100+ datasets found
  1. T

    Canada Household Saving Rate

    • tradingeconomics.com
    • zh.tradingeconomics.com
    • +13more
    csv, excel, json, xml
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    TRADING ECONOMICS, Canada Household Saving Rate [Dataset]. https://tradingeconomics.com/canada/personal-savings
    Explore at:
    json, excel, csv, xmlAvailable download formats
    Dataset authored and provided by
    TRADING ECONOMICS
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Mar 31, 1961 - Jun 30, 2025
    Area covered
    Canada
    Description

    Household Saving Rate in Canada decreased to 5 percent in the second quarter of 2025 from 6 percent in the first quarter of 2025. This dataset provides - Canada Personal Savings - actual values, historical data, forecast, chart, statistics, economic calendar and news.

  2. k

    Global Financial Inclusion (Global Findex) Database 2011 - Kenya

    • statistics.knbs.or.ke
    Updated Jun 1, 2022
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Development Research Group, Finance and Private Sector Development Unit (2022). Global Financial Inclusion (Global Findex) Database 2011 - Kenya [Dataset]. https://statistics.knbs.or.ke/nada/index.php/catalog/30
    Explore at:
    Dataset updated
    Jun 1, 2022
    Dataset authored and provided by
    Development Research Group, Finance and Private Sector Development Unit
    Time period covered
    2011
    Area covered
    Kenya
    Description

    Abstract

    Well-functioning financial systems serve a vital purpose, offering savings, credit, payment, and risk management products to people with a wide range of needs. Yet until now little had been known about the global reach of the financial sector - the extent of financial inclusion and the degree to which such groups as the poor, women, and youth are excluded from formal financial systems. Systematic indicators of the use of different financial services had been lacking for most economies.

    The Global Financial Inclusion (Global Findex) database provides such indicators. This database contains the first round of Global Findex indicators, measuring how adults in 148 economies save, borrow, make payments, and manage risk. The data set can be used to track the effects of financial inclusion policies globally and develop a deeper and more nuanced understanding of how people around the world manage their day-to-day finances. By making it possible to identify segments of the population excluded from the formal financial sector, the data can help policy makers prioritize reforms and design new policies.

    Geographic coverage

    National Coverage.

    Analysis unit

    Individual

    Universe

    The target population is the civilian, non-institutionalized population 15 years and above. The sample is nationally representative.

    Kind of data

    Sample survey data [ssd]

    Sampling procedure

    The Global Findex indicators are drawn from survey data collected by Gallup, Inc. over the 2011 calendar year, covering more than 150,000 adults in 148 economies and representing about 97 percent of the world's population. Since 2005, Gallup has surveyed adults annually around the world, using a uniform methodology and randomly selected, nationally representative samples.The Global Findex indicators will be collected again in 2014 and 2017.

    Surveys were conducted face-to-face. The first stage of sampling is the identification of primary sampling units, consisting of clusters of households. The primary sampling units are stratified by population size, geography, or both, and clustering is achieved through one or more stages of sampling. Where population information is available, sample selection is based on probabilities proportional to population size; otherwise, simple random sampling is used. Random route procedures are used to selected sampled households. Unless an outright refusal occurs, interviewers make up to three attempts to survey the sampled household. If an interview cannot be obtained at the initial sampled household, a simple substitution method is used. Respondents are randomly selected within the selected households by means of the Kish grid.

    The sample size in Kenya was 1,000 individuals.

    Mode of data collection

    Face-to-face [f2f]

    Research instrument

    The questionnaire was designed by the World Bank, in conjunction with a Technical Advisory Board composed of leading academics, practitioners, and policy makers in the field of financial inclusion. The Bill and Melinda Gates Foundation and Gallup, Inc. also provided valuable input. The questionnaire was piloted in over 20 countries using focus groups, cognitive interviews, and field testing. The questionnaire is available in 142 languages upon request.

    Questions on insurance, mobile payments, and loan purposes were asked only in developing economies. The indicators on awareness and use of microfinance insitutions (MFIs) are not included in the public dataset. However, adults who report saving at an MFI are considered to have an account; this is reflected in the composite account indicator.

    Sampling error estimates

    Estimates of standard errors (which account for sampling error) vary by country and indicator. For country- and indicator-specific standard errors, refer to the Annex and Country Table in Demirguc-Kunt, Asli and L. Klapper. 2012. "Measuring Financial Inclusion: The Global Findex." Policy Research Working Paper 6025, World Bank, Washington, D.C.

  3. F

    Audio Visual Speech Dataset: American English

    • futurebeeai.com
    wav
    Updated Aug 1, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    FutureBee AI (2022). Audio Visual Speech Dataset: American English [Dataset]. https://www.futurebeeai.com/dataset/multi-modal-dataset/american-english-visual-speech-dataset
    Explore at:
    wavAvailable download formats
    Dataset updated
    Aug 1, 2022
    Dataset provided by
    FutureBeeAI
    Authors
    FutureBee AI
    License

    https://www.futurebeeai.com/policies/ai-data-license-agreementhttps://www.futurebeeai.com/policies/ai-data-license-agreement

    Area covered
    United States
    Dataset funded by
    FutureBeeAI
    Description

    Introduction

    Welcome to the US English Language Visual Speech Dataset! This dataset is a collection of diverse, single-person unscripted spoken videos supporting research in visual speech recognition, emotion detection, and multimodal communication.

    Dataset Content

    This visual speech dataset contains 1000 videos in US English language each paired with a corresponding high-fidelity audio track. Each participant is answering a specific question in a video in an unscripted and spontaneous nature.

    Participant Diversity:
    Speakers: The dataset includes visual speech data from more than 200 participants from different states/provinces of United States of America.
    Regions: Ensures a balanced representation of Skip 3 accents, dialects, and demographics.
    Participant Profile: Participants range from 18 to 70 years old, representing both males and females in a 60:40 ratio, respectively.

    Video Data

    While recording each video extensive guidelines are kept in mind to maintain the quality and diversity.

    Recording Details:
    File Duration: Average duration of 30 seconds to 3 minutes per video.
    Formats: Videos are available in MP4 or MOV format.
    Resolution: Videos are recorded in ultra-high-definition resolution with 30 fps or above.
    Device: Both the latest Android and iOS devices are used in this collection.
    Recording Conditions: Videos were recorded under various conditions to ensure diversity and reduce bias:
    Indoor and Outdoor Settings: Includes both indoor and outdoor recordings.
    Lighting Variations: Captures videos in daytime, nighttime, and varying lighting conditions.
    Camera Positions: Includes handheld and fixed camera positions, as well as portrait and landscape orientations.
    Face Orientation: Contains straight face and tilted face angles.
    Participant Positions: Records participants in both standing and seated positions.
    Motion Variations: Features both stationary and moving videos, where participants pass through different lighting conditions.
    Occlusions: Includes videos where the participant's face is partially occluded by hand movements, microphones, hair, glasses, and facial hair.
    Focus: In each video, the participant's face remains in focus throughout the video duration, ensuring the face stays within the video frame.
    Video Content: In each video, the participant answers a specific question in an unscripted manner. These questions are designed to capture various emotions of participants. The dataset contain videos expressing following human emotions:
    Happy
    Sad
    Excited
    Angry
    Annoyed
    Normal
    Question Diversity: For each human emotion participant answered a specific question expressing that particular emotion.

    Metadata

    The dataset provides comprehensive metadata for each video recording and participant:

  4. F

    Audio Visual Speech Dataset: German

    • futurebeeai.com
    wav
    Updated Aug 1, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    FutureBee AI (2022). Audio Visual Speech Dataset: German [Dataset]. https://www.futurebeeai.com/dataset/multi-modal-dataset/german-visual-speech-dataset
    Explore at:
    wavAvailable download formats
    Dataset updated
    Aug 1, 2022
    Dataset provided by
    FutureBeeAI
    Authors
    FutureBee AI
    License

    https://www.futurebeeai.com/policies/ai-data-license-agreementhttps://www.futurebeeai.com/policies/ai-data-license-agreement

    Dataset funded by
    FutureBeeAI
    Description

    Introduction

    Welcome to the German Language Visual Speech Dataset! This dataset is a collection of diverse, single-person unscripted spoken videos supporting research in visual speech recognition, emotion detection, and multimodal communication.

    Dataset Content

    This visual speech dataset contains 1000 videos in German language each paired with a corresponding high-fidelity audio track. Each participant is answering a specific question in a video in an unscripted and spontaneous nature.

    Participant Diversity:
    Speakers: The dataset includes visual speech data from more than 200 participants from different states/provinces of Germany.
    Regions: Ensures a balanced representation of Skip 3 accents, dialects, and demographics.
    Participant Profile: Participants range from 18 to 70 years old, representing both males and females in a 60:40 ratio, respectively.

    Video Data

    While recording each video extensive guidelines are kept in mind to maintain the quality and diversity.

    Recording Details:
    File Duration: Average duration of 30 seconds to 3 minutes per video.
    Formats: Videos are available in MP4 or MOV format.
    Resolution: Videos are recorded in ultra-high-definition resolution with 30 fps or above.
    Device: Both the latest Android and iOS devices are used in this collection.
    Recording Conditions: Videos were recorded under various conditions to ensure diversity and reduce bias:
    Indoor and Outdoor Settings: Includes both indoor and outdoor recordings.
    Lighting Variations: Captures videos in daytime, nighttime, and varying lighting conditions.
    Camera Positions: Includes handheld and fixed camera positions, as well as portrait and landscape orientations.
    Face Orientation: Contains straight face and tilted face angles.
    Participant Positions: Records participants in both standing and seated positions.
    Motion Variations: Features both stationary and moving videos, where participants pass through different lighting conditions.
    Occlusions: Includes videos where the participant's face is partially occluded by hand movements, microphones, hair, glasses, and facial hair.
    Focus: In each video, the participant's face remains in focus throughout the video duration, ensuring the face stays within the video frame.
    Video Content: In each video, the participant answers a specific question in an unscripted manner. These questions are designed to capture various emotions of participants. The dataset contain videos expressing following human emotions:
    Happy
    Sad
    Excited
    Angry
    Annoyed
    Normal
    Question Diversity: For each human emotion participant answered a specific question expressing that particular emotion.

    Metadata

    The dataset provides comprehensive metadata for each video recording and participant:

  5. w

    Global Financial Inclusion (Global Findex) Database 2017 - Nicaragua

    • microdata.worldbank.org
    • catalog.ihsn.org
    Updated Nov 1, 2018
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Development Research Group, Finance and Private Sector Development Unit (2018). Global Financial Inclusion (Global Findex) Database 2017 - Nicaragua [Dataset]. https://microdata.worldbank.org/index.php/catalog/3303
    Explore at:
    Dataset updated
    Nov 1, 2018
    Dataset authored and provided by
    Development Research Group, Finance and Private Sector Development Unit
    Time period covered
    2017
    Area covered
    Nicaragua
    Description

    Abstract

    Financial inclusion is critical in reducing poverty and achieving inclusive economic growth. When people can participate in the financial system, they are better able to start and expand businesses, invest in their children’s education, and absorb financial shocks. Yet prior to 2011, little was known about the extent of financial inclusion and the degree to which such groups as the poor, women, and rural residents were excluded from formal financial systems.

    By collecting detailed indicators about how adults around the world manage their day-to-day finances, the Global Findex allows policy makers, researchers, businesses, and development practitioners to track how the use of financial services has changed over time. The database can also be used to identify gaps in access to the formal financial system and design policies to expand financial inclusion.

    Geographic coverage

    National coverage

    Analysis unit

    Individuals

    Universe

    The target population is the civilian, non-institutionalized population 15 years and above.

    Kind of data

    Observation data/ratings [obs]

    Sampling procedure

    The indicators in the 2017 Global Findex database are drawn from survey data covering almost 150,000 people in 144 economies-representing more than 97 percent of the world's population (see Table A.1 of the Global Findex Database 2017 Report for a list of the economies included). The survey was carried out over the 2017 calendar year by Gallup, Inc., as part of its Gallup World Poll, which since 2005 has annually conducted surveys of approximately 1,000 people in each of more than 160 economies and in over 150 languages, using randomly selected, nationally representative samples. The target population is the entire civilian, noninstitutionalized population age 15 and above. Interview procedure Surveys are conducted face to face in economies where telephone coverage represents less than 80 percent of the population or where this is the customary methodology. In most economies the fieldwork is completed in two to four weeks.

    In economies where face-to-face surveys are conducted, the first stage of sampling is the identification of primary sampling units. These units are stratified by population size, geography, or both, and clustering is achieved through one or more stages of sampling. Where population information is available, sample selection is based on probabilities proportional to population size; otherwise, simple random sampling is used. Random route procedures are used to select sampled households. Unless an outright refusal occurs, interviewers make up to three attempts to survey the sampled household. To increase the probability of contact and completion, attempts are made at different times of the day and, where possible, on different days. If an interview cannot be obtained at the initial sampled household, a simple substitution method is used.

    Respondents are randomly selected within the selected households. Each eligible household member is listed and the handheld survey device randomly selects the household member to be interviewed. For paper surveys, the Kish grid method is used to select the respondent. In economies where cultural restrictions dictate gender matching, respondents are randomly selected from among all eligible adults of the interviewer's gender.

    In economies where telephone interviewing is employed, random digit dialing or a nationally representative list of phone numbers is used. In most economies where cell phone penetration is high, a dual sampling frame is used. Random selection of respondents is achieved by using either the latest birthday or household enumeration method. At least three attempts are made to reach a person in each household, spread over different days and times of day.

    The sample size was 1000.

    Mode of data collection

    Computer Assisted Personal Interview [capi]

    Research instrument

    The questionnaire was designed by the World Bank, in conjunction with a Technical Advisory Board composed of leading academics, practitioners, and policy makers in the field of financial inclusion. The Bill and Melinda Gates Foundation and Gallup Inc. also provided valuable input. The questionnaire was piloted in multiple countries, using focus groups, cognitive interviews, and field testing. The questionnaire is available in more than 140 languages upon request.

    Questions on cash on delivery, saving using an informal savings club or person outside the family, domestic remittances, and agricultural payments are only asked in developing economies and few other selected countries. The question on mobile money accounts was only asked in economies that were part of the Mobile Money for the Unbanked (MMU) database of the GSMA at the time the interviews were being held.

    Sampling error estimates

    Estimates of standard errors (which account for sampling error) vary by country and indicator. For country-specific margins of error, please refer to the Methodology section and corresponding table in Demirgüç-Kunt, Asli, Leora Klapper, Dorothe Singer, Saniya Ansar, and Jake Hess. 2018. The Global Findex Database 2017: Measuring Financial Inclusion and the Fintech Revolution. Washington, DC: World Bank

  6. F

    Audio Visual Speech Dataset: Saudi Arabian Arabic

    • futurebeeai.com
    wav
    Updated Aug 1, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    FutureBee AI (2022). Audio Visual Speech Dataset: Saudi Arabian Arabic [Dataset]. https://www.futurebeeai.com/dataset/multi-modal-dataset/saudi-arabian-arabic-visual-speech-dataset
    Explore at:
    wavAvailable download formats
    Dataset updated
    Aug 1, 2022
    Dataset provided by
    FutureBeeAI
    Authors
    FutureBee AI
    License

    https://www.futurebeeai.com/policies/ai-data-license-agreementhttps://www.futurebeeai.com/policies/ai-data-license-agreement

    Area covered
    Saudi Arabia
    Dataset funded by
    FutureBeeAI
    Description

    Introduction

    Welcome to the Saudi Arabian Arabic Language Visual Speech Dataset! This dataset is a collection of diverse, single-person unscripted spoken videos supporting research in visual speech recognition, emotion detection, and multimodal communication.

    Dataset Content

    This visual speech dataset contains 1000 videos in Saudi Arabian Arabic language each paired with a corresponding high-fidelity audio track. Each participant is answering a specific question in a video in an unscripted and spontaneous nature.

    Participant Diversity:
    Speakers: The dataset includes visual speech data from more than 200 participants from different states/provinces of Saudi Arabia.
    Regions: Ensures a balanced representation of Skip 3 accents, dialects, and demographics.
    Participant Profile: Participants range from 18 to 70 years old, representing both males and females in a 60:40 ratio, respectively.

    Video Data

    While recording each video extensive guidelines are kept in mind to maintain the quality and diversity.

    Recording Details:
    File Duration: Average duration of 30 seconds to 3 minutes per video.
    Formats: Videos are available in MP4 or MOV format.
    Resolution: Videos are recorded in ultra-high-definition resolution with 30 fps or above.
    Device: Both the latest Android and iOS devices are used in this collection.
    Recording Conditions: Videos were recorded under various conditions to ensure diversity and reduce bias:
    Indoor and Outdoor Settings: Includes both indoor and outdoor recordings.
    Lighting Variations: Captures videos in daytime, nighttime, and varying lighting conditions.
    Camera Positions: Includes handheld and fixed camera positions, as well as portrait and landscape orientations.
    Face Orientation: Contains straight face and tilted face angles.
    Participant Positions: Records participants in both standing and seated positions.
    Motion Variations: Features both stationary and moving videos, where participants pass through different lighting conditions.
    Occlusions: Includes videos where the participant's face is partially occluded by hand movements, microphones, hair, glasses, and facial hair.
    Focus: In each video, the participant's face remains in focus throughout the video duration, ensuring the face stays within the video frame.
    Video Content: In each video, the participant answers a specific question in an unscripted manner. These questions are designed to capture various emotions of participants. The dataset contain videos expressing following human emotions:
    Happy
    Sad
    Excited
    Angry
    Annoyed
    Normal
    Question Diversity: For each human emotion participant answered a specific question expressing that particular emotion.

    Metadata

    The dataset provides comprehensive metadata for each video recording and participant:

    <span

  7. F

    Audio Visual Speech Dataset: French

    • futurebeeai.com
    wav
    Updated Aug 1, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    FutureBee AI (2022). Audio Visual Speech Dataset: French [Dataset]. https://www.futurebeeai.com/dataset/multi-modal-dataset/french-visual-speech-dataset
    Explore at:
    wavAvailable download formats
    Dataset updated
    Aug 1, 2022
    Dataset provided by
    FutureBeeAI
    Authors
    FutureBee AI
    License

    https://www.futurebeeai.com/policies/ai-data-license-agreementhttps://www.futurebeeai.com/policies/ai-data-license-agreement

    Area covered
    French
    Dataset funded by
    FutureBeeAI
    Description

    Introduction

    Welcome to the French Language Visual Speech Dataset! This dataset is a collection of diverse, single-person unscripted spoken videos supporting research in visual speech recognition, emotion detection, and multimodal communication.

    Dataset Content

    This visual speech dataset contains 1000 videos in French language each paired with a corresponding high-fidelity audio track. Each participant is answering a specific question in a video in an unscripted and spontaneous nature.

    Participant Diversity:
    Speakers: The dataset includes visual speech data from more than 200 participants from different states/provinces of France.
    Regions: Ensures a balanced representation of Skip 3 accents, dialects, and demographics.
    Participant Profile: Participants range from 18 to 70 years old, representing both males and females in a 60:40 ratio, respectively.

    Video Data

    While recording each video extensive guidelines are kept in mind to maintain the quality and diversity.

    Recording Details:
    File Duration: Average duration of 30 seconds to 3 minutes per video.
    Formats: Videos are available in MP4 or MOV format.
    Resolution: Videos are recorded in ultra-high-definition resolution with 30 fps or above.
    Device: Both the latest Android and iOS devices are used in this collection.
    Recording Conditions: Videos were recorded under various conditions to ensure diversity and reduce bias:
    Indoor and Outdoor Settings: Includes both indoor and outdoor recordings.
    Lighting Variations: Captures videos in daytime, nighttime, and varying lighting conditions.
    Camera Positions: Includes handheld and fixed camera positions, as well as portrait and landscape orientations.
    Face Orientation: Contains straight face and tilted face angles.
    Participant Positions: Records participants in both standing and seated positions.
    Motion Variations: Features both stationary and moving videos, where participants pass through different lighting conditions.
    Occlusions: Includes videos where the participant's face is partially occluded by hand movements, microphones, hair, glasses, and facial hair.
    Focus: In each video, the participant's face remains in focus throughout the video duration, ensuring the face stays within the video frame.
    Video Content: In each video, the participant answers a specific question in an unscripted manner. These questions are designed to capture various emotions of participants. The dataset contain videos expressing following human emotions:
    Happy
    Sad
    Excited
    Angry
    Annoyed
    Normal
    Question Diversity: For each human emotion participant answered a specific question expressing that particular emotion.

    Metadata

    The dataset provides comprehensive metadata for each video recording and participant:

    <b

  8. F

    Audio Visual Speech Dataset: Japanese

    • futurebeeai.com
    wav
    Updated Aug 1, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    FutureBee AI (2022). Audio Visual Speech Dataset: Japanese [Dataset]. https://www.futurebeeai.com/dataset/multi-modal-dataset/japanese-visual-speech-dataset
    Explore at:
    wavAvailable download formats
    Dataset updated
    Aug 1, 2022
    Dataset provided by
    FutureBeeAI
    Authors
    FutureBee AI
    License

    https://www.futurebeeai.com/policies/ai-data-license-agreementhttps://www.futurebeeai.com/policies/ai-data-license-agreement

    Dataset funded by
    FutureBeeAI
    Description

    Introduction

    Welcome to the Japanese Language Visual Speech Dataset! This dataset is a collection of diverse, single-person unscripted spoken videos supporting research in visual speech recognition, emotion detection, and multimodal communication.

    Dataset Content

    This visual speech dataset contains 1000 videos in Japanese language each paired with a corresponding high-fidelity audio track. Each participant is answering a specific question in a video in an unscripted and spontaneous nature.

    Participant Diversity:
    Speakers: The dataset includes visual speech data from more than 200 participants from different states/provinces of Japan.
    Regions: Ensures a balanced representation of Skip 3 accents, dialects, and demographics.
    Participant Profile: Participants range from 18 to 70 years old, representing both males and females in a 60:40 ratio, respectively.

    Video Data

    While recording each video extensive guidelines are kept in mind to maintain the quality and diversity.

    Recording Details:
    File Duration: Average duration of 30 seconds to 3 minutes per video.
    Formats: Videos are available in MP4 or MOV format.
    Resolution: Videos are recorded in ultra-high-definition resolution with 30 fps or above.
    Device: Both the latest Android and iOS devices are used in this collection.
    Recording Conditions: Videos were recorded under various conditions to ensure diversity and reduce bias:
    Indoor and Outdoor Settings: Includes both indoor and outdoor recordings.
    Lighting Variations: Captures videos in daytime, nighttime, and varying lighting conditions.
    Camera Positions: Includes handheld and fixed camera positions, as well as portrait and landscape orientations.
    Face Orientation: Contains straight face and tilted face angles.
    Participant Positions: Records participants in both standing and seated positions.
    Motion Variations: Features both stationary and moving videos, where participants pass through different lighting conditions.
    Occlusions: Includes videos where the participant's face is partially occluded by hand movements, microphones, hair, glasses, and facial hair.
    Focus: In each video, the participant's face remains in focus throughout the video duration, ensuring the face stays within the video frame.
    Video Content: In each video, the participant answers a specific question in an unscripted manner. These questions are designed to capture various emotions of participants. The dataset contain videos expressing following human emotions:
    Happy
    Sad
    Excited
    Angry
    Annoyed
    Normal
    Question Diversity: For each human emotion participant answered a specific question expressing that particular emotion.

    Metadata

    The dataset provides comprehensive metadata for each video recording and participant:

  9. w

    Global Financial Inclusion (Global Findex) Database 2017 - Libya

    • microdata.worldbank.org
    • catalog.ihsn.org
    Updated Oct 31, 2018
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Development Research Group, Finance and Private Sector Development Unit (2018). Global Financial Inclusion (Global Findex) Database 2017 - Libya [Dataset]. https://microdata.worldbank.org/index.php/catalog/3279
    Explore at:
    Dataset updated
    Oct 31, 2018
    Dataset authored and provided by
    Development Research Group, Finance and Private Sector Development Unit
    Time period covered
    2017
    Area covered
    Libya
    Description

    Abstract

    Financial inclusion is critical in reducing poverty and achieving inclusive economic growth. When people can participate in the financial system, they are better able to start and expand businesses, invest in their children’s education, and absorb financial shocks. Yet prior to 2011, little was known about the extent of financial inclusion and the degree to which such groups as the poor, women, and rural residents were excluded from formal financial systems.

    By collecting detailed indicators about how adults around the world manage their day-to-day finances, the Global Findex allows policy makers, researchers, businesses, and development practitioners to track how the use of financial services has changed over time. The database can also be used to identify gaps in access to the formal financial system and design policies to expand financial inclusion.

    Geographic coverage

    National coverage

    Analysis unit

    Individuals

    Universe

    The target population is the civilian, non-institutionalized population 15 years and above.

    Kind of data

    Observation data/ratings [obs]

    Sampling procedure

    The indicators in the 2017 Global Findex database are drawn from survey data covering almost 150,000 people in 144 economies-representing more than 97 percent of the world's population (see Table A.1 of the Global Findex Database 2017 Report for a list of the economies included). The survey was carried out over the 2017 calendar year by Gallup, Inc., as part of its Gallup World Poll, which since 2005 has annually conducted surveys of approximately 1,000 people in each of more than 160 economies and in over 150 languages, using randomly selected, nationally representative samples. The target population is the entire civilian, noninstitutionalized population age 15 and above. Interview procedure Surveys are conducted face to face in economies where telephone coverage represents less than 80 percent of the population or where this is the customary methodology. In most economies the fieldwork is completed in two to four weeks.

    In economies where face-to-face surveys are conducted, the first stage of sampling is the identification of primary sampling units. These units are stratified by population size, geography, or both, and clustering is achieved through one or more stages of sampling. Where population information is available, sample selection is based on probabilities proportional to population size; otherwise, simple random sampling is used. Random route procedures are used to select sampled households. Unless an outright refusal occurs, interviewers make up to three attempts to survey the sampled household. To increase the probability of contact and completion, attempts are made at different times of the day and, where possible, on different days. If an interview cannot be obtained at the initial sampled household, a simple substitution method is used.

    Respondents are randomly selected within the selected households. Each eligible household member is listed and the handheld survey device randomly selects the household member to be interviewed. For paper surveys, the Kish grid method is used to select the respondent. In economies where cultural restrictions dictate gender matching, respondents are randomly selected from among all eligible adults of the interviewer's gender.

    In economies where telephone interviewing is employed, random digit dialing or a nationally representative list of phone numbers is used. In most economies where cell phone penetration is high, a dual sampling frame is used. Random selection of respondents is achieved by using either the latest birthday or household enumeration method. At least three attempts are made to reach a person in each household, spread over different days and times of day.

    The sample size was 1002.

    Mode of data collection

    Cellular telephone

    Research instrument

    The questionnaire was designed by the World Bank, in conjunction with a Technical Advisory Board composed of leading academics, practitioners, and policy makers in the field of financial inclusion. The Bill and Melinda Gates Foundation and Gallup Inc. also provided valuable input. The questionnaire was piloted in multiple countries, using focus groups, cognitive interviews, and field testing. The questionnaire is available in more than 140 languages upon request.

    Questions on cash on delivery, saving using an informal savings club or person outside the family, domestic remittances, and agricultural payments are only asked in developing economies and few other selected countries. The question on mobile money accounts was only asked in economies that were part of the Mobile Money for the Unbanked (MMU) database of the GSMA at the time the interviews were being held.

    Sampling error estimates

    Estimates of standard errors (which account for sampling error) vary by country and indicator. For country-specific margins of error, please refer to the Methodology section and corresponding table in Demirgüç-Kunt, Asli, Leora Klapper, Dorothe Singer, Saniya Ansar, and Jake Hess. 2018. The Global Findex Database 2017: Measuring Financial Inclusion and the Fintech Revolution. Washington, DC: World Bank

  10. w

    Global Financial Inclusion (Global Findex) Database 2017 - Lebanon

    • microdata.worldbank.org
    • catalog.ihsn.org
    Updated Oct 31, 2018
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Development Research Group, Finance and Private Sector Development Unit (2018). Global Financial Inclusion (Global Findex) Database 2017 - Lebanon [Dataset]. https://microdata.worldbank.org/index.php/catalog/3277
    Explore at:
    Dataset updated
    Oct 31, 2018
    Dataset authored and provided by
    Development Research Group, Finance and Private Sector Development Unit
    Time period covered
    2017
    Area covered
    Lebanon
    Description

    Abstract

    Financial inclusion is critical in reducing poverty and achieving inclusive economic growth. When people can participate in the financial system, they are better able to start and expand businesses, invest in their children’s education, and absorb financial shocks. Yet prior to 2011, little was known about the extent of financial inclusion and the degree to which such groups as the poor, women, and rural residents were excluded from formal financial systems.

    By collecting detailed indicators about how adults around the world manage their day-to-day finances, the Global Findex allows policy makers, researchers, businesses, and development practitioners to track how the use of financial services has changed over time. The database can also be used to identify gaps in access to the formal financial system and design policies to expand financial inclusion.

    Geographic coverage

    Sample excludes towns of Baalbek, Bint Jbeil,and Hermel under the control of Hezbollah aswell as the Beirut suburb of ahiyeh. The excluded areas represent about 13% of the population. Excluded zones were replaced by areas within the same governorate.

    Analysis unit

    Individuals

    Universe

    The target population is the civilian, non-institutionalized population 15 years and above.

    Kind of data

    Observation data/ratings [obs]

    Sampling procedure

    The indicators in the 2017 Global Findex database are drawn from survey data covering almost 150,000 people in 144 economies-representing more than 97 percent of the world's population (see Table A.1 of the Global Findex Database 2017 Report for a list of the economies included). The survey was carried out over the 2017 calendar year by Gallup, Inc., as part of its Gallup World Poll, which since 2005 has annually conducted surveys of approximately 1,000 people in each of more than 160 economies and in over 150 languages, using randomly selected, nationally representative samples. The target population is the entire civilian, noninstitutionalized population age 15 and above. Interview procedure Surveys are conducted face to face in economies where telephone coverage represents less than 80 percent of the population or where this is the customary methodology. In most economies the fieldwork is completed in two to four weeks.

    In economies where face-to-face surveys are conducted, the first stage of sampling is the identification of primary sampling units. These units are stratified by population size, geography, or both, and clustering is achieved through one or more stages of sampling. Where population information is available, sample selection is based on probabilities proportional to population size; otherwise, simple random sampling is used. Random route procedures are used to select sampled households. Unless an outright refusal occurs, interviewers make up to three attempts to survey the sampled household. To increase the probability of contact and completion, attempts are made at different times of the day and, where possible, on different days. If an interview cannot be obtained at the initial sampled household, a simple substitution method is used.

    Respondents are randomly selected within the selected households. Each eligible household member is listed and the handheld survey device randomly selects the household member to be interviewed. For paper surveys, the Kish grid method is used to select the respondent. In economies where cultural restrictions dictate gender matching, respondents are randomly selected from among all eligible adults of the interviewer's gender.

    In economies where telephone interviewing is employed, random digit dialing or a nationally representative list of phone numbers is used. In most economies where cell phone penetration is high, a dual sampling frame is used. Random selection of respondents is achieved by using either the latest birthday or household enumeration method. At least three attempts are made to reach a person in each household, spread over different days and times of day.

    The sample size was 1000.

    Mode of data collection

    Computer Assisted Personal Interview [capi]

    Research instrument

    The questionnaire was designed by the World Bank, in conjunction with a Technical Advisory Board composed of leading academics, practitioners, and policy makers in the field of financial inclusion. The Bill and Melinda Gates Foundation and Gallup Inc. also provided valuable input. The questionnaire was piloted in multiple countries, using focus groups, cognitive interviews, and field testing. The questionnaire is available in more than 140 languages upon request.

    Questions on cash on delivery, saving using an informal savings club or person outside the family, domestic remittances, and agricultural payments are only asked in developing economies and few other selected countries. The question on mobile money accounts was only asked in economies that were part of the Mobile Money for the Unbanked (MMU) database of the GSMA at the time the interviews were being held.

    Sampling error estimates

    Estimates of standard errors (which account for sampling error) vary by country and indicator. For country-specific margins of error, please refer to the Methodology section and corresponding table in Demirgüç-Kunt, Asli, Leora Klapper, Dorothe Singer, Saniya Ansar, and Jake Hess. 2018. The Global Findex Database 2017: Measuring Financial Inclusion and the Fintech Revolution. Washington, DC: World Bank

  11. i

    Global Financial Inclusion (Global Findex) Database 2011 - Kazakhstan

    • catalog.ihsn.org
    • dev.ihsn.org
    • +1more
    Updated Mar 29, 2019
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Development Research Group, Finance and Private Sector Development Unit (2019). Global Financial Inclusion (Global Findex) Database 2011 - Kazakhstan [Dataset]. https://catalog.ihsn.org/catalog/2688
    Explore at:
    Dataset updated
    Mar 29, 2019
    Dataset authored and provided by
    Development Research Group, Finance and Private Sector Development Unit
    Time period covered
    2011
    Area covered
    Kazakhstan
    Description

    Abstract

    Well-functioning financial systems serve a vital purpose, offering savings, credit, payment, and risk management products to people with a wide range of needs. Yet until now little had been known about the global reach of the financial sector - the extent of financial inclusion and the degree to which such groups as the poor, women, and youth are excluded from formal financial systems. Systematic indicators of the use of different financial services had been lacking for most economies.

    The Global Financial Inclusion (Global Findex) database provides such indicators. This database contains the first round of Global Findex indicators, measuring how adults in more than 140 economies save, borrow, make payments, and manage risk. The data set can be used to track the effects of financial inclusion policies globally and develop a deeper and more nuanced understanding of how people around the world manage their day-to-day finances. By making it possible to identify segments of the population excluded from the formal financial sector, the data can help policy makers prioritize reforms and design new policies.

    Geographic coverage

    National Coverage.

    Analysis unit

    Individual

    Universe

    The target population is the civilian, non-institutionalized population 15 years and above. The sample is nationally representative.

    Kind of data

    Sample survey data [ssd]

    Sampling procedure

    The Global Findex indicators are drawn from survey data collected by Gallup, Inc. over the 2011 calendar year, covering more than 150,000 adults in 148 economies and representing about 97 percent of the world's population. Since 2005, Gallup has surveyed adults annually around the world, using a uniform methodology and randomly selected, nationally representative samples. The second round of Global Findex indicators was collected in 2014 and is forthcoming in 2015. The set of indicators will be collected again in 2017.

    Surveys were conducted face-to-face in economies where landline telephone penetration is less than 80 percent, or where face-to-face interviewing is customary. The first stage of sampling is the identification of primary sampling units, consisting of clusters of households. The primary sampling units are stratified by population size, geography, or both, and clustering is achieved through one or more stages of sampling. Where population information is available, sample selection is based on probabilities proportional to population size; otherwise, simple random sampling is used. Random route procedures are used to select sampled households. Unless an outright refusal occurs, interviewers make up to three attempts to survey the sampled household. If an interview cannot be obtained at the initial sampled household, a simple substitution method is used. Respondents are randomly selected within the selected households by means of the Kish grid.

    Surveys were conducted by telephone in economies where landline telephone penetration is over 80 percent. The telephone surveys were conducted using random digit dialing or a nationally representative list of phone numbers. In selected countries where cell phone penetration is high, a dual sampling frame is used. Random respondent selection is achieved by using either the latest birthday or Kish grid method. At least three attempts are made to teach a person in each household, spread over different days and times of year.

    The sample size in Kazakhstan was 1,000 individuals.

    Mode of data collection

    Face-to-face [f2f]

    Research instrument

    The questionnaire was designed by the World Bank, in conjunction with a Technical Advisory Board composed of leading academics, practitioners, and policy makers in the field of financial inclusion. The Bill and Melinda Gates Foundation and Gallup, Inc. also provided valuable input. The questionnaire was piloted in over 20 countries using focus groups, cognitive interviews, and field testing. The questionnaire is available in 142 languages upon request.

    Questions on insurance, mobile payments, and loan purposes were asked only in developing economies. The indicators on awareness and use of microfinance insitutions (MFIs) are not included in the public dataset. However, adults who report saving at an MFI are considered to have an account; this is reflected in the composite account indicator.

    Sampling error estimates

    Estimates of standard errors (which account for sampling error) vary by country and indicator. For country- and indicator-specific standard errors, refer to the Annex and Country Table in Demirguc-Kunt, Asli and L. Klapper. 2012. "Measuring Financial Inclusion: The Global Findex." Policy Research Working Paper 6025, World Bank, Washington, D.C.

  12. Data from: Associations between environmental quality and adult asthma...

    • catalog.data.gov
    Updated Nov 12, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. EPA Office of Research and Development (ORD) (2020). Associations between environmental quality and adult asthma prevalence in medical claims data [Dataset]. https://catalog.data.gov/dataset/associations-between-environmental-quality-and-adult-asthma-prevalence-in-medical-claims-d
    Explore at:
    Dataset updated
    Nov 12, 2020
    Dataset provided by
    United States Environmental Protection Agencyhttp://www.epa.gov/
    Description

    The MarketScan health claims database is a compilation of nearly 110 million patient records with information from more than 100 private insurance carriers and large self-insuring companies. Public forms of insurance (i.e., Medicare and Medicaid) are not included, nor are small (< 100 employees) or medium (1000 employees). We excluded the relatively few (n=6735) individuals over 65 years of age because Medicare is the primary insurance of U.S. adults over 65. The EQI was constructed for 2000-2005 for all US counties and is composed of five domains (air, water, built, land, and sociodemographic), each composed of variables to represent the environmental quality of that domain. Domain-specific EQIs were developed using principal components analysis (PCA) to reduce these variables within each domain while the overall EQI was constructed from a second PCA from these individual domains (L. C. Messer et al., 2014). To account for differences in environment across rural and urban counties, the overall and domain-specific EQIs were stratified by rural urban continuum codes (RUCCs) (U.S. Department of Agriculture, 2015). This dataset is not publicly accessible because: EPA cannot release personally identifiable information regarding living individuals, according to the Privacy Act and the Freedom of Information Act (FOIA). This dataset contains information about human research subjects. Because there is potential to identify individual participants and disclose personal information, either alone or in combination with other datasets, individual level data are not appropriate to post for public access. Restricted access may be granted to authorized persons by contacting the party listed. It can be accessed through the following means: Human health data are not available publicly. EQI data are available at: https://edg.epa.gov/data/Public/ORD/NHEERL/EQI. Format: Data are stored as csv files. This dataset is associated with the following publication: Gray, C., D. Lobdell, K. Rappazzo, Y. Jian, J. Jagai, L. Messer, A. Patel, S. Deflorio-Barker, C. Lyttle, J. Solway, and A. Rzhetsky. Associations between environmental quality and adult asthma prevalence in medical claims data. ENVIRONMENTAL RESEARCH. Elsevier B.V., Amsterdam, NETHERLANDS, 166: 529-536, (2018).

  13. ASHRAE - Great Energy Predictor III FeatherDataset

    • kaggle.com
    Updated Nov 8, 2019
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    itsshavar (2019). ASHRAE - Great Energy Predictor III FeatherDataset [Dataset]. https://www.kaggle.com/shishu1421/ashrae-great-energy-predictor-iii-featherdataset/activity
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Nov 8, 2019
    Dataset provided by
    Kaggle
    Authors
    itsshavar
    Description

    Context

    : How much does it cost to cool a skyscraper in the summer? A: A lot! And not just in dollars, but in environmental impact.

    Thankfully, significant investments are being made to improve building efficiencies to reduce costs and emissions. The question is, are the improvements working? That’s where you come in. Under pay-for-performance financing, the building owner makes payments based on the difference between their real energy consumption and what they would have used without any retrofits. The latter values have to come from a model. Current methods of estimation are fragmented and do not scale well. Some assume a specific meter type or don’t work with different building types.

    In this competition, you’ll develop accurate models of metered building energy usage in the following areas: chilled water, electric, hot water, and steam meters. The data comes from over 1,000 buildings over a three-year timeframe. With better estimates of these energy-saving investments, large scale investors and financial institutions will be more inclined to invest in this area to enable progress in building efficiencies.

    Content

    This data set is part of a competition https://www.kaggle.com/c/ashrae-energy-prediction

    Inspiration

    Data was heavy. So i decided to compress the size and decrease the load time of data.

  14. F

    Audio Visual Speech Dataset: Korean

    • futurebeeai.com
    wav
    Updated Aug 1, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    FutureBee AI (2022). Audio Visual Speech Dataset: Korean [Dataset]. https://www.futurebeeai.com/dataset/multi-modal-dataset/korean-visual-speech-dataset
    Explore at:
    wavAvailable download formats
    Dataset updated
    Aug 1, 2022
    Dataset provided by
    FutureBeeAI
    Authors
    FutureBee AI
    License

    https://www.futurebeeai.com/policies/ai-data-license-agreementhttps://www.futurebeeai.com/policies/ai-data-license-agreement

    Dataset funded by
    FutureBeeAI
    Description

    Introduction

    Welcome to the Korean Language Visual Speech Dataset! This dataset is a collection of diverse, single-person unscripted spoken videos supporting research in visual speech recognition, emotion detection, and multimodal communication.

    Dataset Content

    This visual speech dataset contains 1000 videos in Korean language each paired with a corresponding high-fidelity audio track. Each participant is answering a specific question in a video in an unscripted and spontaneous nature.

    Participant Diversity:
    Speakers: The dataset includes visual speech data from more than 200 participants from different states/provinces of South Korea.
    Regions: Ensures a balanced representation of Skip 3 accents, dialects, and demographics.
    Participant Profile: Participants range from 18 to 70 years old, representing both males and females in a 60:40 ratio, respectively.

    Video Data

    While recording each video extensive guidelines are kept in mind to maintain the quality and diversity.

    Recording Details:
    File Duration: Average duration of 30 seconds to 3 minutes per video.
    Formats: Videos are available in MP4 or MOV format.
    Resolution: Videos are recorded in ultra-high-definition resolution with 30 fps or above.
    Device: Both the latest Android and iOS devices are used in this collection.
    Recording Conditions: Videos were recorded under various conditions to ensure diversity and reduce bias:
    Indoor and Outdoor Settings: Includes both indoor and outdoor recordings.
    Lighting Variations: Captures videos in daytime, nighttime, and varying lighting conditions.
    Camera Positions: Includes handheld and fixed camera positions, as well as portrait and landscape orientations.
    Face Orientation: Contains straight face and tilted face angles.
    Participant Positions: Records participants in both standing and seated positions.
    Motion Variations: Features both stationary and moving videos, where participants pass through different lighting conditions.
    Occlusions: Includes videos where the participant's face is partially occluded by hand movements, microphones, hair, glasses, and facial hair.
    Focus: In each video, the participant's face remains in focus throughout the video duration, ensuring the face stays within the video frame.
    Video Content: In each video, the participant answers a specific question in an unscripted manner. These questions are designed to capture various emotions of participants. The dataset contain videos expressing following human emotions:
    Happy
    Sad
    Excited
    Angry
    Annoyed
    Normal
    Question Diversity: For each human emotion participant answered a specific question expressing that particular emotion.

    Metadata

    The dataset provides comprehensive metadata for each video recording and participant:

  15. 3D MNIST

    • kaggle.com
    Updated Oct 18, 2019
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    David de la Iglesia Castro (2019). 3D MNIST [Dataset]. https://www.kaggle.com/datasets/daavoo/3d-mnist/suggestions
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Oct 18, 2019
    Dataset provided by
    Kagglehttp://kaggle.com/
    Authors
    David de la Iglesia Castro
    Description

    Context

    The aim of this dataset is to provide a simple way to get started with 3D computer vision problems such as 3D shape recognition.

    Accurate 3D point clouds can (easily and cheaply) be adquired nowdays from different sources:

    However there is a lack of large 3D datasets (you can find a good one here based on triangular meshes); it's especially hard to find datasets based on point clouds (wich is the raw output from every 3D sensing device).

    This dataset contains 3D point clouds generated from the original images of the MNIST dataset to bring a familiar introduction to 3D to people used to work with 2D datasets (images).

    In the 3D_from_2D notebook you can find the code used to generate the dataset.

    You can use the code in the notebook to generate a bigger 3D dataset from the original.

    Content

    full_dataset_vectors.h5

    The entire dataset stored as 4096-D vectors obtained from the voxelization (x:16, y:16, z:16) of all the 3D point clouds.

    In adition to the original point clouds, it contains randomly rotated copies with noise.

    The full dataset is splitted into arrays:

    • X_train (10000, 4096)
    • y_train (10000)
    • X_test(2000, 4096)
    • y_test (2000)

    Example python code reading the full dataset:

     with h5py.File("../input/train_point_clouds.h5", "r") as hf:  
       X_train = hf["X_train"][:]
       y_train = hf["y_train"][:]  
       X_test = hf["X_test"][:] 
       y_test = hf["y_test"][:] 
    

    train_point_clouds.h5 & test_point_clouds.h5

    5000 (train), and 1000 (test) 3D point clouds stored in HDF5 file format. The point clouds have zero mean and a maximum dimension range of 1.

    Each file is divided into HDF5 groups

    Each group is named as its corresponding array index in the original mnist dataset and it contains:

    • "points" dataset: x, y, z coordinates of each 3D point in the point cloud.
    • "normals" dataset: nx, ny, nz components of the unit normal associate to each point.
    • "img" dataset: the original mnist image.
    • "label" attribute: the original mnist label.

    Example python code reading 2 digits and storing some of the group content in tuples:

    with h5py.File("../input/train_point_clouds.h5", "r") as hf:  
      a = hf["0"]
      b = hf["1"]  
      digit_a = (a["img"][:], a["points"][:], a.attrs["label"]) 
      digit_b = (b["img"][:], b["points"][:], b.attrs["label"]) 
    

    voxelgrid.py

    Simple Python class that generates a grid of voxels from the 3D point cloud. Check kernel for use.

    plot3D.py

    Module with functions to plot point clouds and voxelgrid inside jupyter notebook. You have to run this locally due to Kaggle's notebook lack of support to rendering Iframes. See github issue here

    Functions included:

    • array_to_color Converts 1D array to rgb values use as kwarg color in plot_points()

    • plot_points(xyz, colors=None, size=0.1, axis=False)

    • plot_voxelgrid(v_grid, cmap="Oranges", axis=False)

    Acknowledgements

    Have fun!

  16. F

    Audio Visual Speech Dataset: European Portuguese

    • futurebeeai.com
    wav
    Updated Aug 1, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    FutureBee AI (2022). Audio Visual Speech Dataset: European Portuguese [Dataset]. https://www.futurebeeai.com/dataset/multi-modal-dataset/european-portuguese-visual-speech-dataset
    Explore at:
    wavAvailable download formats
    Dataset updated
    Aug 1, 2022
    Dataset provided by
    FutureBeeAI
    Authors
    FutureBee AI
    License

    https://www.futurebeeai.com/policies/ai-data-license-agreementhttps://www.futurebeeai.com/policies/ai-data-license-agreement

    Dataset funded by
    FutureBeeAI
    Description

    Introduction

    Welcome to the Portuguese Language Visual Speech Dataset! This dataset is a collection of diverse, single-person unscripted spoken videos supporting research in visual speech recognition, emotion detection, and multimodal communication.

    Dataset Content

    This visual speech dataset contains 1000 videos in Portuguese language each paired with a corresponding high-fidelity audio track. Each participant is answering a specific question in a video in an unscripted and spontaneous nature.

    Participant Diversity:
    Speakers: The dataset includes visual speech data from more than 200 participants from different states/provinces of Portugal.
    Regions: Ensures a balanced representation of Skip 3 accents, dialects, and demographics.
    Participant Profile: Participants range from 18 to 70 years old, representing both males and females in a 60:40 ratio, respectively.

    Video Data

    While recording each video extensive guidelines are kept in mind to maintain the quality and diversity.

    Recording Details:
    File Duration: Average duration of 30 seconds to 3 minutes per video.
    Formats: Videos are available in MP4 or MOV format.
    Resolution: Videos are recorded in ultra-high-definition resolution with 30 fps or above.
    Device: Both the latest Android and iOS devices are used in this collection.
    Recording Conditions: Videos were recorded under various conditions to ensure diversity and reduce bias:
    Indoor and Outdoor Settings: Includes both indoor and outdoor recordings.
    Lighting Variations: Captures videos in daytime, nighttime, and varying lighting conditions.
    Camera Positions: Includes handheld and fixed camera positions, as well as portrait and landscape orientations.
    Face Orientation: Contains straight face and tilted face angles.
    Participant Positions: Records participants in both standing and seated positions.
    Motion Variations: Features both stationary and moving videos, where participants pass through different lighting conditions.
    Occlusions: Includes videos where the participant's face is partially occluded by hand movements, microphones, hair, glasses, and facial hair.
    Focus: In each video, the participant's face remains in focus throughout the video duration, ensuring the face stays within the video frame.
    Video Content: In each video, the participant answers a specific question in an unscripted manner. These questions are designed to capture various emotions of participants. The dataset contain videos expressing following human emotions:
    Happy
    Sad
    Excited
    Angry
    Annoyed
    Normal
    Question Diversity: For each human emotion participant answered a specific question expressing that particular emotion.

    Metadata

    The dataset provides comprehensive metadata for each video recording and participant:

  17. w

    Global Financial Inclusion (Global Findex) Database 2017 - Viet Nam

    • microdata.worldbank.org
    • catalog.ihsn.org
    • +1more
    Updated Oct 26, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Development Research Group, Finance and Private Sector Development Unit (2023). Global Financial Inclusion (Global Findex) Database 2017 - Viet Nam [Dataset]. https://microdata.worldbank.org/index.php/catalog/3241
    Explore at:
    Dataset updated
    Oct 26, 2023
    Dataset authored and provided by
    Development Research Group, Finance and Private Sector Development Unit
    Time period covered
    2017
    Area covered
    Vietnam
    Description

    Abstract

    Financial inclusion is critical in reducing poverty and achieving inclusive economic growth. When people can participate in the financial system, they are better able to start and expand businesses, invest in their children’s education, and absorb financial shocks. Yet prior to 2011, little was known about the extent of financial inclusion and the degree to which such groups as the poor, women, and rural residents were excluded from formal financial systems.

    By collecting detailed indicators about how adults around the world manage their day-to-day finances, the Global Findex allows policy makers, researchers, businesses, and development practitioners to track how the use of financial services has changed over time. The database can also be used to identify gaps in access to the formal financial system and design policies to expand financial inclusion.

    Geographic coverage

    Sample excludes 11 provinces: An Giang,Dac Lak,ien Bien, GiaLai, Ha Giang, Ha Tinh,Kien Giang, Kon Tum,Nghe An, Quang Binh,and Thanh Hoa. The excluded areas represent about 19% of the population.

    Analysis unit

    Individual

    Universe

    The target population is the civilian, non-institutionalized population 15 years and above.

    Kind of data

    Observation data/ratings [obs]

    Sampling procedure

    The indicators in the 2017 Global Findex database are drawn from survey data covering almost 150,000 people in 144 economies-representing more than 97 percent of the world's population (see Table A.1 of the Global Findex Database 2017 Report). The survey was carried out over the 2017 calendar year by Gallup, Inc., as part of its Gallup World Poll, which since 2005 has annually conducted surveys of approximately 1,000 people in each of more than 160 economies and in over 150 languages, using randomly selected, nationally representative samples. The target population is the entire civilian, noninstitutionalized population age 15 and above. Interview procedure Surveys are conducted face to face in economies where telephone coverage represents less than 80 percent of the population or where this is the customary methodology. In most economies the fieldwork is completed in two to four weeks.

    In economies where face-to-face surveys are conducted, the first stage of sampling is the identification of primary sampling units. These units are stratified by population size, geography, or both, and clustering is achieved through one or more stages of sampling. Where population information is available, sample selection is based on probabilities proportional to population size; otherwise, simple random sampling is used. Random route procedures are used to select sampled households. Unless an outright refusal occurs, interviewers make up to three attempts to survey the sampled household. To increase the probability of contact and completion, attempts are made at different times of the day and, where possible, on different days. If an interview cannot be obtained at the initial sampled household, a simple substitution method is used.

    Respondents are randomly selected within the selected households. Each eligible household member is listed and the handheld survey device randomly selects the household member to be interviewed. For paper surveys, the Kish grid method is used to select the respondent. In economies where cultural restrictions dictate gender matching, respondents are randomly selected from among all eligible adults of the interviewer's gender.

    In economies where telephone interviewing is employed, random digit dialing or a nationally representative list of phone numbers is used. In most economies where cell phone penetration is high, a dual sampling frame is used. Random selection of respondents is achieved by using either the latest birthday or household enumeration method. At least three attempts are made to reach a person in each household, spread over different days and times of day.

    The sample size was 1002.

    Mode of data collection

    Computer Assisted Personal Interview [capi]

    Research instrument

    The questionnaire was designed by the World Bank, in conjunction with a Technical Advisory Board composed of leading academics, practitioners, and policy makers in the field of financial inclusion. The Bill and Melinda Gates Foundation and Gallup Inc. also provided valuable input. The questionnaire was piloted in multiple countries, using focus groups, cognitive interviews, and field testing. The questionnaire is available in more than 140 languages upon request.

    Questions on cash on delivery, saving using an informal savings club or person outside the family, domestic remittances, and agricultural payments are only asked in developing economies and few other selected countries. The question on mobile money accounts was only asked in economies that were part of the Mobile Money for the Unbanked (MMU) database of the GSMA at the time the interviews were being held.

    Sampling error estimates

    Estimates of standard errors (which account for sampling error) vary by country and indicator. For country-specific margins of error, please refer to the Methodology section and corresponding table in Demirgüç-Kunt, Asli, Leora Klapper, Dorothe Singer, Saniya Ansar, and Jake Hess. 2018. The Global Findex Database 2017: Measuring Financial Inclusion and the Fintech Revolution. Washington, DC: World Bank

  18. w

    Global Financial Inclusion (Global Findex) Database 2011 - Afghanistan

    • microdata.worldbank.org
    • catalog.ihsn.org
    • +1more
    Updated Apr 15, 2015
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Development Research Group, Finance and Private Sector Development Unit (2015). Global Financial Inclusion (Global Findex) Database 2011 - Afghanistan [Dataset]. https://microdata.worldbank.org/index.php/catalog/1117
    Explore at:
    Dataset updated
    Apr 15, 2015
    Dataset authored and provided by
    Development Research Group, Finance and Private Sector Development Unit
    Time period covered
    2011
    Area covered
    Afghanistan
    Description

    Abstract

    Well-functioning financial systems serve a vital purpose, offering savings, credit, payment, and risk management products to people with a wide range of needs. Yet until now little had been known about the global reach of the financial sector - the extent of financial inclusion and the degree to which such groups as the poor, women, and youth are excluded from formal financial systems. Systematic indicators of the use of different financial services had been lacking for most economies.

    The Global Financial Inclusion (Global Findex) database provides such indicators. This database contains the first round of Global Findex indicators, measuring how adults in more than 140 economies save, borrow, make payments, and manage risk. The data set can be used to track the effects of financial inclusion policies globally and develop a deeper and more nuanced understanding of how people around the world manage their day-to-day finances. By making it possible to identify segments of the population excluded from the formal financial sector, the data can help policy makers prioritize reforms and design new policies.

    Geographic coverage

    National Coverage.

    Analysis unit

    Individual

    Universe

    The target population is the civilian, non-institutionalized population 15 years and above.

    Kind of data

    Sample survey data [ssd]

    Sampling procedure

    The Global Findex indicators are drawn from survey data collected by Gallup, Inc. over the 2011 calendar year, covering more than 150,000 adults in 148 economies and representing about 97 percent of the world's population. Since 2005, Gallup has surveyed adults annually around the world, using a uniform methodology and randomly selected, nationally representative samples. The second round of Global Findex indicators was collected in 2014 and is forthcoming in 2015. The set of indicators will be collected again in 2017.

    Surveys were conducted face-to-face in economies where landline telephone penetration is less than 80 percent, or where face-to-face interviewing is customary. The first stage of sampling is the identification of primary sampling units, consisting of clusters of households. The primary sampling units are stratified by population size, geography, or both, and clustering is achieved through one or more stages of sampling. Where population information is available, sample selection is based on probabilities proportional to population size; otherwise, simple random sampling is used. Random route procedures are used to select sampled households. Unless an outright refusal occurs, interviewers make up to three attempts to survey the sampled household. If an interview cannot be obtained at the initial sampled household, a simple substitution method is used. Respondents are randomly selected within the selected households by means of the Kish grid.

    Surveys were conducted by telephone in economies where landline telephone penetration is over 80 percent. The telephone surveys were conducted using random digit dialing or a nationally representative list of phone numbers. In selected countries where cell phone penetration is high, a dual sampling frame is used. Random respondent selection is achieved by using either the latest birthday or Kish grid method. At least three attempts are made to teach a person in each household, spread over different days and times of year.

    The sample size in Afghanistan was 1,000 individuals. Gender-matched sampling was used during the final stage of selection.

    Mode of data collection

    Face-to-face [f2f]

    Research instrument

    The questionnaire was designed by the World Bank, in conjunction with a Technical Advisory Board composed of leading academics, practitioners, and policy makers in the field of financial inclusion. The Bill and Melinda Gates Foundation and Gallup, Inc. also provided valuable input. The questionnaire was piloted in over 20 countries using focus groups, cognitive interviews, and field testing. The questionnaire is available in 142 languages upon request.

    Questions on insurance, mobile payments, and loan purposes were asked only in developing economies. The indicators on awareness and use of microfinance insitutions (MFIs) are not included in the public dataset. However, adults who report saving at an MFI are considered to have an account; this is reflected in the composite account indicator.

    Sampling error estimates

    Estimates of standard errors (which account for sampling error) vary by country and indicator. For country- and indicator-specific standard errors, refer to the Annex and Country Table in Demirguc-Kunt, Asli and L. Klapper. 2012. "Measuring Financial Inclusion: The Global Findex." Policy Research Working Paper 6025, World Bank, Washington, D.C.

  19. F

    Audio Visual Speech Dataset: British English

    • futurebeeai.com
    wav
    Updated Aug 1, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    FutureBee AI (2022). Audio Visual Speech Dataset: British English [Dataset]. https://www.futurebeeai.com/dataset/multi-modal-dataset/british-english-visual-speech-dataset
    Explore at:
    wavAvailable download formats
    Dataset updated
    Aug 1, 2022
    Dataset provided by
    FutureBeeAI
    Authors
    FutureBee AI
    License

    https://www.futurebeeai.com/policies/ai-data-license-agreementhttps://www.futurebeeai.com/policies/ai-data-license-agreement

    Dataset funded by
    FutureBeeAI
    Description

    Introduction

    Welcome to the UK English Language Visual Speech Dataset! This dataset is a collection of diverse, single-person unscripted spoken videos supporting research in visual speech recognition, emotion detection, and multimodal communication.

    Dataset Content

    This visual speech dataset contains 1000 videos in UK English language each paired with a corresponding high-fidelity audio track. Each participant is answering a specific question in a video in an unscripted and spontaneous nature.

    Participant Diversity:
    Speakers: The dataset includes visual speech data from more than 200 participants from different regions of United Kingdom.
    Regions: Ensures a balanced representation of Skip 3 accents, dialects, and demographics.
    Participant Profile: Participants range from 18 to 70 years old, representing both males and females in a 60:40 ratio, respectively.

    Video Data

    While recording each video extensive guidelines are kept in mind to maintain the quality and diversity.

    Recording Details:
    File Duration: Average duration of 30 seconds to 3 minutes per video.
    Formats: Videos are available in MP4 or MOV format.
    Resolution: Videos are recorded in ultra-high-definition resolution with 30 fps or above.
    Device: Both the latest Android and iOS devices are used in this collection.
    Recording Conditions: Videos were recorded under various conditions to ensure diversity and reduce bias:
    Indoor and Outdoor Settings: Includes both indoor and outdoor recordings.
    Lighting Variations: Captures videos in daytime, nighttime, and varying lighting conditions.
    Camera Positions: Includes handheld and fixed camera positions, as well as portrait and landscape orientations.
    Face Orientation: Contains straight face and tilted face angles.
    Participant Positions: Records participants in both standing and seated positions.
    Motion Variations: Features both stationary and moving videos, where participants pass through different lighting conditions.
    Occlusions: Includes videos where the participant's face is partially occluded by hand movements, microphones, hair, glasses, and facial hair.
    Focus: In each video, the participant's face remains in focus throughout the video duration, ensuring the face stays within the video frame.
    Video Content: In each video, the participant answers a specific question in an unscripted manner. These questions are designed to capture various emotions of participants. The dataset contain videos expressing following human emotions:
    Happy
    Sad
    Excited
    Angry
    Annoyed
    Normal
    Question Diversity: For each human emotion participant answered a specific question expressing that particular emotion.

    Metadata

    The dataset provides comprehensive metadata for each video recording and participant:

  20. i

    Global Financial Inclusion (Global Findex) Database 2017 - Montenegro

    • catalog.ihsn.org
    • microdata.worldbank.org
    Updated Mar 29, 2019
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Development Research Group, Finance and Private Sector Development Unit (2019). Global Financial Inclusion (Global Findex) Database 2017 - Montenegro [Dataset]. https://catalog.ihsn.org/index.php/catalog/7865
    Explore at:
    Dataset updated
    Mar 29, 2019
    Dataset authored and provided by
    Development Research Group, Finance and Private Sector Development Unit
    Time period covered
    2017
    Area covered
    Montenegro
    Description

    Abstract

    Financial inclusion is critical in reducing poverty and achieving inclusive economic growth. When people can participate in the financial system, they are better able to start and expand businesses, invest in their children’s education, and absorb financial shocks. Yet prior to 2011, little was known about the extent of financial inclusion and the degree to which such groups as the poor, women, and rural residents were excluded from formal financial systems.

    By collecting detailed indicators about how adults around the world manage their day-to-day finances, the Global Findex allows policy makers, researchers, businesses, and development practitioners to track how the use of financial services has changed over time. The database can also be used to identify gaps in access to the formal financial system and design policies to expand financial inclusion.

    Geographic coverage

    Sampling frame excluded some very small and remote villages(with less than 150 people), representing about 0.5 – 1.5% of the population.

    Analysis unit

    Individuals

    Universe

    The target population is the civilian, non-institutionalized population 15 years and above.

    Kind of data

    Observation data/ratings [obs]

    Sampling procedure

    The indicators in the 2017 Global Findex database are drawn from survey data covering almost 150,000 people in 144 economies-representing more than 97 percent of the world's population (see Table A.1 of the Global Findex Database 2017 Report for a list of the economies included). The survey was carried out over the 2017 calendar year by Gallup, Inc., as part of its Gallup World Poll, which since 2005 has annually conducted surveys of approximately 1,000 people in each of more than 160 economies and in over 150 languages, using randomly selected, nationally representative samples. The target population is the entire civilian, noninstitutionalized population age 15 and above. Interview procedure Surveys are conducted face to face in economies where telephone coverage represents less than 80 percent of the population or where this is the customary methodology. In most economies the fieldwork is completed in two to four weeks.

    In economies where face-to-face surveys are conducted, the first stage of sampling is the identification of primary sampling units. These units are stratified by population size, geography, or both, and clustering is achieved through one or more stages of sampling. Where population information is available, sample selection is based on probabilities proportional to population size; otherwise, simple random sampling is used. Random route procedures are used to select sampled households. Unless an outright refusal occurs, interviewers make up to three attempts to survey the sampled household. To increase the probability of contact and completion, attempts are made at different times of the day and, where possible, on different days. If an interview cannot be obtained at the initial sampled household, a simple substitution method is used.

    Respondents are randomly selected within the selected households. Each eligible household member is listed and the handheld survey device randomly selects the household member to be interviewed. For paper surveys, the Kish grid method is used to select the respondent. In economies where cultural restrictions dictate gender matching, respondents are randomly selected from among all eligible adults of the interviewer's gender.

    In economies where telephone interviewing is employed, random digit dialing or a nationally representative list of phone numbers is used. In most economies where cell phone penetration is high, a dual sampling frame is used. Random selection of respondents is achieved by using either the latest birthday or household enumeration method. At least three attempts are made to reach a person in each household, spread over different days and times of day.

    The sample size was 1000.

    Mode of data collection

    Computer Assisted Personal Interview [capi]

    Research instrument

    The questionnaire was designed by the World Bank, in conjunction with a Technical Advisory Board composed of leading academics, practitioners, and policy makers in the field of financial inclusion. The Bill and Melinda Gates Foundation and Gallup Inc. also provided valuable input. The questionnaire was piloted in multiple countries, using focus groups, cognitive interviews, and field testing. The questionnaire is available in more than 140 languages upon request.

    Questions on cash on delivery, saving using an informal savings club or person outside the family, domestic remittances, and agricultural payments are only asked in developing economies and few other selected countries. The question on mobile money accounts was only asked in economies that were part of the Mobile Money for the Unbanked (MMU) database of the GSMA at the time the interviews were being held.

    Sampling error estimates

    Estimates of standard errors (which account for sampling error) vary by country and indicator. For country-specific margins of error, please refer to the Methodology section and corresponding table in Demirgüç-Kunt, Asli, Leora Klapper, Dorothe Singer, Saniya Ansar, and Jake Hess. 2018. The Global Findex Database 2017: Measuring Financial Inclusion and the Fintech Revolution. Washington, DC: World Bank

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
TRADING ECONOMICS, Canada Household Saving Rate [Dataset]. https://tradingeconomics.com/canada/personal-savings

Canada Household Saving Rate

Canada Household Saving Rate - Historical Dataset (1961-03-31/2025-06-30)

Explore at:
3 scholarly articles cite this dataset (View in Google Scholar)
json, excel, csv, xmlAvailable download formats
Dataset authored and provided by
TRADING ECONOMICS
License

Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically

Time period covered
Mar 31, 1961 - Jun 30, 2025
Area covered
Canada
Description

Household Saving Rate in Canada decreased to 5 percent in the second quarter of 2025 from 6 percent in the first quarter of 2025. This dataset provides - Canada Personal Savings - actual values, historical data, forecast, chart, statistics, economic calendar and news.

Search
Clear search
Close search
Google apps
Main menu