Facebook
TwitterOpen Government Licence - Canada 2.0https://open.canada.ca/en/open-government-licence-canada
License information was derived automatically
This dataset reports the daily reported number of the 7-day moving average rates of Deaths involving COVID-19 by vaccination status and by age group. Learn how the Government of Ontario is helping to keep Ontarians safe during the 2019 Novel Coronavirus outbreak. Effective November 14, 2024 this page will no longer be updated. Information about COVID-19 and other respiratory viruses is available on Public Health Ontario’s interactive respiratory virus tool: https://www.publichealthontario.ca/en/Data-and-Analysis/Infectious-Disease/Respiratory-Virus-Tool Data includes: * Date on which the death occurred * Age group * 7-day moving average of the last seven days of the death rate per 100,000 for those not fully vaccinated * 7-day moving average of the last seven days of the death rate per 100,000 for those fully vaccinated * 7-day moving average of the last seven days of the death rate per 100,000 for those vaccinated with at least one booster ##Additional notes As of June 16, all COVID-19 datasets will be updated weekly on Thursdays by 2pm. As of January 12, 2024, data from the date of January 1, 2024 onwards reflect updated population estimates. This update specifically impacts data for the 'not fully vaccinated' category. On November 30, 2023 the count of COVID-19 deaths was updated to include missing historical deaths from January 15, 2020 to March 31, 2023. CCM is a dynamic disease reporting system which allows ongoing update to data previously entered. As a result, data extracted from CCM represents a snapshot at the time of extraction and may differ from previous or subsequent results. Public Health Units continually clean up COVID-19 data, correcting for missing or overcounted cases and deaths. These corrections can result in data spikes and current totals being different from previously reported cases and deaths. Observed trends over time should be interpreted with caution for the most recent period due to reporting and/or data entry lags. The data does not include vaccination data for people who did not provide consent for vaccination records to be entered into the provincial COVaxON system. This includes individual records as well as records from some Indigenous communities where those communities have not consented to including vaccination information in COVaxON. “Not fully vaccinated” category includes people with no vaccine and one dose of double-dose vaccine. “People with one dose of double-dose vaccine” category has a small and constantly changing number. The combination will stabilize the results. Spikes, negative numbers and other data anomalies: Due to ongoing data entry and data quality assurance activities in Case and Contact Management system (CCM) file, Public Health Units continually clean up COVID-19, correcting for missing or overcounted cases and deaths. These corrections can result in data spikes, negative numbers and current totals being different from previously reported case and death counts. Public Health Units report cause of death in the CCM based on information available to them at the time of reporting and in accordance with definitions provided by Public Health Ontario. The medical certificate of death is the official record and the cause of death could be different. Deaths are defined per the outcome field in CCM marked as “Fatal”. Deaths in COVID-19 cases identified as unrelated to COVID-19 are not included in the Deaths involving COVID-19 reported. Rates for the most recent days are subject to reporting lags All data reflects totals from 8 p.m. the previous day. This dataset is subject to change.
Facebook
TwitterData for CDC’s COVID Data Tracker site on Rates of COVID-19 Cases and Deaths by Vaccination Status. Click 'More' for important dataset description and footnotes
Dataset and data visualization details: These data were posted on October 21, 2022, archived on November 18, 2022, and revised on February 22, 2023. These data reflect cases among persons with a positive specimen collection date through September 24, 2022, and deaths among persons with a positive specimen collection date through September 3, 2022.
Vaccination status: A person vaccinated with a primary series had SARS-CoV-2 RNA or antigen detected on a respiratory specimen collected ≥14 days after verifiably completing the primary series of an FDA-authorized or approved COVID-19 vaccine. An unvaccinated person had SARS-CoV-2 RNA or antigen detected on a respiratory specimen and has not been verified to have received COVID-19 vaccine. Excluded were partially vaccinated people who received at least one FDA-authorized vaccine dose but did not complete a primary series ≥14 days before collection of a specimen where SARS-CoV-2 RNA or antigen was detected. Additional or booster dose: A person vaccinated with a primary series and an additional or booster dose had SARS-CoV-2 RNA or antigen detected on a respiratory specimen collected ≥14 days after receipt of an additional or booster dose of any COVID-19 vaccine on or after August 13, 2021. For people ages 18 years and older, data are graphed starting the week including September 24, 2021, when a COVID-19 booster dose was first recommended by CDC for adults 65+ years old and people in certain populations and high risk occupational and institutional settings. For people ages 12-17 years, data are graphed starting the week of December 26, 2021, 2 weeks after the first recommendation for a booster dose for adolescents ages 16-17 years. For people ages 5-11 years, data are included starting the week of June 5, 2022, 2 weeks after the first recommendation for a booster dose for children aged 5-11 years. For people ages 50 years and older, data on second booster doses are graphed starting the week including March 29, 2022, when the recommendation was made for second boosters. Vertical lines represent dates when changes occurred in U.S. policy for COVID-19 vaccination (details provided above). Reporting is by primary series vaccine type rather than additional or booster dose vaccine type. The booster dose vaccine type may be different than the primary series vaccine type. ** Because data on the immune status of cases and associated deaths are unavailable, an additional dose in an immunocompromised person cannot be distinguished from a booster dose. This is a relevant consideration because vaccines can be less effective in this group. Deaths: A COVID-19–associated death occurred in a person with a documented COVID-19 diagnosis who died; health department staff reviewed to make a determination using vital records, public health investigation, or other data sources. Rates of COVID-19 deaths by vaccination status are reported based on when the patient was tested for COVID-19, not the date they died. Deaths usually occur up to 30 days after COVID-19 diagnosis. Participating jurisdictions: Currently, these 31 health departments that regularly link their case surveillance to immunization information system data are included in these incidence rate estimates: Alabama, Arizona, Arkansas, California, Colorado, Connecticut, District of Columbia, Florida, Georgia, Idaho, Indiana, Kansas, Kentucky, Louisiana, Massachusetts, Michigan, Minnesota, Nebraska, New Jersey, New Mexico, New York, New York City (New York), North Carolina, Philadelphia (Pennsylvania), Rhode Island, South Dakota, Tennessee, Texas, Utah, Washington, and West Virginia; 30 jurisdictions also report deaths among vaccinated and unvaccinated people. These jurisdictions represent 72% of the total U.S. population and all ten of the Health and Human Services Regions. Data on cases
Facebook
TwitterNOTE: This dataset has been retired and marked as historical-only. Weekly rates of COVID-19 cases, hospitalizations, and deaths among people living in Chicago by vaccination status and age. Rates for fully vaccinated and unvaccinated begin the week ending April 3, 2021 when COVID-19 vaccines became widely available in Chicago. Rates for boosted begin the week ending October 23, 2021 after booster shots were recommended by the Centers for Disease Control and Prevention (CDC) for adults 65+ years old and adults in certain populations and high risk occupational and institutional settings who received Pfizer or Moderna for their primary series or anyone who received the Johnson & Johnson vaccine. Chicago residency is based on home address, as reported in the Illinois Comprehensive Automated Immunization Registry Exchange (I-CARE) and Illinois National Electronic Disease Surveillance System (I-NEDSS). Outcomes: • Cases: People with a positive molecular (PCR) or antigen COVID-19 test result from an FDA-authorized COVID-19 test that was reported into I-NEDSS. A person can become re-infected with SARS-CoV-2 over time and so may be counted more than once in this dataset. Cases are counted by week the test specimen was collected. • Hospitalizations: COVID-19 cases who are hospitalized due to a documented COVID-19 related illness or who are admitted for any reason within 14 days of a positive SARS-CoV-2 test. Hospitalizations are counted by week of hospital admission. • Deaths: COVID-19 cases who died from COVID-19-related health complications as determined by vital records or a public health investigation. Deaths are counted by week of death. Vaccination status: • Fully vaccinated: Completion of primary series of a U.S. Food and Drug Administration (FDA)-authorized or approved COVID-19 vaccine at least 14 days prior to a positive test (with no other positive tests in the previous 45 days). • Boosted: Fully vaccinated with an additional or booster dose of any FDA-authorized or approved COVID-19 vaccine received at least 14 days prior to a positive test (with no other positive tests in the previous 45 days). • Unvaccinated: No evidence of having received a dose of an FDA-authorized or approved vaccine prior to a positive test. CLARIFYING NOTE: Those who started but did not complete all recommended doses of an FDA-authorized or approved vaccine prior to a positive test (i.e., partially vaccinated) are excluded from this dataset. Incidence rates for fully vaccinated but not boosted people (Vaccinated columns) are calculated as total fully vaccinated but not boosted with outcome divided by cumulative fully vaccinated but not boosted at the end of each week. Incidence rates for boosted (Boosted columns) are calculated as total boosted with outcome divided by cumulative boosted at the end of each week. Incidence rates for unvaccinated (Unvaccinated columns) are calculated as total unvaccinated with outcome divided by total population minus cumulative boosted, fully, and partially vaccinated at the end of each week. All rates are multiplied by 100,000. Incidence rate ratios (IRRs) are calculated by dividing the weekly incidence rates among unvaccinated people by those among fully vaccinated but not boosted and boosted people. Overall age-adjusted incidence rates and IRRs are standardized using the 2000 U.S. Census standard population. Population totals are from U.S. Census Bureau American Community Survey 1-year estimates for 2019. All data are provisional and subject to change. Information is updated as additional details are received and it is, in fact, very common for recent dates to be incomplete and to be updated as time goes on. This dataset reflects data known to CDPH at the time when the dataset is updated each week. Numbers in this dataset may differ from other public sources due to when data are reported and how City of Chicago boundaries are defined. For all datasets related to COVID-19, see https://data.cityofchic
Facebook
TwitterData for CDC’s COVID Data Tracker site on Rates of COVID-19 Cases and Deaths by Vaccination Status. Click 'More' for important dataset description and footnotes
Dataset and data visualization details: These data were posted on October 21, 2022, archived on November 18, 2022, and revised on February 22, 2023. These data reflect cases among persons with a positive specimen collection date through September 24, 2022, and deaths among persons with a positive specimen collection date through September 3, 2022.
Vaccination status: A person vaccinated with a primary series had SARS-CoV-2 RNA or antigen detected on a respiratory specimen collected ≥14 days after verifiably completing the primary series of an FDA-authorized or approved COVID-19 vaccine. An unvaccinated person had SARS-CoV-2 RNA or antigen detected on a respiratory specimen and has not been verified to have received COVID-19 vaccine. Excluded were partially vaccinated people who received at least one FDA-authorized vaccine dose but did not complete a primary series ≥14 days before collection of a specimen where SARS-CoV-2 RNA or antigen was detected. Additional or booster dose: A person vaccinated with a primary series and an additional or booster dose had SARS-CoV-2 RNA or antigen detected on a respiratory specimen collected ≥14 days after receipt of an additional or booster dose of any COVID-19 vaccine on or after August 13, 2021. For people ages 18 years and older, data are graphed starting the week including September 24, 2021, when a COVID-19 booster dose was first recommended by CDC for adults 65+ years old and people in certain populations and high risk occupational and institutional settings. For people ages 12-17 years, data are graphed starting the week of December 26, 2021, 2 weeks after the first recommendation for a booster dose for adolescents ages 16-17 years. For people ages 5-11 years, data are included starting the week of June 5, 2022, 2 weeks after the first recommendation for a booster dose for children aged 5-11 years. For people ages 50 years and older, data on second booster doses are graphed starting the week including March 29, 2022, when the recommendation was made for second boosters. Vertical lines represent dates when changes occurred in U.S. policy for COVID-19 vaccination (details provided above). Reporting is by primary series vaccine type rather than additional or booster dose vaccine type. The booster dose vaccine type may be different than the primary series vaccine type. ** Because data on the immune status of cases and associated deaths are unavailable, an additional dose in an immunocompromised person cannot be distinguished from a booster dose. This is a relevant consideration because vaccines can be less effective in this group. Deaths: A COVID-19–associated death occurred in a person with a documented COVID-19 diagnosis who died; health department staff reviewed to make a determination using vital records, public health investigation, or other data sources. Rates of COVID-19 deaths by vaccination status are reported based on when the patient was tested for COVID-19, not the date they died. Deaths usually occur up to 30 days after COVID-19 diagnosis. Participating jurisdictions: Currently, these 31 health departments that regularly link their case surveillance to immunization information system data are included in these incidence rate estimates: Alabama, Arizona, Arkansas, California, Colorado, Connecticut, District of Columbia, Florida, Georgia, Idaho, Indiana, Kansas, Kentucky, Louisiana, Massachusetts, Michigan, Minnesota, Nebraska, New Jersey, New Mexico, New York, New York City (New York), North Carolina, Philadelphia (Pennsylvania), Rhode Island, South Dakota, Tennessee, Texas, Utah, Washington, and West Virginia; 30 jurisdictions also report deaths among vaccinated and unvaccinated people. These jurisdictions represent 72% of the total U.S. population and all ten of the Health and Human Services Regions. Data on cases
Facebook
TwitterOpen Government Licence 3.0http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
License information was derived automatically
Age-standardised mortality rates for deaths involving coronavirus (COVID-19), non-COVID-19 deaths and all deaths by vaccination status, broken down by age group.
Facebook
Twitterhttps://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
The COVID-19 outbreak has brought the whole planet to its knees.More over 4.5 million people have died since the writing of this notebook, and the only acceptable way out of the disaster is to vaccinate all parts of society. Despite the fact that the benefits of vaccination have been proved to the world many times, anti-vaccine groups are springing up all over the world. This data set was generated to investigate the impact of coronavirus vaccinations on coronavirus mortality.
| country | iso_code | date | total_vaccinations | people_vaccinated | people_fully_vaccinated | New_deaths | population | ratio |
|---|---|---|---|---|---|---|---|---|
| country name | iso code for each country | date that this data belong | number of all doses of COVID vaccine usage in that country | number of people who got at least one shot of COVID vaccine | number of people who got full vaccine shots | number of daily new deaths | 2021 country population | % of vaccinations in that country at that date = people_vaccinated/population * 100 |
This dataset is a combination of the following three datasets:
1.https://www.kaggle.com/gpreda/covid-world-vaccination-progress
2.https://covid19.who.int/WHO-COVID-19-global-data.csv
3.https://www.kaggle.com/rsrishav/world-population
you can find more detail about this dataset by reading this notebook:
https://www.kaggle.com/sinakaraji/simple-linear-regression-covid-vaccination
| Afghanistan | Albania | Algeria | Andorra | Angola |
| Anguilla | Antigua and Barbuda | Argentina | Armenia | Aruba |
| Australia | Austria | Azerbaijan | Bahamas | Bahrain |
| Bangladesh | Barbados | Belarus | Belgium | Belize |
| Benin | Bermuda | Bhutan | Bolivia (Plurinational State of) | Brazil |
| Bosnia and Herzegovina | Botswana | Brunei Darussalam | Bulgaria | Burkina Faso |
| Cambodia | Cameroon | Canada | Cabo Verde | Cayman Islands |
| Central African Republic | Chad | Chile | China | Colombia |
| Comoros | Cook Islands | Costa Rica | Croatia | Cuba |
| Curaçao | Cyprus | Denmark | Djibouti | Dominica |
| Dominican Republic | Ecuador | Egypt | El Salvador | Equatorial Guinea |
| Estonia | Ethiopia | Falkland Islands (Malvinas) | Fiji | Finland |
| France | French Polynesia | Gabon | Gambia | Georgia |
| Germany | Ghana | Gibraltar | Greece | Greenland |
| Grenada | Guatemala | Guinea | Guinea-Bissau | Guyana |
| Haiti | Honduras | Hungary | Iceland | India |
| Indonesia | Iran (Islamic Republic of) | Iraq | Ireland | Isle of Man |
| Israel | Italy | Jamaica | Japan | Jordan |
| Kazakhstan | Kenya | Kiribati | Kuwait | Kyrgyzstan |
| Lao People's Democratic Republic | Latvia | Lebanon | Lesotho | Liberia |
| Libya | Liechtenstein | Lithuania | Luxembourg | Madagascar |
| Malawi | Malaysia | Maldives | Mali | Malta |
| Mauritania | Mauritius | Mexico | Republic of Moldova | Monaco |
| Mongolia | Montenegro | Montserrat | Morocco | Mozambique |
| Myanmar | Namibia | Nauru | Nepal | Netherlands |
| New Caledonia | New Zealand | Nicaragua | Niger | Nigeria |
| Niue | North Macedonia | Norway | Oman | Pakistan |
| occupied Palestinian territory, including east Jerusalem | ||||
| Panama | Papua New Guinea | Paraguay | Peru | Philippines |
| Poland | Portugal | Qatar | Romania | Russian Federation |
| Rwanda | Saint Kitts and Nevis | Saint Lucia | ||
| Saint Vincent and the Grenadines | Samoa | San Marino | Sao Tome and Principe | Saudi Arabia |
| Senegal | Serbia | Seychelles | Sierra Leone | Singapore |
| Slovakia | Slovenia | Solomon Islands | Somalia | South Africa |
| Republic of Korea | South Sudan | Spain | Sri Lanka | Sudan |
| Suriname | Sweden | Switzerland | Syrian Arab Republic | Tajikistan |
| United Republic of Tanzania | Thailand | Togo | Tonga | Trinidad and Tobago |
| Tunisia | Turkey | Turkmenistan | Turks and Caicos Islands | Tuvalu |
| Uganda | Ukraine | United Arab Emirates | The United Kingdom | United States of America |
| Uruguay | Uzbekistan | Vanuatu | Venezuela (Bolivarian Republic of) | Viet Nam |
| Wallis and Futuna | Yemen | Zambia | Zimbabwe |
Facebook
TwitterData for CDC’s COVID Data Tracker site on Rates of COVID-19 Cases and Deaths by Updated (Bivalent) Booster Status. Click 'More' for important dataset description and footnotes
Webpage: https://covid.cdc.gov/covid-data-tracker/#rates-by-vaccine-status
Dataset and data visualization details:
These data were posted and archived on May 30, 2023 and reflect cases among persons with a positive specimen collection date through April 22, 2023, and deaths among persons with a positive specimen collection date through April 1, 2023. These data will no longer be updated after May 2023.
Vaccination status: A person vaccinated with at least a primary series had SARS-CoV-2 RNA or antigen detected on a respiratory specimen collected ≥14 days after verifiably completing the primary series of an FDA-authorized or approved COVID-19 vaccine. An unvaccinated person had SARS-CoV-2 RNA or antigen detected on a respiratory specimen and has not been verified to have received COVID-19 vaccine. Excluded were partially vaccinated people who received at least one FDA-authorized vaccine dose but did not complete a primary series ≥14 days before collection of a specimen where SARS-CoV-2 RNA or antigen was detected. A person vaccinated with a primary series and a monovalent booster dose had SARS-CoV-2 RNA or antigen detected on a respiratory specimen collected ≥14 days after verifiably receiving a primary series of an FDA-authorized or approved vaccine and at least one additional dose of any monovalent FDA-authorized or approved COVID-19 vaccine on or after August 13, 2021. (Note: this definition does not distinguish between vaccine recipients who are immunocompromised and are receiving an additional dose versus those who are not immunocompromised and receiving a booster dose.) A person vaccinated with a primary series and an updated (bivalent) booster dose had SARS-CoV-2 RNA or antigen detected in a respiratory specimen collected ≥14 days after verifiably receiving a primary series of an FDA-authorized or approved vaccine and an additional dose of any bivalent FDA-authorized or approved vaccine COVID-19 vaccine on or after September 1, 2022. (Note: Doses with bivalent doses reported as first or second doses are classified as vaccinated with a bivalent booster dose.) People with primary series or a monovalent booster dose were combined in the “vaccinated without an updated booster” category.
Deaths: A COVID-19–associated death occurred in a person with a documented COVID-19 diagnosis who died; health department staff reviewed to make a determination using vital records, public health investigation, or other data sources. Per the interim guidance of the Council of State and Territorial Epidemiologists (CSTE), this should include persons whose death certificate lists COVID-19 disease or SARS-CoV-2 as the underlying cause of death or as a significant condition contributing to death. Rates of COVID-19 deaths by vaccination status are primarily reported based on when the patient was tested for COVID-19. In select jurisdictions, deaths are included that are not laboratory confirmed and are reported based on alternative dates (i.e., onset date for most; or date of death or report date, where onset date is unavailable). Deaths usually occur up to 30 days after COVID-19 diagnosis.
Participating jurisdictions: Currently, these 24 health departments that regularly link their case surveillance to immunization information system data are included in these incidence rate estimates: Alabama, Arizona, Colorado, District of Columbia, Georgia, Idaho, Indiana, Kansas, Kentucky, Louisiana, Massachusetts, Michigan, Minnesota, Nebraska, New Jersey, New Mexico, New York, New York City (NY), North Carolina, Rhode Island, Tennessee, Texas, Utah, and West Virginia; 23 jurisdictions also report deaths among vaccinated and unvaccinated people. These jurisdictions represent 48% of the total U.S. population and all ten of the Health and Human Services Regions. This list will be updated as more jurisdictions participate.
Incidence rate estimates: Weekly age-specific incidence rates by vaccination status were calculated as the number of cases or deaths divided by the number of people vaccinated with a primary series, overall or with/without a booster dose (cumulative) or unvaccinated (obtained by subtracting the cumulative number of people vaccinated with at least a primary series and partially vaccinated people from the 2019 U.S. intercensal population estimates) and multiplied by 100,000. Overall incidence rates were age-standardized using the 2000 U.S. Census standard population. To estimate population counts for ages 6-12 months, half of the single-year population counts for ages <12 months were used. All rates are plotted by positive specimen collection date to reflect when incident infections occurred.
Continuity correction: A continuity correction has been applied to the denominators by capping the percent population coverage at 95%. To do this, we assumed that at least 5% of each age group would always be unvaccinated in each jurisdiction. Adding this correction ensures that there is always a reasonable denominator for the unvaccinated population that would prevent incidence and death rates from growing unrealistically large due to potential overestimates of vaccination coverage.
Incidence rate ratios (IRRs): IRRs for the past one month were calculated by dividing the average weekly incidence rates among unvaccinated people by that among people vaccinated without an updated (bivalent) booster dose) or vaccinated with an updated (bivalent) booster dose.
Archive: An archive of historic data, including April 3, 2021-September 24, 2022 and posted on October 21, 2022 is available on data.cdc.gov. The analysis by vaccination status (unvaccinated and at least a primary series) for 31 jurisdictions is posted here: https://data.cdc.gov/Public-Health-Surveillance/Rates-of-COVID-19-Cases-or-Deaths-by-Age-Group-and/3rge-nu2a. The analysis for one booster dose (unvaccinated, primary series only, and at least one booster dose) in 31 jurisdictions is posted here: https://data.cdc.gov/Public-Health-Surveillance/Rates-of-COVID-19-Cases-or-Deaths-by-Age-Group-and/d6p8-wqjm. The analysis for two booster doses (unvaccinated, primary series only, one booster dose, and at least two booster doses) in 28 jurisdictions is posted here: https://data.cdc.gov/Public-Health-Surveillance/Rates-of-COVID-19-Cases-or-Deaths-by-Age-Group-and/ukww-au2k.
References
Scobie HM, Johnson AG, Suthar AB, et al. Monitoring Incidence of COVID-19 Cases, Hospitalizations, and Deaths, by Vaccination Status — 13 U.S. Jurisdictions, April 4–July 17, 2021. MMWR Morb Mortal Wkly Rep 2021;70:1284–1290.
Johnson AG, Amin AB, Ali AR, et al. COVID-19 Incidence and Death Rates Among Unvaccinated and Fully Vaccinated Adults with and Without Booster Doses During Periods of Delta and Omicron Variant Emergence — 25 U.S. Jurisdictions, April 4–December 25, 2021. MMWR Morb Mortal Wkly Rep 2022;71:132–138
Johnson AG, Linde L, Ali AR, et al. COVID-19 Incidence and Mortality Among Unvaccinated and Vaccinated Persons Aged ≥12 Years by Receipt of Bivalent Booster Doses and Time Since Vaccination — 24 U.S. Jurisdictions, October 3, 2021–December 24, 2022. MMWR Morb Mortal Wkly Rep 2023;72:145–152
Facebook
TwitterThis dataset reports the daily reported number of the 7-day moving average rates of Deaths involving COVID-19 by vaccination status and by age group. Learn how the Government of Ontario is helping to keep Ontarians safe during the 2019 Novel Coronavirus outbreak. Effective November 14, 2024 this page will no longer be updated. Information about COVID-19 and other respiratory viruses is available on Public Health Ontario’s interactive respiratory virus tool: https://www.publichealthontario.ca/en/Data-and-Analysis/Infectious-Disease/Respiratory-Virus-Tool Data includes: * Date on which the death occurred * Age group * 7-day moving average of the last seven days of the death rate per 100,000 for those not fully vaccinated * 7-day moving average of the last seven days of the death rate per 100,000 for those fully vaccinated * 7-day moving average of the last seven days of the death rate per 100,000 for those vaccinated with at least one booster ##Additional notes As of June 16, all COVID-19 datasets will be updated weekly on Thursdays by 2pm. As of January 12, 2024, data from the date of January 1, 2024 onwards reflect updated population estimates. This update specifically impacts data for the 'not fully vaccinated' category. On November 30, 2023 the count of COVID-19 deaths was updated to include missing historical deaths from January 15, 2020 to March 31, 2023. CCM is a dynamic disease reporting system which allows ongoing update to data previously entered. As a result, data extracted from CCM represents a snapshot at the time of extraction and may differ from previous or subsequent results. Public Health Units continually clean up COVID-19 data, correcting for missing or overcounted cases and deaths. These corrections can result in data spikes and current totals being different from previously reported cases and deaths. Observed trends over time should be interpreted with caution for the most recent period due to reporting and/or data entry lags. The data does not include vaccination data for people who did not provide consent for vaccination records to be entered into the provincial COVaxON system. This includes individual records as well as records from some Indigenous communities where those communities have not consented to including vaccination information in COVaxON. “Not fully vaccinated” category includes people with no vaccine and one dose of double-dose vaccine. “People with one dose of double-dose vaccine” category has a small and constantly changing number. The combination will stabilize the results. Spikes, negative numbers and other data anomalies: Due to ongoing data entry and data quality assurance activities in Case and Contact Management system (CCM) file, Public Health Units continually clean up COVID-19, correcting for missing or overcounted cases and deaths. These corrections can result in data spikes, negative numbers and current totals being different from previously reported case and death counts. Public Health Units report cause of death in the CCM based on information available to them at the time of reporting and in accordance with definitions provided by Public Health Ontario. The medical certificate of death is the official record and the cause of death could be different. Deaths are defined per the outcome field in CCM marked as “Fatal”. Deaths in COVID-19 cases identified as unrelated to COVID-19 are not included in the Deaths involving COVID-19 reported. Rates for the most recent days are subject to reporting lags All data reflects totals from 8 p.m. the previous day. This dataset is subject to change.
Facebook
Twitterhttps://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
Why we need to compare the rates of death between vaccinated and unvaccinated During a pandemic, you might see headlines like “Half of those who died from the virus were vaccinated”.
It would be wrong to draw any conclusions about whether the vaccines are protecting people from the virus based on this headline. The headline is not providing enough information to draw any conclusions.
Data comes from https://ourworldindata.org/covid-deaths-by-vaccination Thanks to them to compile thiese kind of interesting dataset. If you want to know more please visit https://ourworldindata.org/covid-deaths-by-vaccination
https://www.pya.org/Content/Image/NewsBlog/Covid19%20vaccine.jpg" alt="Covid19 vaccination">
Exploration Data, Forecasting, Impact of vaccination in USA. Compare Moderna vs Johnson&Johnson vs Moderna
Facebook
Twitterhttps://www.usa.gov/government-workshttps://www.usa.gov/government-works
Note: Reporting of new COVID-19 Case Surveillance data will be discontinued July 1, 2024, to align with the process of removing SARS-CoV-2 infections (COVID-19 cases) from the list of nationally notifiable diseases. Although these data will continue to be publicly available, the dataset will no longer be updated.
Authorizations to collect certain public health data expired at the end of the U.S. public health emergency declaration on May 11, 2023. The following jurisdictions discontinued COVID-19 case notifications to CDC: Iowa (11/8/21), Kansas (5/12/23), Kentucky (1/1/24), Louisiana (10/31/23), New Hampshire (5/23/23), and Oklahoma (5/2/23). Please note that these jurisdictions will not routinely send new case data after the dates indicated. As of 7/13/23, case notifications from Oregon will only include pediatric cases resulting in death.
This case surveillance public use dataset has 19 elements for all COVID-19 cases shared with CDC and includes demographics, geography (county and state of residence), any exposure history, disease severity indicators and outcomes, and presence of any underlying medical conditions and risk behaviors.
Currently, CDC provides the public with three versions of COVID-19 case surveillance line-listed data: this 19 data element dataset with geography, a 12 data element public use dataset, and a 33 data element restricted access dataset.
The following apply to the public use datasets and the restricted access dataset:
Overview
The COVID-19 case surveillance database includes individual-level data reported to U.S. states and autonomous reporting entities, including New York City and the District of Columbia (D.C.), as well as U.S. territories and affiliates. On April 5, 2020, COVID-19 was added to the Nationally Notifiable Condition List and classified as “immediately notifiable, urgent (within 24 hours)” by a Council of State and Territorial Epidemiologists (CSTE) Interim Position Statement (Interim-20-ID-01). CSTE updated the position statement on August 5, 2020, to clarify the interpretation of antigen detection tests and serologic test results within the case classification (Interim-20-ID-02). The statement also recommended that all states and territories enact laws to make COVID-19 reportable in their jurisdiction, and that jurisdictions conducting surveillance should submit case notifications to CDC. COVID-19 case surveillance data are collected by jurisdictions and reported voluntarily to CDC.
For more information:
NNDSS Supports the COVID-19 Response | CDC.
COVID-19 Case Reports COVID-19 case reports are routinely submitted to CDC by public health jurisdictions using nationally standardized case reporting forms. On April 5, 2020, CSTE released an Interim Position Statement with national surveillance case definitions for COVID-19. Current versions of these case definitions are available at: https://ndc.services.cdc.gov/case-definitions/coronavirus-disease-2019-2021/. All cases reported on or after were requested to be shared by public health departments to CDC using the standardized case definitions for lab-confirmed or probable cases. On May 5, 2020, the standardized case reporting form was revised. States and territories continue to use this form.
Access Addressing Gaps in Public Health Reporting of Race and Ethnicity for COVID-19, a report from the Council of State and Territorial Epidemiologists, to better understand the challenges in completing race and ethnicity data for COVID-19 and recommendations for improvement.
To learn more about the limitations in using case surveillance data, visit FAQ: COVID-19 Data and Surveillance.
CDC’s Case Surveillance Section routinely performs data quality assurance procedures (i.e., ongoing corrections and logic checks to address data errors). To date, the following data cleaning steps have been implemented:
To prevent release of data that could be used to identify people, data cells are suppressed for low frequency (<11 COVID-19 case records with a given values). Suppression includes low frequency combinations of case month, geographic characteristics (county and state of residence), and demographic characteristics (sex, age group, race, and ethnicity). Suppressed values are re-coded to the NA answer option; records with data suppression are never removed.
COVID-19 data are available to the public as summary or aggregate count files, including total counts of cases and deaths by state and by county. These and other COVID-19 data are available from multiple public locations: COVID Data Tracker; United States COVID-19 Cases and Deaths by State; COVID-19 Vaccination Reporting Data Systems; and COVID-19 Death Data and Resources.
Notes:
March 1, 2022: The "COVID-19 Case Surveillance Public Use Data with Geography" will be updated on a monthly basis.
April 7, 2022: An adjustment was made to CDC’s cleaning algorithm for COVID-19 line level case notification data. An assumption in CDC's algorithm led to misclassifying deaths that were not COVID-19 related. The algorithm has since been revised, and this dataset update reflects corrected individual level information about death status for all cases collected to date.
June 25, 2024: An adjustment
Facebook
TwitterOpen Government Licence 3.0http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
License information was derived automatically
Estimates of the risk of all-cause and cardiac death in the 12 weeks after vaccination or positive SARS-CoV-2 test compared with subsequent weeks for people aged 12 to 29 years in England using two sources of mortality data: ONS death registrations and deaths recorded in Hospital Episode Statistics. 8 December 2020 to 25 May 2022. Experimental Statistics.
Facebook
TwitterIntroductionRecent reviews summarize evidence that some vaccines have heterologous or non-specific effects (NSE), potentially offering protection against multiple pathogens. Numerous economic evaluations examine vaccines' pathogen-specific effects, but less than a handful focus on NSE. This paper addresses that gap by reporting economic evaluations of the NSE of oral polio vaccine (OPV) against under-five mortality and COVID-19.Materials and methodsWe studied two settings: (1) reducing child mortality in a high-mortality setting (Guinea-Bissau) and (2) preventing COVID-19 in India. In the former, the intervention involves three annual campaigns in which children receive OPV incremental to routine immunization. In the latter, a susceptible-exposed-infectious-recovered model was developed to estimate the population benefits of two scenarios, in which OPV would be co-administered alongside COVID-19 vaccines. Incremental cost-effectiveness and benefit-cost ratios were modeled for ranges of intervention effectiveness estimates to supplement the headline numbers and account for heterogeneity and uncertainty.ResultsFor child mortality, headline cost-effectiveness was $650 per child death averted. For COVID-19, assuming OPV had 20% effectiveness, incremental cost per death averted was $23,000–65,000 if it were administered simultaneously with a COVID-19 vaccine <200 days into a wave of the epidemic. If the COVID-19 vaccine availability were delayed, the cost per averted death would decrease to $2600–6100. Estimated benefit-to-cost ratios vary but are consistently high.DiscussionEconomic evaluation suggests the potential of OPV to efficiently reduce child mortality in high mortality environments. Likewise, within a broad range of assumed effect sizes, OPV (or another vaccine with NSE) could play an economically attractive role against COVID-19 in countries facing COVID-19 vaccine delays.FundingThe contribution by DTJ was supported through grants from Trond Mohn Foundation (BFS2019MT02) and Norad (RAF-18/0009) through the Bergen Center for Ethics and Priority Setting.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Citation United States Department of Health and Human Services (DHHS), Public Health Service (PHS), Centers for Disease Control (CDC) / Food and Drug Administration (FDA), Vaccine Adverse Event Reporting System (VAERS) 1990 - 08/05/2022, CDC WONDER On-line Database. Accessed at http://wonder.cdc.gov/vaers.html on Aug 18, 2022 1:33:27 AM
Query Criteria:Event Category:Death State / Territory:California Vaccine Manufacturer:PFIZER\BIONTECH Vaccine Products:COVID19 VACCINE (COVID19) VAERS ID:All Group By:Symptoms; Vaccine Type; Age; VAERS ID; State / Territory
=========
Disclaimer
VAERS accepts reports of adverse events that occur following vaccination. Anyone, including healthcare providers, vaccine manufacturers, and the public, can submit reports to the system. While very important in monitoring vaccine safety, VAERS reports alone cannot be used to determine if a vaccine caused or contributed to an adverse event or illness. Vaccine providers are encouraged to report any clinically significant health problem following vaccination to VAERS even if they are not sure if the vaccine was the cause. In some situations, reporting to VAERS is required of healthcare providers and vaccine manufacturers. VAERS reports may contain information that is incomplete, inaccurate, coincidental, or unverifiable. Reports to VAERS can also be biased. As a result, there are limitations on how the data can be used scientifically. Data from VAERS reports should always be interpreted with these limitations in mind. The strengths of VAERS are that it is national in scope and can often quickly detect an early hint or warning of a safety problem with a vaccine. VAERS is one component of CDC's and FDA's multifaceted approach to monitoring safety after vaccines are licensed or authorized for use. There are multiple, complementary systems that CDC and FDA use to capture and validate data from different sources. VAERS is designed to rapidly detect unusual or unexpected patterns of adverse events, also referred to as "safety signals." If a possible safety signal is found in VAERS, further analysis is performed with other safety systems, such as the CDC’s Vaccine Safety Datalink (VSD) and Clinical Immunization Safety Assessment (CISA) Project, or in the FDA BEST (Biologics Effectiveness and Safety) system. These systems are less impacted by the limitations of spontaneous and voluntary reporting in VAERS and can better assess possible links between vaccination and adverse events. Additionally, CDC and FDA cannot provide individual medical advice regarding any report to VAERS. Key considerations and limitations of VAERS data:
The number of reports alone cannot be interpreted as evidence of a causal association between a vaccine and an adverse event, or as evidence about the existence, severity, frequency, or rates of problems associated with vaccines. Reports may include incomplete, inaccurate, coincidental, and unverified information. VAERS does not obtain follow up records on every report. If a report is classified as serious, VAERS requests additional information, such as health records, to further evaluate the report. VAERS data are limited to vaccine adverse event reports received between 1990 and the most recent date for which data are available. VAERS data do not represent all known safety information for a vaccine and should be interpreted in the context of other scientific information.
VAERS data available to the public include only the initial report data to VAERS. Updated data which contains data from medical records and corrections reported during follow up are used by the government for analysis. However, for numerous reasons including data consistency, these amended data are not available to the public.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
From January 18th to August 13th, 2021, 13,804 unvaccinated and 1,156 patients who had received at least one COVID-19 vaccine dose were tested qPCR-positive for SARS-CoV-2 in our center. Among vaccinated patients, 949, 205 and 2 had received a single, two or three vaccine doses, respectively. Most patients (80.3%) had received the Pfizer-BioNTech vaccine. The SARS-CoV-2 variants infecting vaccinated patients varied over time, reflecting those circulating in the Marseille area, with a predominance of the Marseille-4/20A.EU2 variant from weeks 3 to 6, of the Alpha/20I variant from weeks 7 to 25, and of the Delta/21A variant from week 26. SARS-CoV-2 infection was significantly more likely to occur in the first 13 days post-vaccine injection in those who received a single dose (48.9%) than two doses (27.4%, p< 10–3). Among 161 patients considered as fully vaccinated, i.e., >14 days after the completion of the vaccinal scheme (one dose for Johnson and Johnson and two doses for Pfizer/BioNTech, Moderna and Sputnik vaccines), 10 (6.2%) required hospitalization and four (2.5%) died. Risks of complications increased with age in a nonlinear pattern, with a first breakpoint at 54, 33, and 53 years for death, transfer to ICU, and hospitalization, respectively. Among patients infected by the Delta/21A or Alpha/20I variants, partial or complete vaccination exhibited a protective effect with a risk divided by 3.1 for mortality in patients ≥ 55 years, by 2.8 for ICU transfer in patients ≥ 34 years, and by 1.8 for hospitalization in patients ≥ 54 years. Compared to partial vaccination, complete vaccination provided an even stronger protective effect, confirming effectiveness to prevent severe forms of COVID-19.
Facebook
Twitterhttps://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
Dataset contains: Latest worldwide vaccination status of all the countries till 08th Jan 2023.
Features: Country-Name of the country Pct. of population Vaccinated-Percentage of population Vaccinated Pct. of population Fully vaccinated-Percentage of population Fully vaccinated Additional Doses Per 100 people-Number of additional doses per 100 people Additional Doses Total-Number of total additional doses Doses administered Per 100 people-Number of vaccine doses administered per 100 people Total Doses administered-Total number of doses administered
Coronavirus disease 2019 (COVID-19) is a contagious disease caused by a virus, the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The first known case was identified in Wuhan, China, in December 2019.The disease quickly spread worldwide, resulting in the COVID-19 pandemic.
Vaccines save millions of lives each year and a COVID-19 vaccine could save yours. The COVID-19 vaccines are safe and effective, providing strong protection against serious illness and death. WHO reports that unvaccinated people have at least 10 times higher risk of death from COVID-19 than someone who has been vaccinated.The COVID-19 vaccines are highly effective, but no vaccine provides 100 per cent protection. Some people will still get ill from COVID-19 after vaccination or pass the virus onto someone else. Therefore, it is important to continue practicing safety precautions to protect yourself and others, including avoiding crowded spaces, physical distancing, hand washing and wearing a mask.
Facebook
Twitterhttps://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
What Is COVID-19?
A coronavirus is a kind of common virus that causes an infection in your nose, sinuses, or upper throat. Most coronaviruses aren't dangerous.
COVID-19 is a disease that can cause what doctors call a respiratory tract infection. It can affect your upper respiratory tract (sinuses, nose, and throat) or lower respiratory tract (windpipe and lungs). It's caused by a coronavirus named SARS-CoV-2.
It spreads the same way other coronaviruses do, mainly through person-to-person contact. Infections range from mild to serious.
SARS-CoV-2 is one of seven types of coronavirus, including the ones that cause severe diseases like Middle East respiratory syndrome (MERS) and sudden acute respiratory syndrome (SARS). The other coronaviruses cause most of the colds that affect us during the year but aren’t a serious threat for otherwise healthy people.
In early 2020, after a December 2019 outbreak in China, the World Health Organization identified SARS-CoV-2 as a new type of coronavirus. The outbreak quickly spread around the world.
Is there more than one strain of SARS-CoV-2?
It’s normal for a virus to change, or mutate, as it infects people. A Chinese study of 103 COVID-19 cases suggests the virus that causes it has done just that. They found two strains, which they named L and S. The S type is older, but the L type was more common in early stages of the outbreak. They think one may cause more cases of the disease than the other, but they’re still working on what it all means.
How long will the coronavirus last?
It’s too soon to tell how long the pandemic will continue. It depends on many things, including researchers’ work to learn more about the virus, their search for a treatment and a vaccine, and the public’s efforts to slow the spread.
Dozens of vaccine candidates are in various stages of development and testing. This process usually takes years. Researchers are speeding it up as much as they can, but it still might take 12 to 18 months to find a vaccine that works and is safe.
Symptoms of COVID-19
The main symptoms include:
The virus can lead to pneumonia, respiratory failure, septic shock, and death. Many COVID-19 complications may be caused by a condition known as cytokine release syndrome or a cytokine storm. This is when an infection triggers your immune system to flood your bloodstream with inflammatory proteins called cytokines. They can kill tissue and damage your organs.
STAY HOME. STAY SAFE !
ALL DATASETS HAVE BEEN CLEANED FOR DIRECT USE.
Total_World_covid-19.csv : This dataset contains the worldwide data country-wise such as total cases , total active, deaths, etc. along with testing data.
Total_India_covid-19.csv : This dataset contains India level data statewise such as confirmed cases , active cases, deaths, etc.
Total_US_covid-19.csv : This dataset contains India level data statewise such as confirmed cases , active cases, deaths, etc.
Daily_States_India.csv : This dataset contains daily statewise data of India such as daily confirmed , daily active , daily deaths and daily recovered.
Total_Maharshtra_covid-19.csv : This dataset contains Maharashtra's district wise data such as confirmed cases , active cases, deaths, etc.
World and US data has been collected from Worldometer . Thanks a lot.
India and State level along with Maharashtra district data has been collected from Covid19India. Special thanks to them for providing updated and such wonderful data .
1) What has been the Covid-19 trend across the world, Is it declining? Is it increasing? 2) Which countries have been able to sustain and control the virus spread? 3) How is India coping up with the virus? Have they been able to control it at the given cost of 2 months nationwide lockdown?
Facebook
Twitterhttps://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the strain of coronavirus that causes coronavirus disease 2019 (COVID-19), the respiratory illness responsible for the COVID-19 pandemic.
Since its first identification in December 2019 in Wuhan, China, this virus has taken the world by storm. Some people prefer to look at the positive side of things and how this pandemic has brought forward several positive changes. However, the collateral damages produced by this pandemic cannot be overlooked. From the Economic impact to Mental Health impacts, this pandemic period will arguably be one of the hardest periods we'll encounter in our lives. That being said, we always have to arm ourselves with hope. With the new advancements in the vaccine studies, let's hope to wake up from this nightmare as soon as possible.
“Hope is being able to see that there is light despite all of the darkness.” – Desmond Tutu
As for the reason for me building this dataset, it's because I couldn't get my hands on an easily digestible and up-to-date dataset of Covid-19, so, I decided to build my own using Python and web scraping techniques. I will also update this dataset as frequently as possible!
This data was scraped from woldometers.info on 2022-05-14 by Joseph Assaker.
225 countries are represented in this data.
All of countries have records dating from 2020-2-15 until 2022-05-14 (820 days per country). That's with the exception of China, which has records dating from 2020-1-22 until 2022-05-14 (844 days per country), and Palau which has records dating from 2021-8-25 until 2022-05-14 (263 days per country)..
As previously mentioned, all the data present in this dataset is scraped from worldometers.info.
Going through this data, Kagglers can visualize various trends in their own country, or compare several countries. One can also combine this dataset with other news and key points in time (lockdowns, new UK mutation, Holidays, etc.) in order to study the effects of these events on the progression of Covid-19 in a multitude of countries. Implementing time series analysis on this dataset would also be an amazing idea! Getting a deep learning algorithm to learn from this sea of data and try to predict the future turn of events could be quite interesting!
Facebook
TwitterIntroductionVarious COVID-19 vaccine trials have shown that vaccines can successfully prevent symptomatic cases of COVID-19 and death. Head-to-head comparisons help to better understand the immune response characteristics of different COVID-19 vaccines in humans.MethodsWe randomly selected 20 participants from each of five ongoing Phase II trials of COVID-19 vaccines. Here, SARS-CoV 2-specific immune responses to DNA vaccine (INO-4800), mRNA vaccine (BNT162b2), Adenovirus-vectored vaccine (CONVIDECIA), Protein subunit vaccine (Recombinant COVID- 19 Vaccine (Sf9 Cells)), Inactivated Vaccine (KCONVAC) were examined longitudinally in healthy adults between Jan 15, 2021 and July 5, 2021 for 6 months. RBD-IgG titres were detected by ELISA, neutralising antibody titer were detected by pseudoviral neutralization and immune cell response were detected by flow cytometry.ResultsAt the first visit (V1), 100% of individuals who received the BNT162b2, CONVIDECIA, or KCONVAC vaccines experienced seroconversion of neutralizing and binding antibodies in the serum. Except for the Recombinant COVID-19 Vaccine (Sf9 Cells) vaccine having the highest neutralizing antibody GMT at the second visit (although there was no statistically significant difference in geometric mean titers between V1 and V2), the rest of the vaccines had the highest levels of binding antibodies and neutralizing antibodies at V1. The neutralizing antibodies GMT of all vaccines showed a significant decrease at V3 compared to V1. The neutralizing antibody GMT against the omicron variant of all vaccines at V1 showed a significant decrease compared to the wild strain. We observed statistically significant differences in Tcm cells and RBD-specific memory B cells among various vaccines.DiscussionBNT162b2 (mRNA vaccine) exhibits the highest antibody levels among the five vaccines evaluated, regardless of whether the target is the wild-type virus or its variants. However, its cellular immune response may be weaker compared to CONVIDECIA (adenovirus type 5 vector vaccine).
Facebook
Twitterhttp://opendatacommons.org/licenses/dbcl/1.0/http://opendatacommons.org/licenses/dbcl/1.0/
Introduction to COVID-19 and Its Vaccinations COVID-19, caused by the novel coronavirus SARS-CoV-2, emerged in December 2019 in Wuhan, China, and quickly spread globally, leading to a pandemic declared by the World Health Organization (WHO) in March 2020. This virus primarily spreads through respiratory droplets, causing a range of symptoms from mild respiratory issues to severe pneumonia and, in some cases, death. The pandemic has had profound health, economic, and social impacts worldwide. Vaccinations Against COVID-19 In response to the urgent need for protection against COVID-19, several vaccines were developed and authorized for emergency use at an unprecedented speed. Vaccination efforts have been critical in reducing the spread of COVID-19, preventing severe illness, and mitigating the burden on healthcare systems. Despite challenges such as vaccine distribution, hesitancy, and the emergence of variants, vaccination remains a key tool in controlling the pandemic and moving towards normalcy.
Not seeing a result you expected?
Learn how you can add new datasets to our index.
Facebook
TwitterOpen Government Licence - Canada 2.0https://open.canada.ca/en/open-government-licence-canada
License information was derived automatically
This dataset reports the daily reported number of the 7-day moving average rates of Deaths involving COVID-19 by vaccination status and by age group. Learn how the Government of Ontario is helping to keep Ontarians safe during the 2019 Novel Coronavirus outbreak. Effective November 14, 2024 this page will no longer be updated. Information about COVID-19 and other respiratory viruses is available on Public Health Ontario’s interactive respiratory virus tool: https://www.publichealthontario.ca/en/Data-and-Analysis/Infectious-Disease/Respiratory-Virus-Tool Data includes: * Date on which the death occurred * Age group * 7-day moving average of the last seven days of the death rate per 100,000 for those not fully vaccinated * 7-day moving average of the last seven days of the death rate per 100,000 for those fully vaccinated * 7-day moving average of the last seven days of the death rate per 100,000 for those vaccinated with at least one booster ##Additional notes As of June 16, all COVID-19 datasets will be updated weekly on Thursdays by 2pm. As of January 12, 2024, data from the date of January 1, 2024 onwards reflect updated population estimates. This update specifically impacts data for the 'not fully vaccinated' category. On November 30, 2023 the count of COVID-19 deaths was updated to include missing historical deaths from January 15, 2020 to March 31, 2023. CCM is a dynamic disease reporting system which allows ongoing update to data previously entered. As a result, data extracted from CCM represents a snapshot at the time of extraction and may differ from previous or subsequent results. Public Health Units continually clean up COVID-19 data, correcting for missing or overcounted cases and deaths. These corrections can result in data spikes and current totals being different from previously reported cases and deaths. Observed trends over time should be interpreted with caution for the most recent period due to reporting and/or data entry lags. The data does not include vaccination data for people who did not provide consent for vaccination records to be entered into the provincial COVaxON system. This includes individual records as well as records from some Indigenous communities where those communities have not consented to including vaccination information in COVaxON. “Not fully vaccinated” category includes people with no vaccine and one dose of double-dose vaccine. “People with one dose of double-dose vaccine” category has a small and constantly changing number. The combination will stabilize the results. Spikes, negative numbers and other data anomalies: Due to ongoing data entry and data quality assurance activities in Case and Contact Management system (CCM) file, Public Health Units continually clean up COVID-19, correcting for missing or overcounted cases and deaths. These corrections can result in data spikes, negative numbers and current totals being different from previously reported case and death counts. Public Health Units report cause of death in the CCM based on information available to them at the time of reporting and in accordance with definitions provided by Public Health Ontario. The medical certificate of death is the official record and the cause of death could be different. Deaths are defined per the outcome field in CCM marked as “Fatal”. Deaths in COVID-19 cases identified as unrelated to COVID-19 are not included in the Deaths involving COVID-19 reported. Rates for the most recent days are subject to reporting lags All data reflects totals from 8 p.m. the previous day. This dataset is subject to change.