8 datasets found
  1. d

    Santos Enslaved and Enslaver Dataset: A Record of Enslavers and Enslaved...

    • search.dataone.org
    Updated Nov 8, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Read, Ian; Baptista Ferreira, Tayná; Watts, Kennah (2023). Santos Enslaved and Enslaver Dataset: A Record of Enslavers and Enslaved People in Santos, Brazil from 1800 to 1888 [Dataset]. http://doi.org/10.7910/DVN/GBDHNC
    Explore at:
    Dataset updated
    Nov 8, 2023
    Dataset provided by
    Harvard Dataverse
    Authors
    Read, Ian; Baptista Ferreira, Tayná; Watts, Kennah
    Time period covered
    Jan 1, 1800 - Jan 1, 1888
    Description

    The Santos Enslaved and Enslaver Dataset (SEED), created between 2003 and 2006, offers an innovative micro-historical method so users can better understand the diverse lived experiences and oppression of enslaved people. The dataset is one of the most detailed for any city or county of a slave society. It cross-references the identities of thousands of enslaved individuals and enslavers in documents from 13 Brazilian archives and 43 primary source types. It contains more than 42,806 entries drawing from information in medical, church, government, and judicial records of the nineteenth century. More than 1,960 individuals were identified and cross-referenced through multiple historical sources, allowing for a wide range of narratives to emerge from the data.

  2. o

    Replication dataset and codes - Hersh and Voth "Sweet Diversity: Colonial...

    • openicpsr.org
    delimited
    Updated Jun 16, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Hans-Joachim Voth; Jonathan Hersh (2022). Replication dataset and codes - Hersh and Voth "Sweet Diversity: Colonial Goods and the Welfare Gains from Global Trade after 1492" [Dataset]. http://doi.org/10.3886/E172801V1
    Explore at:
    delimitedAvailable download formats
    Dataset updated
    Jun 16, 2022
    Dataset provided by
    University of Zurich
    U Chapman
    Authors
    Hans-Joachim Voth; Jonathan Hersh
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    1492 - 1850
    Area covered
    England
    Description

    The deposited data allows replication of the statistical analysis and figures in "Sweet Diversity: Colonial Goods and the Welfare Gains from Global Trade after 1492" (Hersh and Voth 2023). The question we investigate is simple: When did overseas trade start to matter for living standards? Traditional real-wage indices suggest that living standards in Europe stagnated before 1800. In this paper, we argue that welfare may have actually risen substantially, but surreptitiously, because of an influx of new goods. Colonial “luxuries” such as tea, coffee, and sugar became highly coveted. Together with more simple household staples such as potatoes and tomatoes, overseas goods transformed European diets after the discovery of America and the rounding of the Cape of Good Hope. They became household items in many countries by the end of the 18th century. We apply two standard methods to calculate broad orders of magnitude of the resulting welfare gains. While they cannot be pinned down precisely, gains from greater variety may well have been big enough to boost European real incomes by 10% or more (depending on the assumptions used)

  3. Q

    Data for: The Pandemic Journaling Project, Phase One (PJP-1)

    • data.qdr.syr.edu
    3gp +22
    Updated Feb 15, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Sarah S. Willen; Sarah S. Willen; Katherine A. Mason; Katherine A. Mason (2024). Data for: The Pandemic Journaling Project, Phase One (PJP-1) [Dataset]. http://doi.org/10.5064/F6PXS9ZK
    Explore at:
    jpeg(-1), jpeg(64787), png(-1), jpeg(2635904), jpeg(2809706), jpeg(3128025), jpeg(3522579), mp4a(609792), jpeg(2715246), jpeg(564843), mp4a(1607020), jpeg(29277), jpeg(411392), jpeg(3219184), html(64045635), jpeg(1455187), jpeg(3953592), jpeg(445647), jpeg(3079564), png(858132), jpeg(3262275), jpeg(5268315), jpeg(1173279), mp4a(4746585), mp4a(506955), jpeg(2228793), jpeg(2399356), jpeg(1847185), png(1487656), mp4a(3329780), mp4a(1503462), bin(-1), jpeg(3226310), mp4a(2843558), jpeg(3161075), jpeg(2535033), jpeg(1814204), mp4a(1403036), jpeg(6831581), jpeg(3500892), jpeg(2063706), jpeg(2867362), jpeg(36303), mp4a(608702), jpeg(2174907), jpeg(2775382), mpga(3119325), pdf(-1), html(28046914), jpeg(2571274), qt(642282), gif(-1), bin(1475326), jpeg(1669679), jpeg(288031), mp4(16611275), jpeg(3758294), mp4a(1316029), mp4a(2192000), jpeg(51905), mpga(3284435), jpeg(47621), jpeg(806714), jpeg(3720630), mp4a(2496251), jpeg(2320221), jpeg(4266931), jpeg(3779944), jpeg(2036741), jpeg(73283), jpeg(460192), jpeg(81002), jpeg(1794407), jpeg(843851), jpeg(134732), bin(1324105), mp4(-1), html(3785552), bin(446182), jpeg(126557), jpeg(112141), jpeg(99013), jpeg(2763037), jpeg(2904103), mp4a(3455446), jpeg(2690540), mpga(3655410), jpeg(2348580), mp4a(8043573), jpeg(4103780), mp4a(2090318), jpeg(3309302), xlsx(34600), jpeg(3101557), qt(-1), jpeg(2597912), jpeg(197952), jpeg(528533), jpeg(2484777), jpeg(17026260), jpeg(31091), jpeg(1143472), jpeg(2705547), jpeg(4634609), mp4a(2427794), mp4a(865561), qt(6530289), jpeg(2750981), mp4a(431473), jpeg(4477949), jpeg(5588285), mp4a(1258547), jpeg(44679), jpeg(5718836), jpeg(2169748), mp4a(4727052), jpeg(4410466), jpeg(359020), jpeg(319878), jpeg(3348421), jpeg(2742034), jpeg(479908), jpeg(2871901), jpeg(754914), mpga(3369080), audio/vnd.dlna.adts(2291450), bin(925606), mp4a(1468479), mp4a(3505956), mp4a(934968), jpeg(94576), mp4a(954136), png(1217841), png(259675), jpeg(2768465), jpeg(7435869), mp4a(558160), jpeg(452676), jpeg(2614435), jpeg(2295874), jpeg(2985176), jpeg(2382774), jpeg(1836889), mp4a(714107), jpeg(3058184), png(4809397), png(291188), jpeg(476581), bin(315174), mp4a(963668), mp4a(1691796), jpeg(305566), jpeg(2340053), mp4a(1416194), jpeg(2187251), mp4a(1480696), jpeg(1224621), jpeg(799339), jpeg(2106618), mp4a(2234556), html(59903646), jpeg(1502693), jpeg(496111), mp4a(710717), pdf(791867), jpeg(2320307), mp4a(2723319), jpeg(2588596), qt(6524117), jpeg(706630), jpeg(1797399), jpeg(3578041), png(34340), jpeg(413917), jpeg(2018007), mp4a(1822023), mp4a(546214), jpeg(104863), png(505848), jpeg(3999644), jpeg(2202086), jpeg(1779668), webm(2501579), jpeg(3644901), mpga(61021), xlsx(19458121), jpeg(3678114), jpeg(3195259), mp4a(5998805), mp4a(1089264), mpga(1223745), png(79931), ogv(921344), mp4a(5290770), mp4a(537339), mp4a(2522582), mp4a(2757638), mp4a(902919), mp4a(3664250), jpeg(293524), jpeg(1611225), jpeg(78426), audio/vnd.dlna.adts(3577011), jpeg(1425684), jpeg(2114989), png(2239184), jpeg(3532208), jpeg(2599799), jpeg(4051592), mp4a(766677), bin(1140735), mp4a(1950073), jpeg(2482637), mp4a(9461846), mp4a(886225), mp4a(2275458), jpeg(3964175), png(7323654), mp4a(3407172), jpeg(1662239), jpeg(2738720), jpeg(2680408), jpeg(875989), mp4a(1135778), jpeg(3063173), mp4a(1044083), mp4a(3068302), jpeg(4586435), jpeg(944028), jpeg(65604), jpeg(803886), mp4a(3207845), jpeg(9303719), jpeg(1178560), mpga(1096992), mp4a(273265), jpeg(37593), jpeg(148529), jpeg(516395), html(799294), mp4a(1064123), jpeg(647105), jpeg(3412037), bin(3742158), jpeg(2343745), jpeg(2242087), jpeg(1153242), mp4a(700840), mp4a(614290), png(674974), mp4a(462181), mp4a(3341713), mp4a(5455315), bin(1700382), png(7882498), jpeg(3098020), jpeg(2781328), mp4a(3763168), jpeg(4431416), mp4a(1614389), jpeg(287296), jpeg(2681973), jpeg(2107304), pdf(332485), jpeg(2635452), audio/vnd.dlna.adts(3058005), mp4a(2448226), mp4a(1805349), mp4a(4150285), mp4a(204164), jpeg(2606693), jpeg(2626157), mp4a(1459294), jpeg(566696), jpeg(2543785), mp4a(369050), mp4(30391500), jpeg(4579297), jpeg(5172226), jpeg(1548860), mp4a(944403), html(640739), jpeg(147544), jpeg(3964519), jpeg(1776724), mp4a(2984325), bin(1595391), jpeg(320684), bin(48838), jpeg(4079596), jpeg(2144716), mp4a(1642287), bin(616420), jpeg(4110243), html(799551), png(1792687), mp4a(962844), jpeg(2625613), jpeg(2666985), jpeg(2722455), jpeg(36852), jpeg(40164), jpeg(111950), mp4a(1235641), mp4a(101692), mp4a(489606), mp4a(1202077), mp4a(4721088), jpeg(63112), jpeg(3627878), mp4a(2368173), jpeg(6463999), mp4a(558864), jpeg(2818575), jpeg(950258), jpeg(4870478), jpeg(4661936), mp4a(828006), png(135414), jpeg(1511423), mpga(2579649), mpga(6283555), jpeg(39553), pdf(141529), bin(1084358), jpeg(379064), jpeg(1305368), mpga(625262), jpeg(4847317), bin(116966), wav(3184824), png(166019), jpeg(804562), jpeg(443742), jpeg(2216857), jpeg(539445), jpeg(2166243), png(1796101), jpeg(1875257), png(1640881), jpeg(2545361), png(441607), jpeg(2890369), mp4a(441334), jpeg(3591325), jpeg(130755), png(170479), mp4a(2620611), mp4a(4518524), mp4a(6386348), jpeg(2467582), mp4a(1084240), jpeg(95788), jpeg(2619585), mp4(8919033), jpeg(4410537), bin(1049901), jpeg(4145168), jpeg(1015520), png(108417), jpeg(11074031), mp4a(1034473), html(479151), jpeg(2543166), jpeg(1867990), jpeg(1688053), html(640918), jpeg(3761476), mp4a(2043016), mp4a(1327650), bin(443069), mp4a(8236358), jpeg(3333029), mp4a(4192934), jpeg(1964105), jpeg(3303164), jpeg(7390050), jpeg(3982230), jpeg(3033149), mp4a(705651), jpeg(45398), jpeg(1013777), jpeg(3386166), jpeg(3610339), jpeg(79582), jpeg(2749667), jpeg(3103944), jpeg(197437), jpeg(1240130), mp4a(3140356), mp4a(2218267), jpeg(5765324), jpeg(103691), jpeg(83984), jpeg(4445333), mp4a(634555), png(2280208), jpeg(3823557), jpeg(704279), mp4a(1632575), jpeg(2986691), bin(481830), jpeg(2921224), docx(-1), mp4a(5352815), ogv(650885), jpeg(421521), jpeg(3832698), html(3025837), audio/vnd.dlna.adts(3763036), bin(161414), jpeg(3634921), jpeg(175071), png(156532), jpeg(38705), jpeg(2969378), png(1059022), mp4a(1110381), bin(1812775), jpeg(1434922), bin(1048366), audio/vnd.dlna.adts(1787003), mp4a(795300), jpeg(2146419), jpeg(3113325), png(2690433), jpeg(2955817), jpeg(1950597), jpeg(180961), jpeg(2921263), png(1187248), jpeg(3661093), bin(1638526), mp4a(3258141), mp4a(2299616), audio/vnd.dlna.adts(6828390), png(4625953), jpeg(1806678), mp4a(1442751), jpeg(3484297), mp4a(581212), jpeg(2358438), jpeg(5251366), mp4a(856519), jpeg(895955), mp4a(225192), jpeg(1857109), png(396961), jpeg(6504102), jpeg(3550057), bin(642950), bin(726730), jpeg(2937002), jpeg(2241215), jpeg(2848793), jpeg(114301), jpeg(6851150), jpeg(5412996), jpeg(5099807), jpeg(2352338), mp4a(1108249), jpeg(59955), jpeg(597941), png(822965), png(279993), mp4a(649729), jpeg(5327907), html(41982439), jpeg(3926818), jpeg(3811126), mpga(3150075), mp4a(851987), jpeg(2161975), jpeg(3049221), mp4(14723059), mp4a(1166746), jpeg(3929963), jpeg(32386), bin(647846), jpeg(943529), png(3558483), mp4a(496459), jpeg(554775), jpeg(673727), jpeg(1234744), mp4a(1614229), bin(1077286), jpeg(2321955), mp4(15102498), jpeg(1138223), jpeg(2821667), mp4a(4957829), jpeg(5267053), jpeg(3746852), xlsx(66430625), png(1781350), mp4(13377154), jpeg(2521556), jpeg(4363031), jpeg(38838), jpeg(1177161), jpeg(5648135), jpeg(3860593), jpeg(3191081), jpeg(4074964), jpeg(2592942), jpeg(70743), jpeg(47092), jpeg(17155), mp4a(5461865), jpeg(317565), jpeg(154225), jpeg(2641570), jpeg(1432979), jpeg(2996468), jpeg(2537158), jpeg(2126839), mp4a(3445663), jpeg(524301), jpeg(2577631), mp4a(999933), jpeg(212728), jpeg(3050628), jpeg(67402), jpeg(4528980), jpeg(48108), jpeg(2849620), mp4a(799189), jpeg(977868), mp4a(1114948), mp4a(1538194), jpeg(3539999), jpeg(732964), mp4a(1159815), jpeg(177432), png(5221994), mp4a(120084), jpeg(4880331), jpeg(2634063), jpeg(1018097), webp(-1), bin(878982), jpeg(5596898), png(356862), jpeg(33015), mp4a(1665024), jpeg(1110786), xlsx(27165), jpeg(2034603), jpeg(2410690), mp4a(2172212), jpeg(287142), jpeg(865631), jpeg(4371438), mp4a(505909), bin(2410811), mp4a(416617), qt(5205385), jpeg(1642459), jpeg(1864894), mp4a(1275342), jpeg(4389684), mp4a(1216743), jpeg(1645086), mp4a(1917929), jpeg(2202466), jpeg(3415224), mp4a(2687040), jpeg(4168896), jpeg(3608610), mp4a(847604), jpeg(2952649), jpeg(1632186), jpeg(482523), jpeg(3260717), wav(2205734), ogv(332111), mp4a(3028452), jpeg(5449171), jpeg(2190017), html(646595), jpeg(2046616), jpeg(363257), bin(2539604), audio/vnd.dlna.adts(13530010), html(8779436), mp4a(3988517), html(710893), bin(2108773), mp4a(938780), mp4a(1632058), mp4a(1781328), jpeg(6006498), mp4a(2011577), png(1867628), jpeg(3578276), qt(1377580), bin(498661), jpeg(3959637), jpeg(3553188), mp4a(1566800), html(9536819), jpeg(1795067), bin(593638), jpeg(68405), jpeg(937156), jpeg(4183531), mpga(1488238), jpeg(864405), jpeg(1365686), docx(12339), jpeg(578317), xlsx(52077), html(523486), jpeg(7547441), mp4a(1930783), jpeg(58628), mp4a(1145760), jpeg(3167708), mp4(31660079), jpeg(2489302), mp4a(1666611), xlsx(82776), jpeg(1827086), jpeg(1844434), jpeg(4555773), jpeg(3299756), mp4a(1140725), mp4a(531377), mp4a(3139464), mp4(24994984), ogv(408137), jpeg(2440831), png(497108), xlsx(88927), jpeg(859100), jpeg(3121852), png(3396851), mp4a(337657), jpeg(1938676), mpga(3748682), jpeg(3010539), png(618010), jpeg(120170), mp4a(691616), jpeg(4782980), jpeg(1882397), mp4a(847950), mp4a(579012), jpeg(3477933), jpeg(3332206), jpeg(1777340), jpeg(1779300), jpeg(3324446), bin(2111272), jpeg(134273), jpeg(2327041), mp4a(2112621), jpeg(2028706), jpeg(2253098), jpeg(87256), jpeg(4748410), jpeg(2262473), mp4a(3061773), jpeg(3853660), jpeg(489701), jpeg(2016316), mp4(48601545), jpeg(4110324), mp4a(750884), mp4a(1666390), jpeg(2729939), jpeg(887373), pdf(122363), mp4a(760877), jpeg(5047594), jpeg(3513429), mp4a(701592), mp4a(24233), jpeg(3878593), jpeg(955964), jpeg(1959028), mp4a(573738), jpeg(1607988), jpeg(121889), mp4a(1115213), bin(1173798), jpeg(6732180), jpeg(1945789), jpeg(5423032), jpeg(252261), jpeg(3546392), jpeg(1587693), jpeg(1303230), jpeg(1050632), mp4a(2957441), mp4a(2682346), bin(564582), jpeg(117534), jpeg(417971), jpeg(3639631), jpeg(3283728), bin(234118), png(2037576), jpeg(3095107), png(1185912), jpeg(3003672), mp4a(1307438), jpeg(142223), jpeg(6401219), bin(2429287), jpeg(3129315), jpeg(111760), jpeg(749493), mpga(5172750), jpeg(67155), mp4a(1303543), audio/vnd.dlna.adts(4340557), jpeg(3978187), jpeg(2696452), mp4a(1505002), jpeg(1750030), jpeg(7505927), jpeg(2638934), jpeg(3812323), bin(818310), jpeg(571235), jpeg(3256481), mp4a(1374945), png(357625), jpeg(5542820), mp4a(1981377), mp4a(2469218), jpeg(4044906), jpeg(37019), jpeg(1134103), bin(632006), jpeg(85234), mp4(11623573), bin(1030438), audio/vnd.dlna.adts(11278413), mp4a(6956199), xlsx(48995), mp4a(10021109), xlsx(224948556), jpeg(41894), jpeg(85137), bin(3540340), jpeg(1280936), xlsx(189425), bin(546822), html(1075544), png(1790553), mp4a(8341651), mp4a(1347344), jpeg(1837571), qt(2398526), jpeg(488375), png(652644), bin(709318), mp4a(512559), jpeg(1660933), mp4a(903487), jpeg(2355965), jpeg(3175474), mp4a(3235128), pdf(213974), jpeg(3105125), mp4a(1264503), jpeg(817070), jpeg(2858948), bin(1019282), jpeg(3172013), jpeg(2118129), png(856929), jpeg(3172905), mp4a(2083812), jpeg(3950185), 3gp(4189257), webp(13654), jpeg(3985986), jpeg(22928), html(496815), jpeg(2221272), jpeg(4526887), jpeg(3917797), jpeg(1579597), jpeg(4260674), jpeg(3155291), jpeg(939502), jpeg(3169133), jpeg(68283), jpeg(145275), audio/vnd.dlna.adts(4820134), mp4a(1195465), html(1694054), jpeg(155887), mp4a(3274925), mp4a(4613589), mpga(2386117), jpeg(41185), mp4a(1086359), mp4a(1151555), bin(1960531), jpeg(2149916), jpeg(2564893), wmv(50197262), mp4(26601787), jpeg(1997912), jpeg(2729245), mp4a(729599), mpga(3484030), jpeg(4728142), jpeg(5043578), mp4a(873556), mp4a(660082), jpeg(13696858), mp4a(1555980), jpeg(45747), jpeg(3178887), qt(28706733), jpeg(4509448), bin(381126), mp4a(661507), jpeg(495339), jpeg(138394), jpeg(85114), mpga(1449626), mp4a(3615513), jpeg(6130051), mp4a(13214859), mp4a(1702996), mp4a(562777), jpeg(2551565), mp4a(1176775), jpeg(16753), mpga(1784266), jpeg(377428), jpeg(3136525), mp4a(1115669), jpeg(64481), mp4a(2548754), jpeg(32021), bin(3983879), jpeg(1629680), pdf(121390), jpeg(2243229), jpeg(3134307), html(38240607), jpeg(8644181), jpeg(4566822), mpga(379781), mp4a(2068903), jpeg(599871), mp4a(8995283), jpeg(2507441), bin(1544294), jpeg(254462), jpeg(1915392), jpeg(1595555), mp4a(1073809), jpeg(40514), jpeg(535219), mp4a(1617110), xlsx(20756300), bin(1869989), jpeg(2381586), jpeg(35883), mpga(4061915), jpeg(917468), jpeg(3052078), mp4a(1901851), jpeg(131612), jpeg(1507898), jpeg(130590), jpeg(133876), jpeg(180752), jpeg(3552912), jpeg(172352), mp4a(2419697), mp4a(331293), jpeg(1583799), jpeg(840041), mp4a(1611680), bin(328166), jpeg(219612), jpeg(1656656), jpeg(4653342), mp4a(5608105), jpeg(2201474), wav(2818960), mp4a(936086), pdf(91460), mp4a(1601130), jpeg(659500), jpeg(100391), jpeg(2812452), mp4a(5629529), jpeg(1816312), jpeg(71716), pdf(295280), jpeg(2911219), jpeg(2471054), docx(31188), jpeg(4659509), png(105272), mp4a(959231), mp4a(1516084), mpga(5970561), jpeg(3668632), mp4a(1739564), jpeg(2058883), jpeg(1901789), mp4a(3134928), mp4a(1152026), jpeg(3523727), mp4a(760909), mp4a(1248111), mp4a(984328), audio/vnd.dlna.adts(934543), jpeg(2193720), jpeg(1401200), bin(919270), jpeg(529647), mp4a(1608171), mp4a(5154628), jpeg(1040846), mp4a(2360919), mp4a(1273706), jpeg(1766662), mp4a(291843), jpeg(3199783), jpeg(4440461), mp4a(2354743), html(983166), jpeg(4653818), jpeg(3216327), jpeg(12340), png(24722), jpeg(68398), audio/vnd.dlna.adts(9495356), mp4a(1911363), jpeg(363586), jpeg(3277514), jpeg(2684588), png(795810), mp4a(1244456), jpeg(59161), jpeg(1603743), mp4a(611153), jpeg(2500101), jpeg(3468457), mp4a(843462), jpeg(4005962), mp4a(912224), 3gp(5920182), jpeg(1714504), jpeg(2280388), mpga(4640203), jpeg(3332571), mp4a(1269110), jpeg(1788844), mp4a(4350631), mp4a(1496135), bin(1772535), mpga(371534), jpeg(4221720), mp4a(1486515), mp4a(3758180), jpeg(3413660), jpeg(3451347), mp4(6993330), bin(152038), jpeg(3535829), jpeg(3234324), tiff(-1), jpeg(2251269), jpeg(2600986), bin(1606725), bin(1615540), jpeg(629961), mp4a(1364069), jpeg(849628), jpeg(2384630), jpeg(854035), jpeg(1059910), mp4a(432261), jpeg(6803436), qt(2010499), mp4a(1222788), png(252350), mp4a(561403), mp4a(1301355), jpeg(78430), jpeg(153294), jpeg(3111015), jpeg(3506560), mp4a(1614765), mp4a(4359255), mp4a(1609908), jpeg(3129756), jpeg(1440858), jpeg(24096), mpga(6606764), mp4a(219517), wav(16120364), mp4a(1071439), jpeg(3293381), jpeg(112899), jpeg(2875869), jpeg(4948125), mp4a(1615299), png(3496115), mp4a(1986411), png(586680), jpeg(1897709), jpeg(2273020), jpeg(4022260), jpeg(377213), mp4a(1702687), html(4191543), jpeg(1398077), jpeg(2079488), jpeg(31946), jpeg(1243971), jpeg(2389859), qt(574596), mp4a(532776), jpeg(2730221), mp4a(510562), jpeg(2968414), mp4a(2145487), jpeg(496123), jpeg(4274950), png(548620), jpeg(2124741), png(5709270), jpeg(5322032), mp4a(304846), jpeg(2969836), jpeg(5084546), jpeg(173417), mpga(2814171), pdf(308146), png(7879), png(2155793), jpeg(1568444), jpeg(107669), jpeg(3844552), jpeg(5050854), mp4(59931145), jpeg(26777), bin(3681626), mp4a(1124596), txt(186920), jpeg(520311), bin(416102), mp4a(7284061), jpeg(40281), jpeg(657555), png(1437413), jpeg(2534845), jpeg(445866), jpeg(1237900), jpeg(4250838), bin(156966), tsv(733), qt(3177780), bin(864966), jpeg(11690), mp4a(3045602), mp4a(2449349), bin(748148), jpeg(1825738), jpeg(1990482), mpga(1190436), mp4a(5845364), mp4a(1448064), jpeg(3171202), bin(2501650), jpeg(2273265), mp4a(619603), jpeg(951877), jpeg(63914), mp4a(1271334), jpeg(1976245), mpga(4817983), jpeg(331201), jpeg(129869), jpeg(7445743), jpeg(5717518), jpeg(2968114), mp4a(693312), mp4a(264471), jpeg(5399866), jpeg(71431), jpeg(1519243), jpeg(1593696), mp4(4106014), mp4a(705329), mp4a(1148157), jpeg(6046515), mp4a(916096), jpeg(333207), jpeg(3138702), jpeg(417572), mpga(5269701), jpeg(145637), mp4a(802505), png(1017305), jpeg(17907), jpeg(3598845), jpeg(1155643), jpeg(2638302), mp4a(822545), bin(1493618), bin(906790), jpeg(154930), jpeg(953837), zip(11659935), mp4a(1214837), mp4a(1016151), mp4a(3515351), mp4a(3839771), mp4a(1256085), jpeg(4031381), mpga(3309399), jpeg(290224), png(459262), jpeg(48326), jpeg(4736590), jpeg(1964763), jpeg(2042850), jpeg(14911972), jpeg(981139), mp4(8726495), jpeg(455010), mp4a(2202351), jpeg(72668), mpga(970535), jpeg(12825578), mp4a(1931894), jpeg(1726579), jpeg(3996799), jpeg(2413680), jpeg(2299059), png(1038072), mp4a(1467032), jpeg(732955), jpeg(145129), jpeg(4057705), jpeg(1575841), mpga(4266613), jpeg(3444896), mp4a(1095447), jpeg(2423812), 3gp(11381321), png(477408), mp4a(1358807), pdf(155079), jpeg(822164), mp4a(3978276), png(316363), jpeg(3336796), bin(1495558), jpeg(874390), jpeg(278529), jpeg(942247), pdf(129862), jpeg(4954268), jpeg(2572775), jpeg(3062482), qt(89399945), jpeg(2128499), jpeg(2849921), png(1019045), mp4a(3170368), mpga(4747435), jpeg(1371393), jpeg(3550211), mp4a(942819), jpeg(2313418), jpeg(4887470), jpeg(91125), mp4a(2439271), jpeg(2764753), mp4a(3002959), bin(729766), jpeg(798303), bin(2204684)Available download formats
    Dataset updated
    Feb 15, 2024
    Dataset provided by
    Qualitative Data Repository
    Authors
    Sarah S. Willen; Sarah S. Willen; Katherine A. Mason; Katherine A. Mason
    License

    https://qdr.syr.edu/policies/qdr-restricted-access-conditionshttps://qdr.syr.edu/policies/qdr-restricted-access-conditions

    Time period covered
    May 29, 2020 - May 31, 2022
    Area covered
    Central America, Europe, Mexico, United States, Canada
    Description

    Project Summary This dataset contains all qualitative and quantitative data collected in the first phase of the Pandemic Journaling Project (PJP). PJP is a combined journaling platform and interdisciplinary, mixed-methods research study developed by two anthropologists, with support from a team of colleagues and students across the social sciences, humanities, and health fields. PJP launched in Spring 2020 as the COVID-19 pandemic was emerging in the United States. PJP was created in order to “pre-design an archive” of COVID-19 narratives and experiences open to anyone around the world. The project is rooted in a commitment to democratizing knowledge production, in the spirit of “archival activism” and using methods of “grassroots collaborative ethnography” (Willen et al. 2022; Wurtz et al. 2022; Zhang et al 2020; see also Carney 2021). The motto on the PJP website encapsulates these commitments: “Usually, history is written only by the powerful. When the history of COVID-19 is written, let’s make sure that doesn’t happen.” (A version of this Project Summary with links to the PJP website and other relevant sites is included in the public documentation of the project at QDR.) In PJP’s first phase (PJP-1), the project provided a digital space where participants could create weekly journals of their COVID-19 experiences using a smartphone or computer. The platform was designed to be accessible to as wide a range of potential participants as possible. Anyone aged 15 or older, living anywhere in the world, could create journal entries using their choice of text, images, and/or audio recordings. The interface was accessible in English and Spanish, but participants could submit text and audio in any language. PJP-1 ran on a weekly basis from May 2020 to May 2022. Data Overview This Qualitative Data Repository (QDR) project contains all journal entries and closed-ended survey responses submitted during PJP-1, along with accompanying descriptive and explanatory materials. The dataset includes individual journal entries and accompanying quantitative survey responses from more than 1,800 participants in 55 countries. Of nearly 27,000 journal entries in total, over 2,700 included images and over 300 are audio files. All data were collected via the Qualtrics survey platform. PJP-1 was approved as a research study by the Institutional Review Board (IRB) at the University of Connecticut. Participants were introduced to the project in a variety of ways, including through the PJP website as well as professional networks, PJP’s social media accounts (on Facebook, Instagram, and Twitter) , and media coverage of the project. Participants provided a single piece of contact information — an email address or mobile phone number — which was used to distribute weekly invitations to participate. This contact information has been stripped from the dataset and will not be accessible to researchers. PJP uses a mixed-methods research approach and a dynamic cohort design. After enrolling in PJP-1 via the project’s website, participants received weekly invitations to contribute to their journals via their choice of email or SMS (text message). Each weekly invitation included a link to that week’s journaling prompts and accompanying survey questions. Participants could join at any point, and they could stop participating at any point as well. They also could stop participating and later restart. Retention was encouraged with a monthly raffle of three $100 gift cards. All individuals who had contributed that month were eligible. Regardless of when they joined, all participants received the project’s narrative prompts and accompanying survey questions in the same order. In Week 1, before contributing their first journal entries, participants were presented with a baseline survey that collected demographic information, including political leanings, as well as self-reported data about COVID-19 exposure and physical and mental health status. Some of these survey questions were repeated at periodic intervals in subsequent weeks, providing quantitative measures of change over time that can be analyzed in conjunction with participants' qualitative entries. Surveys employed validated questions where possible. The core of PJP-1 involved two weekly opportunities to create journal entries in the format of their choice (text, image, and/or audio). Each week, journalers received a link with an invitation to create one entry in response to a recurring narrative prompt (“How has the COVID-19 pandemic affected your life in the past week?”) and a second journal entry in response to their choice of two more tightly focused prompts. Typically the pair of prompts included one focusing on subjective experience (e.g., the impact of the pandemic on relationships, sense of social connectedness, or mental health) and another with an external focus (e.g., key sources of scientific information, trust in government, or COVID-19’s economic impact). Each week,...

  4. d

    Historical Atlas of the Low Countries (1350–1800)

    • druid.datalegend.net
    Updated Oct 15, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2024). Historical Atlas of the Low Countries (1350–1800) [Dataset]. https://druid.datalegend.net/IISG/iisg-kg/browser?resource=https%3A%2F%2Fiisg.amsterdam%2Fid%2Fdataset%2F2101
    Explore at:
    Dataset updated
    Oct 15, 2024
    Description

    Please cite the accompanying open-access paper if you wish to use the dataset: R.J. Stapel, ‘Historical Atlas of the Low Countries. A GIS Dataset of Locality-Level Boundaries (1350–1800)’, Research Data Journal for the Humanities and Social Sciences, 8.1 (2023), 1–33 https://doi.org/10.1163/24523666-bja10033.

    One hundred years have passed since the first volume of the Geschiedkundige Atlas van Nederland [Historical Atlas of the Netherlands] was published under the supervision of Anton Beekman et al. In total, it comprised 30 descriptive volumes and countless maps of the Netherlands and its colonies, from Roman times to the nineteenth century. With the advent of the computer, techniques for creating and analysing maps have developed rapidly and are increasingly attracting the interest of humanities scholars. Unlike printed maps, digital GIS maps allow the user to easily combine and analyse different maps or layers of information. Although this has led to many interesting projects in the spatial humanities, for the Netherlands most notably the HISGIS.nl project, which aims to create a national atlas of buildings and parcels using early cadastral maps, the maps by Beekman et al. remained the main source for historical boundaries in the Netherlands well into the twenty-first century.

    This digital GIS dataset contains historical boundaries of cities, parishes, heerlijkheden, and other meaningful entities in the medieval and early modern Low Countries. Its production involves the selection of sources, including historical maps, the drawing of digital maps, and the creation of a data model for the maps and related historical statistics. The main reason for creating these maps is the desire to be able to link socio-economic developments to specific geographical contexts. The map creates the conditions to define historical statistics geographically much more precisely than before. The current focus of the project is to link the maps to all available late medieval surveys that provide information on the number of hearths and other demographic statistics in different parts of the Low Countries. These surveys are also a crucial element in the methodology for creating and refining the Historical Atlas of the Low Countries (HALC) database.

    As of version 8.0, the dataset covers the entire Low Countries from the Waddenzee to the river Somme and from Luxembourg to East Frisia. It comprises more than over 17.000 spatial features, constructed from hundreds of digital, written, and cartographic sources. Only the neighbouring territories of Jülich, Cologne, and Münster to the east, and Bar to the south are still under development. The current dataset focuses on the cross-section 1500, the first of four planned cross-sections (the others are 1350, 1650, and 1800). However, the dataset is designed so that virtually any historical statistic from the fourteenth to early nineteenth centuries that can be spatially linked to administrative units, religious or secular, can be linked to the 1500 cross section. Note that some of the unique identifiers (SHORT_ID) may change between versions of the dataset due to the addition of suffixes. These suffixes are constructed in such a way that the identifiers remain backward compatible (as explained here). The updated identifiers can be retrieved with a few simple procedures.



    For users who are not necessarily interested in village-level GIS boundaries, but who need simplified (time-stamped) boundaries of territories in the Low Countries (Middle Ages - present), such a scholarly resource is available for public use here (please use standard citation standards). This geodataset can be seen live in action here.

  5. SHIBR - The Swedish Historical Birth Records

    • kaggle.com
    zip
    Updated Jun 8, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Abbas Cheddad (2021). SHIBR - The Swedish Historical Birth Records [Dataset]. https://www.kaggle.com/cheddad/shibr-the-swedish-historical-birth-records
    Explore at:
    zip(52572330111 bytes)Available download formats
    Dataset updated
    Jun 8, 2021
    Authors
    Abbas Cheddad
    License

    Open Database License (ODbL) v1.0https://www.opendatacommons.org/licenses/odbl/1.0/
    License information was derived automatically

    Description

    Description of the Data Set

    This dataset is taken from the Arkiv Digital AD AB image and index database. When a child was born he or she was registered in a church record book called Birth and Christening records by the priest. They registered the name of the child, when the child was born and baptized, where the child was living and information about the father and mother of the child. The index is based on manual annotation of images from several books between the year 1800 to 1840.

    The dataset consists of 191,301 index rows and 15,000 images and has been divided into train: 133,941 index rows and 10,500 images eval: 28,303 index rows and 2,250 images test: 29,057 index rows and 2,250 images

    Swedish county (län)

    Gävleborgs län - 23 982 index rows Gotlands län - 9 925 index rows Norrbottens län - 12 198 index rows Västerbottens län - 16 118 index rows Västernorrlands län - 21 014 index rows Västmanlands län - 21 141 index rows Älvsborgs län - 52 988 index rows Örebro län - 33 935 index tows

    Description of the index columns

    • id: Arkiv Digital AD AB ID in database
    • index_aid: Index AID (Arkiv Digital AD AB external ID)
    • county: County where the child was born or registered (usually not in the image)
    • parish: Parish where the child was born or registered (can be written at the top of the page or entirely missing from the image)
    • child_first_name: Given name of the child
    • birth_date: Date of birth, format YYYYMMDD (on the image it is usually written DD/MM with the year on top of page)
    • baptism_date: Date of baptism, format YYYYMMDD (on the image it usually written DD/MM with the year on top of page)
    • birth_place: Place of birth
    • father_title: Title or occupation of the father
    • father_first_name: Given name of the father
    • father_last_name: Surname of the father
    • father_age: Age of the father when the child was born <== (available only in the master dataset SHIBRm)
    • mother_title: Title or occupation of the mother
    • mother_first_name: Given name of the mother
    • mother_last_name: Surname of the mother
    • mother_age: Age of the mother when the child was born
    • image_aid: Image AID (Arkiv Digital AD AB external ID)
    • image_path: Relative path to the image (images/)

    Use of the Materials

    The users of the SHIBR Data Set must agree that: - The use of the data set is restricted to research purpose only - No redistribution of the dataset is allowed - In any resultant publications of research that uses the dataset, due credits will be provided to:

    Abbas Cheddad, Hüseyin Kusetogullari, Agrin Hilmkil, Lena Sundin, Amir Yavariabdi, Mustapha Aouache, Johan Hall; "SHIBR-The Swedish Historical Birth Records: A Semi-Annotated Dataset," Neural Computing & Applications, Springer, 2021.

  6. P

    Quick Ways to Access EXPEDIA CUSTOMER SERVICE NUMBER via Phone Dataset

    • paperswithcode.com
    Updated Jun 19, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2025). Quick Ways to Access EXPEDIA CUSTOMER SERVICE NUMBER via Phone Dataset [Dataset]. https://paperswithcode.com/dataset/quick-ways-to-access-expedia-customer-service
    Explore at:
    Dataset updated
    Jun 19, 2025
    Description

    To speak to a live person at Expedia Customer Service 1 | 877 | 604 | 1230 for 24 hour support, call their 24/7 Expedia 800 customer service Phone number hotline 1-877-604-1230 or 1800 EXPEDIA (877-604-1230). You can also use the live chat feature on their website or reach out to them via email.

    Why Contact a Live Person at Expedia? There are many reasons why speaking to a live person might be the best route to resolving your issue. Common scenarios include:

    Flight changes or cancellations:

    If your plans have changed, you need live assistance at Expedia (1-888-349-2183) with adjusting or canceling your flights, or you’re dealing with flight cancellations and delays.

    Booking clarification:

    Sometimes you need more details or help to understand the specifics of your Expedia booking 1-877-604-1230 or 1800 EXPEDIA (877-604-1230) and reservation.

    Refunds and compensation:

    Automated systems often cannot handle complex refund requests or compensation claims, making a Expedia live agent 1-877-604-1230 or 1800 EXPEDIA (877-604-1230) invaluable.

    Technical glitches:

    If there’s a technical issue with your booking, like payment errors, Expedia live customer service 1-877-604-1230 or 1800 EXPEDIA (877-604-1230) can resolve it quickly.

    Expedia’s Contact Options

    Expedia offers several ways to get in touch with their customer service, whether you prefer calling, chatting, or reaching out on social media.

    Calling Expedia’s Customer Service Hotline The most straightforward way to talk to a live person is by calling their customer service hotline. Expedia’s main customer service number is 1-877-604-1230 or 1800 EXPEDIA (877-604-1230) OTA (Live Person). When you call, you’ll be prompted to select options that direct you to the appropriate department, but be patient—there is always a way to reach a live person.

    Using Expedia’s Live Chat Feature If waiting on hold isn’t your style, you can use Expedia’s live chat feature. Simply head over to their website, navigate to the Help section, and select the chat option. This connects you with a real person who can assist you just as well as phone support can.

    Reaching Out on Social Media Expedia is active on social media platforms like Twitter and Facebook. Many customers have found that sending a message via these platforms leads to quick responses, especially for general inquiries.

    Utilizing the Expedia Mobile App for Support The Expedia app Expedia desde un celular 1-877-604-1230 or 1800 EXPEDIA (877-604-1230)is another handy way to contact support. It provides options to call or chat with customer service directly from the app, giving you another method to reach a live person without needing to switch devices.

    Emailing Expedia’s Support For less urgent issues, emailing Expedia is another option. While response times can be longer, this method ensures that you have written documentation of your issue and any communication regarding its resolution.

  7. d

    Historical underway surface temperature data collected aboard the ship...

    • catalog.data.gov
    • search.dataone.org
    • +2more
    Updated Jul 1, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (Point of Contact) (2025). Historical underway surface temperature data collected aboard the ship Skelton Castle on a voyage from England to India, 28 February 1800 to 3 June 1800 (NCEI Accession 0095925) [Dataset]. https://catalog.data.gov/dataset/historical-underway-surface-temperature-data-collected-aboard-the-ship-skelton-castle-on-a-voya
    Explore at:
    Dataset updated
    Jul 1, 2025
    Dataset provided by
    (Point of Contact)
    Area covered
    England, Skelton Castle, India
    Description

    Underway surface air temperature and sea water temperature were collected aboard the Skelton Castle while in route from England to Bombay India as part of the East India Company during the dates 28 February 1800 to 3 June 1800. The data were prepared by one Mr. R. Perrins on behalf of Sir Anthony Carlisle as part of a study "to determine whether fishes possess any other temperature than that of the water in which they live." A table containing the data was found in Nicholson's "Journal of Natural Philosophy", published in 1804.

  8. e

    Anthropometrische Daten über freie afrikanische Amerikaner in Maryland, 1800...

    • b2find.eudat.eu
    Updated Oct 16, 2008
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    The citation is currently not available for this dataset.
    Explore at:
    Dataset updated
    Oct 16, 2008
    Area covered
    Maryland
    Description

    Das Interesse der Wirtschaftsgeschichte in der Interaktion ökonomischer und biologischer Prozesse, insbesondere in Bezug auf ökonomische Entwicklung, ist in der letzten Zeit stetig gestiegen. Individuelle körperliche Indikatoren stehen in einer engen Beziehung zu dem Ernährungszustand und somit den demographischen Variablen einer Gesellschaft wie beispielsweise der Lebenserwartung. Diese Variablen haben wiederum einen Rückkopplungseffekt auf die Wirtschaft durch ihren Einfluss auf die Arbeitsproduktivität. In diesem Kontext zeigt sich die Bedeutung der anthropometrischen Geschichte der Afroamerikaner durch die Debatte um ihren materiellen Lebensstandard und hierbei insbesondere ihre Nahrungsaufnahme während der Gefangenschaft. Diese Datensammlung wurde zusammengestellt, um den Ernährungszustand freier afrikanischer Amerikaner in Maryland während des frühen 19. Jahrhunderts zu ermitteln. Themen:Die Daten liefern Informationen über Alter, Geschlecht, Geburtsjahr, Größe, Bundesstaat der Geburt, Wohnort (bzw. Ort, an dem den ehemaligen Sklaven die Freiheit geschenkt wurde), Hautfarbe der Person sowie darüber, ob die jeweilige Person frei geboren wurde oder nach der Geburt freigelassen wurde. In einigen Fällen ist auch der Landkreis, in dem die Personen aufwuchsen, dokumentiert. The interest of the economic historical researcher in the interaction between economic and biological processes – especially concerning economic development – has increased recently. Individual somatic indicators are in a close relationship with the nutritional status and therefore with the demographic variables of the society, such as the expectation of life. These variables have in turn a feedback effect on economy by their influence on the labour productivity.In this context the meaning of anthropometric history of Afro-American people reveals by the discussions about their material living standard and here especially about the food they got during their captivity. Topics:The data collection was compiled to identify the nutritional status of free African Americans in Maryland during the early 19th century. The data collection gives information about age, sex, birth year, size, federal state of birth, residence (or the place, where the former slaves got their freedom), colour of the skin, and if the person was born in freedom or if the person was given the freedom after the birth. In some cases the administrative district is documentated, in which the person was grown up. Datenquelle: Staatsarchiv Maryland, ´Certificates of Freedom´; Ladungsverzeichnisse der Sklavenschiffe, Stammrollen (muster rolls) des amerikanischen Bürgerkriegs. Sources: Public record office Maryland, „Certificates of Freedom“; manifest of slave ships, register (muster rolls) of the american civil war. Freie Amerikaner afrikanischer Abstammung in Maryland. American citizens of African descent, living in Maryland.

  9. Not seeing a result you expected?
    Learn how you can add new datasets to our index.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Read, Ian; Baptista Ferreira, Tayná; Watts, Kennah (2023). Santos Enslaved and Enslaver Dataset: A Record of Enslavers and Enslaved People in Santos, Brazil from 1800 to 1888 [Dataset]. http://doi.org/10.7910/DVN/GBDHNC

Santos Enslaved and Enslaver Dataset: A Record of Enslavers and Enslaved People in Santos, Brazil from 1800 to 1888

Explore at:
Dataset updated
Nov 8, 2023
Dataset provided by
Harvard Dataverse
Authors
Read, Ian; Baptista Ferreira, Tayná; Watts, Kennah
Time period covered
Jan 1, 1800 - Jan 1, 1888
Description

The Santos Enslaved and Enslaver Dataset (SEED), created between 2003 and 2006, offers an innovative micro-historical method so users can better understand the diverse lived experiences and oppression of enslaved people. The dataset is one of the most detailed for any city or county of a slave society. It cross-references the identities of thousands of enslaved individuals and enslavers in documents from 13 Brazilian archives and 43 primary source types. It contains more than 42,806 entries drawing from information in medical, church, government, and judicial records of the nineteenth century. More than 1,960 individuals were identified and cross-referenced through multiple historical sources, allowing for a wide range of narratives to emerge from the data.

Search
Clear search
Close search
Google apps
Main menu