from labour exploitation. Migrants who die or go missing after they are established in a new home are also not included in the data, so deaths in refugee camps or housing are excluded. The deaths of internally displaced persons who die within their country of origin are also excluded. There remains a significant gap in knowledge and data on such deaths. Data and knowledge of the risks and vulnerabilities faced by migrants in destination countries, including death, should not be neglected, but rather tracked as a distinct category.
The Missing Migrants Project currently gathers information from diverse sources such as official records – including from coast guards and medical examiners – and other sources such as media reports, NGOs, and surveys and interviews of migrants. In the Mediterranean region, data are relayed from relevant national authorities to IOM field missions, who then share it with the Missing Migrants Project team. Data are also obtained by IOM and other organizations that receive survivors at landing points in Italy and Greece. IOM and UNHCR also regularly coordinate to validate data on missing migrants in the Mediterranean. Data on the United States/Mexico border are compiled based on data from U.S. county medical examiners, coroners, and sheriff’s offices, as well as media reports for deaths occurring on the Mexican side of the border. In Africa, data are obtained from media and NGOs, including the Regional Mixed Migration Secretariat and the International Red Cross/Red Crescent. The quality of the data source(s) for each incident is assessed through the ‘Source quality’ variable, which can be viewed in the data. Across the world, the Missing Migrants Project uses social and traditional media reports to find data, which are then verified by local IOM staff whenever possible. In all cases, new entries are checked against existing records to ensure that no deaths are double-counted. In all regions, Missing Migrants Project data represent a minimum estimate of the number of migrant deaths. To learn more about data sources, visit the thematic page on migrant deaths and disappearances in the Global Migration Data Portal.
This section presents the list of variables that constitute the Missing Migrants Project database. While ideally, all incidents recorded would include entries for each of these variables, the challenges described above mean that this is not always possible. The minimum information necessary to register an incident is the date of the incident, the number of dead and/or the number of missing, and the location of death. If the information is unavailable, the cell is left blank or “unknown” is recorded, as indicated in below.
1. Web ID - An automatically generated number used to identify each unique entry in the dataset.
2. Region - Region in which an incident took place. For more about regional classifications used in the dataset, click here.
3. Incident Date - Estimated date of death. In cases where the exact date of death is not known, this variable indicates the date in which the body or bodies were found. In cases where data are drawn from surviving migrants, witnesses or other interviews, this variable is entered as the date of the death as reported by the interviewee. At a minimum, the month and the year of death is recorded. In some cases, official statistics are not disaggregated by the incident, meaning that data is reported as a total number of deaths occurring during a certain time period. In such cases the entry is marked as a “cumulative total,” and the latest date of the range is recorded, with the full dates recorded in the comments.
4. Year - The year in which the incident occurred.
5. Reported month - The month in which the incident occurred.
6. Number dead - The total number of people confirmed dead in one incident, i.e. the number of bodies recovered. If migrants are missing and presumed dead, such as in cases of shipwrecks, leave blank.
7. Number missing - The total number of those who are missing and are thus assumed to be dead. This variable is generally recorded in incidents involving shipwrecks. The number of missing is calculated by subtracting the number of bodies recovered from a shipwreck and the number of survivors from the total number of migrants reported to have been on the boat. This number may be reported by surviving migrants or witnesses. If no missing persons are reported, it is left blank.
8. Total dead & missing - The sum of the ‘number dead’ and ‘number missing’ variables.
9. Number of survivors - The number of migrants that survived the incident, if known. The age, gender, and country of origin of survivors are recorded in the ‘Comments’ variable if known. If unknown, it is left blank.
10. Number of females - Indicates the number of females found dead or missing. If unknown, it is left blank. This gender identification is based on a third-party interpretation of the victim's gender from information available in official documents, autopsy reports, witness testimonies, and/or media reports.
11. Number of males - Indicates the number of males found dead or missing. If unknown, it is left blank. This gender identification is based on a third-party interpretation of the victim's gender from information available in official documents, autopsy reports, witness testimonies, and/or media reports.
12. Number of children - Indicates the number of individuals under the age of 18 found dead or missing. If unknown, it is left blank.
13. Age - The age of the decedent(s). Occasionally, an estimated age range is recorded. If unknown, it is left blank.
14. Country of origin - Country of birth of the decedent. If unknown, the entry will be marked “unknown”.
15. Region of origin - Region of origin of the decedent(s). In some incidents, region of origin may be marked as “Presumed” or “(P)” if migrants travelling through that location are known to hail from a certain region. If unknown, the entry will be marked “unknown”.
16. Cause of death - The determination of conditions resulting in the migrant's death i.e. the circumstances of the event that produced the fatal injury. If unknown, the reason why is included where possible. For example, “Unknown – skeletal remains only”, is used in cases in which only the skeleton of the decedent was found.
17. Location description - Place where the death(s) occurred or where the body or bodies were found. Nearby towns or cities or borders are included where possible. When incidents are reported in an unspecified location, this will be noted.
18. Location coordinates - Place where the death(s) occurred or where the body or bodies were found. In many regions, most notably the Mediterranean, geographic coordinates are estimated as precise locations are not often known. The location description should always be checked against the location coordinates.
19. Migration route - Name of the migrant route on which incident occurred, if known. If unknown, it is left blank.
20. UNSD geographical grouping - Geographical region in which the incident took place, as designated by the United Nations Statistics Division (UNSD) geoscheme. For more about regional classifications used in the dataset, click here.
21. Information source - Name of source of information for each incident. Multiple sources may be listed.
22. Link - Links to original reports of migrant deaths /
A. SUMMARY This dataset includes COVID-19 tests by resident neighborhood and specimen collection date (the day the test was collected). Specifically, this dataset includes tests of San Francisco residents who listed a San Francisco home address at the time of testing. These resident addresses were then geo-located and mapped to neighborhoods. The resident address associated with each test is hand-entered and susceptible to errors, therefore neighborhood data should be interpreted as an approximation, not a precise nor comprehensive total.
In recent months, about 5% of tests are missing addresses and therefore cannot be included in any neighborhood totals. In earlier months, more tests were missing address data. Because of this high percentage of tests missing resident address data, this neighborhood testing data for March, April, and May should be interpreted with caution (see below)
Percentage of tests missing address information, by month in 2020 Mar - 33.6% Apr - 25.9% May - 11.1% Jun - 7.2% Jul - 5.8% Aug - 5.4% Sep - 5.1% Oct (Oct 1-12) - 5.1%
To protect the privacy of residents, the City does not disclose the number of tests in neighborhoods with resident populations of fewer than 1,000 people. These neighborhoods are omitted from the data (they include Golden Gate Park, John McLaren Park, and Lands End).
Tests for residents that listed a Skilled Nursing Facility as their home address are not included in this neighborhood-level testing data. Skilled Nursing Facilities have required and repeated testing of residents, which would change neighborhood trends and not reflect the broader neighborhood's testing data.
This data was de-duplicated by individual and date, so if a person gets tested multiple times on different dates, all tests will be included in this dataset (on the day each test was collected).
The total number of positive test results is not equal to the total number of COVID-19 cases in San Francisco. During this investigation, some test results are found to be for persons living outside of San Francisco and some people in San Francisco may be tested multiple times (which is common). To see the number of new confirmed cases by neighborhood, reference this map: https://sf.gov/data/covid-19-case-maps#new-cases-maps
B. HOW THE DATASET IS CREATED COVID-19 laboratory test data is based on electronic laboratory test reports. Deduplication, quality assurance measures and other data verification processes maximize accuracy of laboratory test information. All testing data is then geo-coded by resident address. Then data is aggregated by analysis neighborhood and specimen collection date.
Data are prepared by close of business Monday through Saturday for public display.
C. UPDATE PROCESS Updates automatically at 05:00 Pacific Time each day. Redundant runs are scheduled at 07:00 and 09:00 in case of pipeline failure.
D. HOW TO USE THIS DATASET San Francisco population estimates for geographic regions can be found in a view based on the San Francisco Population and Demographic Census dataset. These population estimates are from the 2016-2020 5-year American Community Survey (ACS).
Due to the high degree of variation in the time needed to complete tests by different labs there is a delay in this reporting. On March 24 the Health Officer ordered all labs in the City to report complete COVID-19 testing information to the local and state health departments.
In order to track trends over time, a data user can analyze this data by "specimen_collection_date".
Calculating Percent Positivity: The positivity rate is the percentage of tests that return a positive result for COVID-19 (positive tests divided by the sum of positive and negative tests). Indeterminate results, which could not conclusively determine whether COVID-19 virus was present, are not included in the calculation of pe
https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
Dataset Description This dataset consists of academic and demographic information about 300 students from a university, which can be used for predicting academic outcomes, such as probation status. The dataset was simulated to represent a variety of student attributes across multiple categories like personal data, academic history, and other related information. The primary goal of this dataset is to analyze factors contributing to academic performance and identify students at risk of probation.
Column Descriptions Student No.: (Numeric) A unique identifier for each student. In this dataset, each student has a different ID number, making it a 100% unique column. Cohort: (Numeric) The year a student enrolled in the university. No missing values and consistent across the dataset. College: (Nominal) The name of the college the student belongs to. Examples include "Engineering," "Science," etc. No missing values. College Code: (Nominal) A numerical or alphanumerical code representing the college. This is an alternative representation of the "College" column. Major: (Nominal) The major field of study of the student. Some missing values (23%) represent students who haven’t declared a major or are in an undeclared status. Major Code: (Nominal) A code representing the major subject. Similar to the "Major" column, this has 23% missing values due to undeclared majors. Minor: (Nominal) The minor subject, if any, chosen by the student. This column has a high percentage of missing data (91%) since most students do not have minors. Spec: (Nominal) Specialization within the major field of study. Like the "Minor" column, this has 93% missing data as most students do not declare a specialization. Degree: (Numeric) The type of degree the student is pursuing (e.g., Bachelor's). In this dataset, all students are pursuing the same degree, so there are no missing values. Status: (Nominal) The current academic standing of the student (e.g., "Active," "Inactive"). No missing values. Load Status: (Nominal) The academic load status (e.g., "Full-time," "Part-time"). This column has very few missing values (1%). Gender: (Nominal) The gender of the student (e.g., "Male," "Female"). No missing values. Country: (Nominal) The country of origin of the student. Only 2 missing values, making it nearly complete. Governorate: (Nominal) The administrative region (governorate) the student comes from. This column has a small percentage of missing values (1%). Wellayah: (Nominal) The district or locality within the governorate. Around 1% of the data is missing. CGPA: (Numeric) The cumulative grade point average (CGPA) of the student. This field has 145 missing values, representing students without available CGPA records. Estimated Graduation Year: (Numeric) The expected year in which the student will graduate. No missing values. From HEAC: (Nominal) Indicates whether the student was admitted through the Higher Education Admission Center (HEAC). This column has 4% missing values. Admission Category: (Nominal) The category of admission (e.g., scholarship, self-funded). This column has a significant amount of missing data (98%), indicating that admission category data is either unavailable or irrelevant for most students. Birth Date: (Nominal) The birth date of the student. The dataset includes very few missing values (0%) and has been replaced by the derived feature "Age." Actual Graduation Date: (Nominal) The actual date on which a student graduates. More than half of the values are missing (54%), representing students who haven’t graduated yet. Withdrawal: (Nominal) Indicates whether the student has withdrawn from the university. This column has 89% missing data since the majority of students haven’t withdrawn. Marital Status: (Nominal) The marital status of the student (e.g., "Single," "Married"). No missing values. SQU Hostel: (Nominal) Indicates whether the student lives in the university hostel. No missing values. Percentage (Secondary School Score): (Nominal) The student’s percentage score from secondary school. No missing values. Probation Student: (Nominal) Indicates whether the student is under academic probation. This is the target variable for classification, with no missing values.
Record Details Total Records: 300 Total Attributes: 26 Missing Values: Some columns have a significant proportion of missing data (e.g., Minor, Spec, Major Code), while others have very few or no missing values (e.g., Gender, Cohort, College). Missing values were handled using a placeholder for clarity in certain columns.
This dataset contains information on antibody testing for COVID-19: the number of people who received a test, the number of people with positive results, the percentage of people tested who tested positive, and the rate of testing per 100,000 people, stratified by week of testing. These data can also be accessed here: https://github.com/nychealth/coronavirus-data/blob/master/trends/antibody-by-week.csv Exposure to COVID-19 can be detected by measuring antibodies to the disease in a person’s blood, which can indicate that a person may have had an immune response to the virus. Antibodies are proteins produced by the body’s immune system that can be found in the blood. People can test positive for antibodies after they have been exposed, sometimes when they no longer test positive for the virus itself. It is important to note that the science around COVID-19 antibody tests is evolving rapidly and there is still much uncertainty about what individual antibody test results mean for a single person and what population-level antibody test results mean for understanding the epidemiology of COVID-19 at a population level. These data only provide information on people tested. People receiving an antibody test do not reflect all people in New York City; therefore, these data may not reflect antibody prevalence among all New Yorkers. Increasing instances of screening programs further impact the generalizability of these data, as screening programs influence who and how many people are tested over time. Examples of screening programs in NYC include: employers screening their workers (e.g., hospitals), and long-term care facilities screening their residents. In addition, there may be potential biases toward people receiving an antibody test who have a positive result because people who were previously ill are preferentially seeking testing, in addition to the testing of persons with higher exposure (e.g., health care workers, first responders.) Rates were calculated using interpolated intercensal population estimates updated in 2019. These rates differ from previously reported rates based on the 2000 Census or previous versions of population estimates. The Health Department produced these population estimates based on estimates from the U.S. Census Bureau and NYC Department of City Planning. Antibody tests are categorized based on the date of specimen collection and are aggregated by full weeks starting each Sunday and ending on Saturday. For example, a person whose blood was collected for antibody testing on Wednesday, May 6 would be categorized as tested during the week ending May 9. A person tested twice in one week would only be counted once in that week. This dataset includes testing data beginning April 5, 2020. Data are updated daily, and the dataset preserves historical records and source data changes, so each extract date reflects the current copy of the data as of that date. For example, an extract date of 11/04/2020 and extract date of 11/03/2020 will both contain all records as they were as of that extract date. Without filtering or grouping by extract date, an analysis will almost certainly be miscalculating or counting the same values multiple times. To analyze the most current data, only use the latest extract date. Antibody tests that are missing dates are not included in the dataset; as dates are identified, these events are added. Lags between occurrence and report of cases and tests can be assessed by comparing counts and rates across multiple data extract dates. For further details, visit: • https://www1.nyc.gov/site/doh/covid/covid-19-data.page • https://github.com/nychealth/coronavirus-data
In 2022, there were 313,017 cases filed by the NCIC where the race of the reported missing was White. In the same year, 18,928 people were missing whose race was unknown.
What is the NCIC?
The National Crime Information Center (NCIC) is a digital database that stores crime data for the United States, so criminal justice agencies can access it. As a part of the FBI, it helps criminal justice professionals find criminals, missing people, stolen property, and terrorists. The NCIC database is broken down into 21 files. Seven files belong to stolen property and items, and 14 belong to persons, including the National Sex Offender Register, Missing Person, and Identify Theft. It works alongside federal, tribal, state, and local agencies. The NCIC’s goal is to maintain a centralized information system between local branches and offices, so information is easily accessible nationwide.
Missing people in the United States
A person is considered missing when they have disappeared and their location is unknown. A person who is considered missing might have left voluntarily, but that is not always the case. The number of the NCIC unidentified person files in the United States has fluctuated since 1990, and in 2022, there were slightly more NCIC missing person files for males as compared to females. Fortunately, the number of NCIC missing person files has been mostly decreasing since 1998.