100+ datasets found
  1. Post-COVID Conditions

    • catalog.data.gov
    • data.virginia.gov
    • +2more
    Updated Feb 3, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Centers for Disease Control and Prevention (2025). Post-COVID Conditions [Dataset]. https://catalog.data.gov/dataset/post-covid-conditions-89bb3
    Explore at:
    Dataset updated
    Feb 3, 2025
    Dataset provided by
    Centers for Disease Control and Preventionhttp://www.cdc.gov/
    Description

    As part of an ongoing partnership with the Census Bureau, the National Center for Health Statistics (NCHS) recently added questions to assess the prevalence of post-COVID-19 conditions (long COVID), on the experimental Household Pulse Survey. This 20-minute online survey was designed to complement the ability of the federal statistical system to rapidly respond and provide relevant information about the impact of the coronavirus pandemic in the U.S. Data collection began on April 23, 2020. Beginning in Phase 3.5 (on June 1, 2022), NCHS included questions about the presence of symptoms of COVID that lasted three months or longer. Phase 3.5 will continue with a two-weeks on, two-weeks off collection and dissemination approach. Estimates on this page are derived from the Household Pulse Survey and show the percentage of adults aged 18 and over who a) as a proportion of the U.S. population, the percentage of adults who EVER experienced post-COVID conditions (long COVID). These adults had COVID and had some symptoms that lasted three months or longer; b) as a proportion of adults who said they ever had COVID, the percentage who EVER experienced post-COVID conditions; c) as a proportion of the U.S. population, the percentage of adults who are CURRENTLY experiencing post-COVID conditions. These adults had COVID, had long-term symptoms, and are still experiencing symptoms; d) as a proportion of adults who said they ever had COVID, the percentage who are CURRENTLY experiencing post-COVID conditions; and e) as a proportion of the U.S. population, the percentage of adults who said they ever had COVID.

  2. g

    Coronavirus (Covid-19) Data in the United States

    • github.com
    • openicpsr.org
    • +3more
    csv
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    New York Times, Coronavirus (Covid-19) Data in the United States [Dataset]. https://github.com/nytimes/covid-19-data
    Explore at:
    csvAvailable download formats
    Dataset provided by
    New York Times
    License

    https://github.com/nytimes/covid-19-data/blob/master/LICENSEhttps://github.com/nytimes/covid-19-data/blob/master/LICENSE

    Description

    The New York Times is releasing a series of data files with cumulative counts of coronavirus cases in the United States, at the state and county level, over time. We are compiling this time series data from state and local governments and health departments in an attempt to provide a complete record of the ongoing outbreak.

    Since the first reported coronavirus case in Washington State on Jan. 21, 2020, The Times has tracked cases of coronavirus in real time as they were identified after testing. Because of the widespread shortage of testing, however, the data is necessarily limited in the picture it presents of the outbreak.

    We have used this data to power our maps and reporting tracking the outbreak, and it is now being made available to the public in response to requests from researchers, scientists and government officials who would like access to the data to better understand the outbreak.

    The data begins with the first reported coronavirus case in Washington State on Jan. 21, 2020. We will publish regular updates to the data in this repository.

  3. o

    Geonames - All Cities with a population > 1000

    • public.opendatasoft.com
    • data.smartidf.services
    • +3more
    csv, excel, geojson +1
    Updated Mar 10, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2024). Geonames - All Cities with a population > 1000 [Dataset]. https://public.opendatasoft.com/explore/dataset/geonames-all-cities-with-a-population-1000/
    Explore at:
    csv, json, geojson, excelAvailable download formats
    Dataset updated
    Mar 10, 2024
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    All cities with a population > 1000 or seats of adm div (ca 80.000)Sources and ContributionsSources : GeoNames is aggregating over hundred different data sources. Ambassadors : GeoNames Ambassadors help in many countries. Wiki : A wiki allows to view the data and quickly fix error and add missing places. Donations and Sponsoring : Costs for running GeoNames are covered by donations and sponsoring.Enrichment:add country name

  4. N

    Globe, AZ Population Breakdown by Gender and Age

    • neilsberg.com
    csv, json
    Updated Sep 14, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Neilsberg Research (2023). Globe, AZ Population Breakdown by Gender and Age [Dataset]. https://www.neilsberg.com/research/datasets/66a9e537-3d85-11ee-9abe-0aa64bf2eeb2/
    Explore at:
    json, csvAvailable download formats
    Dataset updated
    Sep 14, 2023
    Dataset authored and provided by
    Neilsberg Research
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Globe, Arizona
    Variables measured
    Male and Female Population Under 5 Years, Male and Female Population over 85 years, Male and Female Population Between 5 and 9 years, Male and Female Population Between 10 and 14 years, Male and Female Population Between 15 and 19 years, Male and Female Population Between 20 and 24 years, Male and Female Population Between 25 and 29 years, Male and Female Population Between 30 and 34 years, Male and Female Population Between 35 and 39 years, Male and Female Population Between 40 and 44 years, and 8 more
    Measurement technique
    The data presented in this dataset is derived from the latest U.S. Census Bureau American Community Survey (ACS) 2017-2021 5-Year Estimates. To measure the three variables, namely (a) Population (Male), (b) Population (Female), and (c) Gender Ratio (Males per 100 Females), we initially analyzed and categorized the data for each of the gender classifications (biological sex) reported by the US Census Bureau across 18 age groups, ranging from under 5 years to 85 years and above. These age groups are described above in the variables section. For further information regarding these estimates, please feel free to reach out to us via email at research@neilsberg.com.
    Dataset funded by
    Neilsberg Research
    Description
    About this dataset

    Context

    The dataset tabulates the population of Globe by gender across 18 age groups. It lists the male and female population in each age group along with the gender ratio for Globe. The dataset can be utilized to understand the population distribution of Globe by gender and age. For example, using this dataset, we can identify the largest age group for both Men and Women in Globe. Additionally, it can be used to see how the gender ratio changes from birth to senior most age group and male to female ratio across each age group for Globe.

    Key observations

    Largest age group (population): Male # 20-24 years (347) | Female # 50-54 years (433). Source: U.S. Census Bureau American Community Survey (ACS) 2017-2021 5-Year Estimates.

    Content

    When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2017-2021 5-Year Estimates.

    Age groups:

    • Under 5 years
    • 5 to 9 years
    • 10 to 14 years
    • 15 to 19 years
    • 20 to 24 years
    • 25 to 29 years
    • 30 to 34 years
    • 35 to 39 years
    • 40 to 44 years
    • 45 to 49 years
    • 50 to 54 years
    • 55 to 59 years
    • 60 to 64 years
    • 65 to 69 years
    • 70 to 74 years
    • 75 to 79 years
    • 80 to 84 years
    • 85 years and over

    Scope of gender :

    Please note that American Community Survey asks a question about the respondents current sex, but not about gender, sexual orientation, or sex at birth. The question is intended to capture data for biological sex, not gender. Respondents are supposed to respond with the answer as either of Male or Female. Our research and this dataset mirrors the data reported as Male and Female for gender distribution analysis.

    Variables / Data Columns

    • Age Group: This column displays the age group for the Globe population analysis. Total expected values are 18 and are define above in the age groups section.
    • Population (Male): The male population in the Globe is shown in the following column.
    • Population (Female): The female population in the Globe is shown in the following column.
    • Gender Ratio: Also known as the sex ratio, this column displays the number of males per 100 females in Globe for each age group.

    Good to know

    Margin of Error

    Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.

    Custom data

    If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.

    Inspiration

    Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.

    Recommended for further research

    This dataset is a part of the main dataset for Globe Population by Gender. You can refer the same here

  5. COVID-19 Time-Series Metrics by County and State (ARCHIVED)

    • data.chhs.ca.gov
    • data.ca.gov
    • +1more
    csv, xlsx, zip
    Updated Aug 28, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    California Department of Public Health (2024). COVID-19 Time-Series Metrics by County and State (ARCHIVED) [Dataset]. https://data.chhs.ca.gov/dataset/covid-19-time-series-metrics-by-county-and-state
    Explore at:
    csv(7729431), csv(6223281), xlsx(6471), xlsx(11305), csv(3313), xlsx(7811), csv(4836928), zipAvailable download formats
    Dataset updated
    Aug 28, 2024
    Dataset authored and provided by
    California Department of Public Healthhttps://www.cdph.ca.gov/
    Description

    Note: This COVID-19 data set is no longer being updated as of December 1, 2023. Access current COVID-19 data on the CDPH respiratory virus dashboard (https://www.cdph.ca.gov/Programs/CID/DCDC/Pages/Respiratory-Viruses/RespiratoryDashboard.aspx) or in open data format (https://data.chhs.ca.gov/dataset/respiratory-virus-dashboard-metrics).

    As of August 17, 2023, data is being updated each Friday.

    For death data after December 31, 2022, California uses Provisional Deaths from the Center for Disease Control and Prevention’s National Center for Health Statistics (NCHS) National Vital Statistics System (NVSS). Prior to January 1, 2023, death data was sourced from the COVID-19 registry. The change in data source occurred in July 2023 and was applied retroactively to all 2023 data to provide a consistent source of death data for the year of 2023.

    As of May 11, 2023, data on cases, deaths, and testing is being updated each Thursday. Metrics by report date have been removed, but previous versions of files with report date metrics are archived below.

    All metrics include people in state and federal prisons, US Immigration and Customs Enforcement facilities, US Marshal detention facilities, and Department of State Hospitals facilities. Members of California's tribal communities are also included.

    The "Total Tests" and "Positive Tests" columns show totals based on the collection date. There is a lag between when a specimen is collected and when it is reported in this dataset. As a result, the most recent dates on the table will temporarily show NONE in the "Total Tests" and "Positive Tests" columns. This should not be interpreted as no tests being conducted on these dates. Instead, these values will be updated with the number of tests conducted as data is received.

  6. d

    Johns Hopkins COVID-19 Case Tracker

    • data.world
    csv, zip
    Updated Mar 25, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    The Associated Press (2025). Johns Hopkins COVID-19 Case Tracker [Dataset]. https://data.world/associatedpress/johns-hopkins-coronavirus-case-tracker
    Explore at:
    zip, csvAvailable download formats
    Dataset updated
    Mar 25, 2025
    Authors
    The Associated Press
    Time period covered
    Jan 22, 2020 - Mar 9, 2023
    Area covered
    Description

    Updates

    • Notice of data discontinuation: Since the start of the pandemic, AP has reported case and death counts from data provided by Johns Hopkins University. Johns Hopkins University has announced that they will stop their daily data collection efforts after March 10. As Johns Hopkins stops providing data, the AP will also stop collecting daily numbers for COVID cases and deaths. The HHS and CDC now collect and visualize key metrics for the pandemic. AP advises using those resources when reporting on the pandemic going forward.

    • April 9, 2020

      • The population estimate data for New York County, NY has been updated to include all five New York City counties (Kings County, Queens County, Bronx County, Richmond County and New York County). This has been done to match the Johns Hopkins COVID-19 data, which aggregates counts for the five New York City counties to New York County.
    • April 20, 2020

      • Johns Hopkins death totals in the US now include confirmed and probable deaths in accordance with CDC guidelines as of April 14. One significant result of this change was an increase of more than 3,700 deaths in the New York City count. This change will likely result in increases for death counts elsewhere as well. The AP does not alter the Johns Hopkins source data, so probable deaths are included in this dataset as well.
    • April 29, 2020

      • The AP is now providing timeseries data for counts of COVID-19 cases and deaths. The raw counts are provided here unaltered, along with a population column with Census ACS-5 estimates and calculated daily case and death rates per 100,000 people. Please read the updated caveats section for more information.
    • September 1st, 2020

      • Johns Hopkins is now providing counts for the five New York City counties individually.
    • February 12, 2021

      • The Ohio Department of Health recently announced that as many as 4,000 COVID-19 deaths may have been underreported through the state’s reporting system, and that the "daily reported death counts will be high for a two to three-day period."
      • Because deaths data will be anomalous for consecutive days, we have chosen to freeze Ohio's rolling average for daily deaths at the last valid measure until Johns Hopkins is able to back-distribute the data. The raw daily death counts, as reported by Johns Hopkins and including the backlogged death data, will still be present in the new_deaths column.
    • February 16, 2021

      - Johns Hopkins has reconciled Ohio's historical deaths data with the state.

      Overview

    The AP is using data collected by the Johns Hopkins University Center for Systems Science and Engineering as our source for outbreak caseloads and death counts for the United States and globally.

    The Hopkins data is available at the county level in the United States. The AP has paired this data with population figures and county rural/urban designations, and has calculated caseload and death rates per 100,000 people. Be aware that caseloads may reflect the availability of tests -- and the ability to turn around test results quickly -- rather than actual disease spread or true infection rates.

    This data is from the Hopkins dashboard that is updated regularly throughout the day. Like all organizations dealing with data, Hopkins is constantly refining and cleaning up their feed, so there may be brief moments where data does not appear correctly. At this link, you’ll find the Hopkins daily data reports, and a clean version of their feed.

    The AP is updating this dataset hourly at 45 minutes past the hour.

    To learn more about AP's data journalism capabilities for publishers, corporations and financial institutions, go here or email kromano@ap.org.

    Queries

    Use AP's queries to filter the data or to join to other datasets we've made available to help cover the coronavirus pandemic

    Interactive

    The AP has designed an interactive map to track COVID-19 cases reported by Johns Hopkins.

    @(https://datawrapper.dwcdn.net/nRyaf/15/)

    Interactive Embed Code

    <iframe title="USA counties (2018) choropleth map Mapping COVID-19 cases by county" aria-describedby="" id="datawrapper-chart-nRyaf" src="https://datawrapper.dwcdn.net/nRyaf/10/" scrolling="no" frameborder="0" style="width: 0; min-width: 100% !important;" height="400"></iframe><script type="text/javascript">(function() {'use strict';window.addEventListener('message', function(event) {if (typeof event.data['datawrapper-height'] !== 'undefined') {for (var chartId in event.data['datawrapper-height']) {var iframe = document.getElementById('datawrapper-chart-' + chartId) || document.querySelector("iframe[src*='" + chartId + "']");if (!iframe) {continue;}iframe.style.height = event.data['datawrapper-height'][chartId] + 'px';}}});})();</script>
    

    Caveats

    • This data represents the number of cases and deaths reported by each state and has been collected by Johns Hopkins from a number of sources cited on their website.
    • In some cases, deaths or cases of people who've crossed state lines -- either to receive treatment or because they became sick and couldn't return home while traveling -- are reported in a state they aren't currently in, because of state reporting rules.
    • In some states, there are a number of cases not assigned to a specific county -- for those cases, the county name is "unassigned to a single county"
    • This data should be credited to Johns Hopkins University's COVID-19 tracking project. The AP is simply making it available here for ease of use for reporters and members.
    • Caseloads may reflect the availability of tests -- and the ability to turn around test results quickly -- rather than actual disease spread or true infection rates.
    • Population estimates at the county level are drawn from 2014-18 5-year estimates from the American Community Survey.
    • The Urban/Rural classification scheme is from the Center for Disease Control and Preventions's National Center for Health Statistics. It puts each county into one of six categories -- from Large Central Metro to Non-Core -- according to population and other characteristics. More details about the classifications can be found here.

    Johns Hopkins timeseries data - Johns Hopkins pulls data regularly to update their dashboard. Once a day, around 8pm EDT, Johns Hopkins adds the counts for all areas they cover to the timeseries file. These counts are snapshots of the latest cumulative counts provided by the source on that day. This can lead to inconsistencies if a source updates their historical data for accuracy, either increasing or decreasing the latest cumulative count. - Johns Hopkins periodically edits their historical timeseries data for accuracy. They provide a file documenting all errors in their timeseries files that they have identified and fixed here

    Attribution

    This data should be credited to Johns Hopkins University COVID-19 tracking project

  7. NYC Open Data

    • kaggle.com
    zip
    Updated Mar 20, 2019
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    NYC Open Data (2019). NYC Open Data [Dataset]. https://www.kaggle.com/datasets/nycopendata/new-york
    Explore at:
    zip(0 bytes)Available download formats
    Dataset updated
    Mar 20, 2019
    Dataset authored and provided by
    NYC Open Data
    License

    https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/

    Description

    Context

    NYC Open Data is an opportunity to engage New Yorkers in the information that is produced and used by City government. We believe that every New Yorker can benefit from Open Data, and Open Data can benefit from every New Yorker. Source: https://opendata.cityofnewyork.us/overview/

    Content

    Thanks to NYC Open Data, which makes public data generated by city agencies available for public use, and Citi Bike, we've incorporated over 150 GB of data in 5 open datasets into Google BigQuery Public Datasets, including:

    • Over 8 million 311 service requests from 2012-2016

    • More than 1 million motor vehicle collisions 2012-present

    • Citi Bike stations and 30 million Citi Bike trips 2013-present

    • Over 1 billion Yellow and Green Taxi rides from 2009-present

    • Over 500,000 sidewalk trees surveyed decennially in 1995, 2005, and 2015

    This dataset is deprecated and not being updated.

    Fork this kernel to get started with this dataset.

    Acknowledgements

    https://opendata.cityofnewyork.us/

    https://cloud.google.com/blog/big-data/2017/01/new-york-city-public-datasets-now-available-on-google-bigquery

    This dataset is publicly available for anyone to use under the following terms provided by the Dataset Source - https://data.cityofnewyork.us/ - and is provided "AS IS" without any warranty, express or implied, from Google. Google disclaims all liability for any damages, direct or indirect, resulting from the use of the dataset.

    By accessing datasets and feeds available through NYC Open Data, the user agrees to all of the Terms of Use of NYC.gov as well as the Privacy Policy for NYC.gov. The user also agrees to any additional terms of use defined by the agencies, bureaus, and offices providing data. Public data sets made available on NYC Open Data are provided for informational purposes. The City does not warranty the completeness, accuracy, content, or fitness for any particular purpose or use of any public data set made available on NYC Open Data, nor are any such warranties to be implied or inferred with respect to the public data sets furnished therein.

    The City is not liable for any deficiencies in the completeness, accuracy, content, or fitness for any particular purpose or use of any public data set, or application utilizing such data set, provided by any third party.

    Banner Photo by @bicadmedia from Unplash.

    Inspiration

    On which New York City streets are you most likely to find a loud party?

    Can you find the Virginia Pines in New York City?

    Where was the only collision caused by an animal that injured a cyclist?

    What’s the Citi Bike record for the Longest Distance in the Shortest Time (on a route with at least 100 rides)?

    https://cloud.google.com/blog/big-data/2017/01/images/148467900588042/nyc-dataset-6.png" alt="enter image description here"> https://cloud.google.com/blog/big-data/2017/01/images/148467900588042/nyc-dataset-6.png

  8. O

    COVID-19 case rate per 100,000 population and percent test positivity in the...

    • data.ct.gov
    • datasets.ai
    • +1more
    application/rdfxml +5
    Updated Oct 8, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Department of Public Health (2020). COVID-19 case rate per 100,000 population and percent test positivity in the last 7 days by town - ARCHIVE [Dataset]. https://data.ct.gov/Health-and-Human-Services/COVID-19-case-rate-per-100-000-population-and-perc/s22x-83rd
    Explore at:
    application/rdfxml, json, csv, tsv, xml, application/rssxmlAvailable download formats
    Dataset updated
    Oct 8, 2020
    Dataset authored and provided by
    Department of Public Health
    License

    U.S. Government Workshttps://www.usa.gov/government-works
    License information was derived automatically

    Description

    DPH note about change from 7-day to 14-day metrics: As of 10/15/2020, this dataset is no longer being updated. Starting on 10/15/2020, these metrics will be calculated using a 14-day average rather than a 7-day average. The new dataset using 14-day averages can be accessed here: https://data.ct.gov/Health-and-Human-Services/COVID-19-case-rate-per-100-000-population-and-perc/hree-nys2

    As you know, we are learning more about COVID-19 all the time, including the best ways to measure COVID-19 activity in our communities. CT DPH has decided to shift to 14-day rates because these are more stable, particularly at the town level, as compared to 7-day rates. In addition, since the school indicators were initially published by DPH last summer, CDC has recommended 14-day rates and other states (e.g., Massachusetts) have started to implement 14-day metrics for monitoring COVID transmission as well.

    With respect to geography, we also have learned that many people are looking at the town-level data to inform decision making, despite emphasis on the county-level metrics in the published addenda. This is understandable as there has been variation within counties in COVID-19 activity (for example, rates that are higher in one town than in most other towns in the county).

    This dataset includes a weekly count and weekly rate per 100,000 population for COVID-19 cases, a weekly count of COVID-19 PCR diagnostic tests, and a weekly percent positivity rate for tests among people living in community settings. Dates are based on date of specimen collection (cases and positivity).

    A person is considered a new case only upon their first COVID-19 testing result because a case is defined as an instance or bout of illness. If they are tested again subsequently and are still positive, it still counts toward the test positivity metric but they are not considered another case.

    These case and test counts do not include cases or tests among people residing in congregate settings, such as nursing homes, assisted living facilities, or correctional facilities.

    These data are updated weekly; the previous week period for each dataset is the previous Sunday-Saturday, known as an MMWR week (https://wwwn.cdc.gov/nndss/document/MMWR_week_overview.pdf). The date listed is the date the dataset was last updated and corresponds to a reporting period of the previous MMWR week. For instance, the data for 8/20/2020 corresponds to a reporting period of 8/9/2020-8/15/2020.

    Notes: 9/25/2020: Data for Mansfield and Middletown for the week of Sept 13-19 were unavailable at the time of reporting due to delays in lab reporting.

  9. a

    Levels of obesity and inactivity related illnesses (physical illnesses):...

    • hub.arcgis.com
    • data.catchmentbasedapproach.org
    Updated Apr 7, 2021
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    The Rivers Trust (2021). Levels of obesity and inactivity related illnesses (physical illnesses): Summary (England) [Dataset]. https://hub.arcgis.com/maps/theriverstrust::levels-of-obesity-and-inactivity-related-illnesses-physical-illnesses-summary-england
    Explore at:
    Dataset updated
    Apr 7, 2021
    Dataset authored and provided by
    The Rivers Trust
    Area covered
    Description

    SUMMARYThis analysis, designed and executed by Ribble Rivers Trust, identifies areas across England with the greatest levels of physical illnesses that are linked with obesity and inactivity. Please read the below information to gain a full understanding of what the data shows and how it should be interpreted.ANALYSIS METHODOLOGYThe analysis was carried out using Quality and Outcomes Framework (QOF) data, derived from NHS Digital, relating to:- Asthma (in persons of all ages)- Cancer (in persons of all ages)- Chronic kidney disease (in adults aged 18+)- Coronary heart disease (in persons of all ages)- Diabetes mellitus (in persons aged 17+)- Hypertension (in persons of all ages)- Stroke and transient ischaemic attack (in persons of all ages)This information was recorded at the GP practice level. However, GP catchment areas are not mutually exclusive: they overlap, with some areas covered by 30+ GP practices. Therefore, to increase the clarity and usability of the data, the GP-level statistics were converted into statistics based on Middle Layer Super Output Area (MSOA) census boundaries.For each of the above illnesses, the percentage of each MSOA’s population with that illness was estimated. This was achieved by calculating a weighted average based on:- The percentage of the MSOA area that was covered by each GP practice’s catchment area- Of the GPs that covered part of that MSOA: the percentage of patients registered with each GP that have that illnessThe estimated percentage of each MSOA’s population with each illness was then combined with Office for National Statistics Mid-Year Population Estimates (2019) data for MSOAs, to estimate the number of people in each MSOA with each illness, within the relevant age range.For each illness, each MSOA was assigned a relative score between 1 and 0 (1 = worst, 0 = best) based on:A) the PERCENTAGE of the population within that MSOA who are estimated to have that illnessB) the NUMBER of people within that MSOA who are estimated to have that illnessAn average of scores A & B was taken, and converted to a relative score between 1 and 0 (1= worst, 0 = best). The closer to 1 the score, the greater both the number and percentage of the population in the MSOA predicted to have that illness, compared to other MSOAs. In other words, those are areas where a large number of people are predicted to suffer from an illness, and where those people make up a large percentage of the population, indicating there is a real issue with that illness within the population and the investment of resources to address that issue could have the greatest benefits.The scores for each of the 7 illnesses were added together then converted to a relative score between 1 – 0 (1 = worst, 0 = best), to give an overall score for each MSOA: a score close to 1 would indicate that an area has high predicted levels of all obesity/inactivity-related illnesses, and these are areas where the local population could benefit the most from interventions to address those illnesses. A score close to 0 would indicate very low predicted levels of obesity/inactivity-related illnesses and therefore interventions might not be required.LIMITATIONS1. GPs do not have catchments that are mutually exclusive from each other: they overlap, with some geographic areas being covered by 30+ practices. This dataset should be viewed in combination with the ‘Health and wellbeing statistics (GP-level, England): Missing data and potential outliers’ dataset to identify where there are areas that are covered by multiple GP practices but at least one of those GP practices did not provide data. Results of the analysis in these areas should be interpreted with caution, particularly if the levels of obesity/inactivity-related illnesses appear to be significantly lower than the immediate surrounding areas.2. GP data for the financial year 1st April 2018 – 31st March 2019 was used in preference to data for the financial year 1st April 2019 – 31st March 2020, as the onset of the COVID19 pandemic during the latter year could have affected the reporting of medical statistics by GPs. However, for 53 GPs (out of 7670) that did not submit data in 2018/19, data from 2019/20 was used instead. Note also that some GPs (997 out of 7670) did not submit data in either year. This dataset should be viewed in conjunction with the ‘Health and wellbeing statistics (GP-level, England): Missing data and potential outliers’ dataset, to determine areas where data from 2019/20 was used, where one or more GPs did not submit data in either year, or where there were large discrepancies between the 2018/19 and 2019/20 data (differences in statistics that were > mean +/- 1 St.Dev.), which suggests erroneous data in one of those years (it was not feasible for this study to investigate this further), and thus where data should be interpreted with caution. Note also that there are some rural areas (with little or no population) that do not officially fall into any GP catchment area (although this will not affect the results of this analysis if there are no people living in those areas).3. Although all of the obesity/inactivity-related illnesses listed can be caused or exacerbated by inactivity and obesity, it was not possible to distinguish from the data the cause of the illnesses in patients: obesity and inactivity are highly unlikely to be the cause of all cases of each illness. By combining the data with data relating to levels of obesity and inactivity in adults and children (see the ‘Levels of obesity, inactivity and associated illnesses: Summary (England)’ dataset), we can identify where obesity/inactivity could be a contributing factor, and where interventions to reduce obesity and increase activity could be most beneficial for the health of the local population.4. It was not feasible to incorporate ultra-fine-scale geographic distribution of populations that are registered with each GP practice or who live within each MSOA. Populations might be concentrated in certain areas of a GP practice’s catchment area or MSOA and relatively sparse in other areas. Therefore, the dataset should be used to identify general areas where there are high levels of obesity/inactivity-related illnesses, rather than interpreting the boundaries between areas as ‘hard’ boundaries that mark definite divisions between areas with differing levels of these illnesses. TO BE VIEWED IN COMBINATION WITH:This dataset should be viewed alongside the following datasets, which highlight areas of missing data and potential outliers in the data:- Health and wellbeing statistics (GP-level, England): Missing data and potential outliersDOWNLOADING THIS DATATo access this data on your desktop GIS, download the ‘Levels of obesity, inactivity and associated illnesses: Summary (England)’ dataset.DATA SOURCESThis dataset was produced using:Quality and Outcomes Framework data: Copyright © 2020, Health and Social Care Information Centre. The Health and Social Care Information Centre is a non-departmental body created by statute, also known as NHS Digital.GP Catchment Outlines. Copyright © 2020, Health and Social Care Information Centre. The Health and Social Care Information Centre is a non-departmental body created by statute, also known as NHS Digital. Data was cleaned by Ribble Rivers Trust before use.COPYRIGHT NOTICEThe reproduction of this data must be accompanied by the following statement:© Ribble Rivers Trust 2021. Analysis carried out using data that is: Copyright © 2020, Health and Social Care Information Centre. The Health and Social Care Information Centre is a non-departmental body created by statute, also known as NHS Digital.CaBA HEALTH & WELLBEING EVIDENCE BASEThis dataset forms part of the wider CaBA Health and Wellbeing Evidence Base.

  10. d

    COVID-19 case rate per 100,000 population and percent test positivity in the...

    • catalog.data.gov
    • data.ct.gov
    Updated Aug 12, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    data.ct.gov (2023). COVID-19 case rate per 100,000 population and percent test positivity in the last 14 days by town - ARCHIVE [Dataset]. https://catalog.data.gov/dataset/covid-19-case-rate-per-100000-population-and-percent-test-positivity-in-the-last-14-days-b
    Explore at:
    Dataset updated
    Aug 12, 2023
    Dataset provided by
    data.ct.gov
    Description

    As of 10/22/2020, this dataset is no longer being updated and has been replaced with a new dataset, which can be accessed here: https://data.ct.gov/Health-and-Human-Services/COVID-19-case-rate-per-100-000-population-and-perc/hree-nys2 This dataset includes a count and rate per 100,000 population for COVID-19 cases, a count of COVID-19 PCR diagnostic tests, and a percent positivity rate for tests among people living in community settings for the previous two-week period. Dates are based on date of specimen collection (cases and positivity). A person is considered a new case only upon their first COVID-19 testing result because a case is defined as an instance or bout of illness. If they are tested again subsequently and are still positive, it still counts toward the test positivity metric but they are not considered another case. These case and test counts do not include cases or tests among people residing in congregate settings, such as nursing homes, assisted living facilities, or correctional facilities. These data are updated weekly and reflect the previous two full Sunday-Saturday (MMWR) weeks (https://wwwn.cdc.gov/nndss/document/MMWR_week_overview.pdf). DPH note about change from 7-day to 14-day metrics: Prior to 10/15/2020, these metrics were calculated using a 7-day average rather than a 14-day average. The 7-day metrics are no longer being updated as of 10/15/2020 but the archived dataset can be accessed here: https://data.ct.gov/Health-and-Human-Services/COVID-19-case-rate-per-100-000-population-and-perc/s22x-83rd As you know, we are learning more about COVID-19 all the time, including the best ways to measure COVID-19 activity in our communities. CT DPH has decided to shift to 14-day rates because these are more stable, particularly at the town level, as compared to 7-day rates. In addition, since the school indicators were initially published by DPH last summer, CDC has recommended 14-day rates and other states (e.g., Massachusetts) have started to implement 14-day metrics for monitoring COVID transmission as well. With respect to geography, we also have learned that many people are looking at the town-level data to inform decision making, despite emphasis on the county-level metrics in the published addenda. This is understandable as there has been variation within counties in COVID-19 activity (for example, rates that are higher in one town than in most other towns in the county).

  11. d

    Mental Health Services Monthly Statistics

    • digital.nhs.uk
    csv, pdf, xls, xlsx
    Updated Jul 21, 2016
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2016). Mental Health Services Monthly Statistics [Dataset]. https://digital.nhs.uk/data-and-information/publications/statistical/mental-health-services-monthly-statistics
    Explore at:
    csv(13.0 kB), csv(272.1 kB), pdf(239.2 kB), pdf(729.1 kB), csv(387.3 kB), csv(375.0 kB), csv(1.3 MB), xlsx(118.7 kB), xls(1.1 MB), xls(994.8 kB), xls(389.6 kB), xls(138.2 kB), csv(5.3 kB)Available download formats
    Dataset updated
    Jul 21, 2016
    License

    https://digital.nhs.uk/about-nhs-digital/terms-and-conditionshttps://digital.nhs.uk/about-nhs-digital/terms-and-conditions

    Time period covered
    Mar 1, 2016 - May 31, 2016
    Area covered
    England
    Description

    This release presents experimental statistics from the Mental Health Services Data Set (MHSDS), using final submissions for April 2016 and provisional submissions for May 2016. This is the fifth monthly release from the dataset, which replaces the Mental Health and Learning Disabilities Dataset (MHLDDS). As well as analysis of waiting times, first published in March 2016, this release includes elements of the reports that were previously included in monthly reports produced from final MHLDDS submissions. In this publication a new data file has been produced to present the data for people identified as having learning disabilities and/or autistic spectrum disorder (LDA) characteristics. Because of the scope of the changes to the dataset (resulting in the name change to MHSDS and the new name for these monthly reports) it will take time to re-introduce all possible measures that were previously part of the MHLDS Monthly Reports. Additional measures will be added to this report in the coming months. Further details about these changes and the consultation that informed were announced in November. From January 2016 the release includes information on people in children and young people's mental health services, including CAMHS, for the first time. Learning disabilities and autism services have been included since September 2014. This release of final data for April 2016 comprises: - An Executive Summary, which presents national-level analysis across the whole dataset and also for some specific service areas and age groups - Data tables about access and waiting times in mental health services for the based on provisional data for the period 1 March 2016 to 31 May 2016. - A monthly data file which presents 92 measures for mental health, learning disability and autism services at National, Provider and Clinical Commissioning Group (CCG) level. - A Currency and Payments (CAP) data file, containing three measures relating to people assigned to Adult Mental Health Care Clusters. Further measures will be added in future releases. - A data file containing the measures relating to people with learning disabilities and/or autism. - Exploratory analysis of the coverage and completeness of access and waiting times statistics for people entering the Early Intervention in Psychosis pathway. - A set of provider level data quality measures for both months. The report comprises of validity measures for various data items at National and Provider level. From the publication of April data, a coverage report is included showing the number of providers submitting each month and number of records submitted. - A metadata file, which provide contextual information for each measure, including a full description, current uses, method used for analysis and some notes on usage. We will release the reports as experimental statistics until the characteristics of data flowed using the new data standard are understood. A correction has been made to this publication on 10 September 2018. This amendment relates to statistics in the monthly CSV data file; the specific measures effected are listed in the “Corrected Measures” CSV. All listed measures have now been corrected. NHS Digital apologises for any inconvenience caused.

  12. N

    United States Annual Population and Growth Analysis Dataset: A Comprehensive...

    • neilsberg.com
    csv, json
    Updated Feb 24, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Neilsberg Research (2025). United States Annual Population and Growth Analysis Dataset: A Comprehensive Overview of Population Changes and Yearly Growth Rates in United States from 2000 to 2024 // 2025 Edition [Dataset]. https://www.neilsberg.com/insights/united-states-population-by-year/
    Explore at:
    csv, jsonAvailable download formats
    Dataset updated
    Feb 24, 2025
    Dataset authored and provided by
    Neilsberg Research
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    United States
    Variables measured
    Annual Population Growth Rate, Population Between 2000 and 2024, Annual Population Growth Rate Percent
    Measurement technique
    The data presented in this dataset is derived from the 20 years data of U.S. Census Bureau Population Estimates Program (PEP) 2000 - 2024. To measure the variables, namely (a) population and (b) population change in ( absolute and as a percentage ), we initially analyzed and tabulated the data for each of the years between 2000 and 2024. For further information regarding these estimates, please feel free to reach out to us via email at research@neilsberg.com.
    Dataset funded by
    Neilsberg Research
    Description
    About this dataset

    Context

    The dataset tabulates the United States population over the last 20 plus years. It lists the population for each year, along with the year on year change in population, as well as the change in percentage terms for each year. The dataset can be utilized to understand the population change of United States across the last two decades. For example, using this dataset, we can identify if the population is declining or increasing. If there is a change, when the population peaked, or if it is still growing and has not reached its peak. We can also compare the trend with the overall trend of United States population over the same period of time.

    Key observations

    In 2024, the population of United States was 340.11 million, a 0.98% increase year-by-year from 2023. Previously, in 2023, United States population was 336.81 million, an increase of 0.83% compared to a population of 334.02 million in 2022. Over the last 20 plus years, between 2000 and 2024, population of United States increased by 57.95 million. In this period, the peak population was 340.11 million in the year 2024. The numbers suggest that the population has not reached its peak yet and is showing a trend of further growth. Source: U.S. Census Bureau Population Estimates Program (PEP).

    Content

    When available, the data consists of estimates from the U.S. Census Bureau Population Estimates Program (PEP).

    Data Coverage:

    • From 2000 to 2024

    Variables / Data Columns

    • Year: This column displays the data year (Measured annually and for years 2000 to 2024)
    • Population: The population for the specific year for the United States is shown in this column.
    • Year on Year Change: This column displays the change in United States population for each year compared to the previous year.
    • Change in Percent: This column displays the year on year change as a percentage. Please note that the sum of all percentages may not equal one due to rounding of values.

    Good to know

    Margin of Error

    Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.

    Custom data

    If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.

    Inspiration

    Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.

    Recommended for further research

    This dataset is a part of the main dataset for United States Population by Year. You can refer the same here

  13. d

    COVID-19 Cases and Deaths by Race/Ethnicity - ARCHIVE

    • catalog.data.gov
    • data.ct.gov
    Updated Aug 12, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    data.ct.gov (2023). COVID-19 Cases and Deaths by Race/Ethnicity - ARCHIVE [Dataset]. https://catalog.data.gov/dataset/covid-19-cases-and-deaths-by-race-ethnicity
    Explore at:
    Dataset updated
    Aug 12, 2023
    Dataset provided by
    data.ct.gov
    Description

    Note: DPH is updating and streamlining the COVID-19 cases, deaths, and testing data. As of 6/27/2022, the data will be published in four tables instead of twelve. The COVID-19 Cases, Deaths, and Tests by Day dataset contains cases and test data by date of sample submission. The death data are by date of death. This dataset is updated daily and contains information back to the beginning of the pandemic. The data can be found at https://data.ct.gov/Health-and-Human-Services/COVID-19-Cases-Deaths-and-Tests-by-Day/g9vi-2ahj. The COVID-19 State Metrics dataset contains over 93 columns of data. This dataset is updated daily and currently contains information starting June 21, 2022 to the present. The data can be found at https://data.ct.gov/Health-and-Human-Services/COVID-19-State-Level-Data/qmgw-5kp6 . The COVID-19 County Metrics dataset contains 25 columns of data. This dataset is updated daily and currently contains information starting June 16, 2022 to the present. The data can be found at https://data.ct.gov/Health-and-Human-Services/COVID-19-County-Level-Data/ujiq-dy22 . The COVID-19 Town Metrics dataset contains 16 columns of data. This dataset is updated daily and currently contains information starting June 16, 2022 to the present. The data can be found at https://data.ct.gov/Health-and-Human-Services/COVID-19-Town-Level-Data/icxw-cada . To protect confidentiality, if a town has fewer than 5 cases or positive NAAT tests over the past 7 days, those data will be suppressed. COVID-19 cases and associated deaths that have been reported among Connecticut residents, broken down by race and ethnicity. All data in this report are preliminary; data for previous dates will be updated as new reports are received and data errors are corrected. Deaths reported to the either the Office of the Chief Medical Examiner (OCME) or Department of Public Health (DPH) are included in the COVID-19 update. The following data show the number of COVID-19 cases and associated deaths per 100,000 population by race and ethnicity. Crude rates represent the total cases or deaths per 100,000 people. Age-adjusted rates consider the age of the person at diagnosis or death when estimating the rate and use a standardized population to provide a fair comparison between population groups with different age distributions. Age-adjustment is important in Connecticut as the median age of among the non-Hispanic white population is 47 years, whereas it is 34 years among non-Hispanic blacks, and 29 years among Hispanics. Because most non-Hispanic white residents who died were over 75 years of age, the age-adjusted rates are lower than the unadjusted rates. In contrast, Hispanic residents who died tend to be younger than 75 years of age which results in higher age-adjusted rates. The population data used to calculate rates is based on the CT DPH population statistics for 2019, which is available online here: https://portal.ct.gov/DPH/Health-Information-Systems--Reporting/Population/Population-Statistics. Prior to 5/10/2021, the population estimates from 2018 were used. Rates are standardized to the 2000 US Millions Standard population (data available here: https://seer.cancer.gov/stdpopulations/). Standardization was done using 19 age groups (0, 1-4, 5-9, 10-14, ..., 80-84, 85 years and older). More information about direct standardization for age adjustment is available here: https://www.cdc.gov/nchs/data/statnt/statnt06rv.pdf Categories are mutually exclusive. The category “multiracial” includes people who answered ‘yes’ to more than one race category. Counts may not add up to total case counts as data on race and ethnicity may be missing. Age adjusted rates calculated only for groups with more than 20 deaths. Abbreviation: NH=Non-Hispanic. Data on Connecticut deaths were obtained from the Connecticut Deaths Registry maintained by the DPH Office of Vital Records. Cause of death was determined by a death certifier (e.g., physician, APRN, medical

  14. Effect of suicide rates on life expectancy dataset

    • zenodo.org
    • data.niaid.nih.gov
    csv
    Updated Apr 16, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Filip Zoubek; Filip Zoubek (2021). Effect of suicide rates on life expectancy dataset [Dataset]. http://doi.org/10.5281/zenodo.4694270
    Explore at:
    csvAvailable download formats
    Dataset updated
    Apr 16, 2021
    Dataset provided by
    Zenodohttp://zenodo.org/
    Authors
    Filip Zoubek; Filip Zoubek
    License

    Attribution-NonCommercial-ShareAlike 3.0 (CC BY-NC-SA 3.0)https://creativecommons.org/licenses/by-nc-sa/3.0/
    License information was derived automatically

    Description

    Effect of suicide rates on life expectancy dataset

    Abstract
    In 2015, approximately 55 million people died worldwide, of which 8 million committed suicide. In the USA, one of the main causes of death is the aforementioned suicide, therefore, this experiment is dealing with the question of how much suicide rates affects the statistics of average life expectancy.
    The experiment takes two datasets, one with the number of suicides and life expectancy in the second one and combine data into one dataset. Subsequently, I try to find any patterns and correlations among the variables and perform statistical test using simple regression to confirm my assumptions.

    Data

    The experiment uses two datasets - WHO Suicide Statistics[1] and WHO Life Expectancy[2], which were firstly appropriately preprocessed. The final merged dataset to the experiment has 13 variables, where country and year are used as index: Country, Year, Suicides number, Life expectancy, Adult Mortality, which is probability of dying between 15 and 60 years per 1000 population, Infant deaths, which is number of Infant Deaths per 1000 population, Alcohol, which is alcohol, recorded per capita (15+) consumption, Under-five deaths, which is number of under-five deaths per 1000 population, HIV/AIDS, which is deaths per 1 000 live births HIV/AIDS, GDP, which is Gross Domestic Product per capita, Population, Income composition of resources, which is Human Development Index in terms of income composition of resources, and Schooling, which is number of years of schooling.

    LICENSE

    THE EXPERIMENT USES TWO DATASET - WHO SUICIDE STATISTICS AND WHO LIFE EXPECTANCY, WHICH WERE COLLEECTED FROM WHO AND UNITED NATIONS WEBSITE. THEREFORE, ALL DATASETS ARE UNDER THE LICENSE ATTRIBUTION-NONCOMMERCIAL-SHAREALIKE 3.0 IGO (https://creativecommons.org/licenses/by-nc-sa/3.0/igo/).

    [1] https://www.kaggle.com/szamil/who-suicide-statistics

    [2] https://www.kaggle.com/kumarajarshi/life-expectancy-who

  15. Z

    Dataset for: The Evolution of the Manosphere Across the Web

    • data.niaid.nih.gov
    • zenodo.org
    Updated Aug 30, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Manoel Horta Ribeiro (2020). Dataset for: The Evolution of the Manosphere Across the Web [Dataset]. https://data.niaid.nih.gov/resources?id=zenodo_4007912
    Explore at:
    Dataset updated
    Aug 30, 2020
    Dataset provided by
    Stephanie Greenberg
    Savvas Zannettou
    Manoel Horta Ribeiro
    Jeremy Blackburn
    Gianluca Stringhini
    Emiliano De Cristofaro
    Summer Long
    Barry Bradlyn
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    The Evolution of the Manosphere Across the Web

    We make available data related to subreddit and standalone forums from the manosphere.

    We also make available Perspective API annotations for all posts.

    You can find the code in GitHub.

    Please cite this paper if you use this data:

    @article{ribeiroevolution2021, title={The Evolution of the Manosphere Across the Web}, author={Ribeiro, Manoel Horta and Blackburn, Jeremy and Bradlyn, Barry and De Cristofaro, Emiliano and Stringhini, Gianluca and Long, Summer and Greenberg, Stephanie and Zannettou, Savvas}, booktitle = {{Proceedings of the 15th International AAAI Conference on Weblogs and Social Media (ICWSM'21)}}, year={2021} }

    1. Reddit data

    We make available data for forums and for relevant subreddits (56 of them, as described in subreddit_descriptions.csv). These are available, 1 line per post in each subreddit Reddit in /ndjson/reddit.ndjson. A sample for example is:

    { "author": "Handheld_Gaming", "date_post": 1546300852, "id_post": "abcusl", "number_post": 9.0, "subreddit": "Braincels", "text_post": "Its been 2019 for almost 1 hour And I am at a party with 120 people, half of them being foids. The last year had been the best in my life. I actually was happy living hope because I was redpilled to the death.

    Now that I am blackpilled I see that I am the shortest of all men and that I am the only one with a recessed jaw.

    Its over. Its only thanks to my age old friendship with chads and my social skills I had developed in the past year that a lot of men like me a lot as a friend.

    No leg lengthening syrgery is gonna save me. Ignorance was a bliss. Its just horror now seeing that everyone can make out wirth some slin hoe at the party.

    I actually feel so unbelivably bad for turbomanlets. Life as an unattractive manlet is a pain, I cant imagine the hell being an ugly turbomanlet is like. I would have roped instsntly if I were one. Its so unfair.

    Tallcels are fakecels and they all can (and should) suck my cock.

    If I were 17cm taller my life would be a heaven and I would be the happiest man alive.

    Just cope and wait for affordable body tranpslants.", "thread": "t3_abcusl" }

    1. Forums

    We here describe the .sqlite and .ndjson files that contain the data from the following forums.

    (avfm) --- https://d2ec906f9aea-003845.vbulletin.net (incels) --- https://incels.co/ (love_shy) --- http://love-shy.com/lsbb/ (redpilltalk) --- https://redpilltalk.com/ (mgtow) --- https://www.mgtow.com/forums/ (rooshv) --- https://www.rooshvforum.com/ (pua_forum) --- https://www.pick-up-artist-forum.com/ (the_attraction) --- http://www.theattractionforums.com/

    The files are in folders /sqlite/ and /ndjson.

    2.1 .sqlite

    All the tables in the sqlite. datasets follow a very simple {key:value} format. Each key is a thread name (for example /threads/housewife-is-like-a-job.123835/) and each value is a python dictionary or a list. This file contains three tables:

    idx each key is the relative address to a thread and maps to a post. Each post is represented by a dict:

    "type": (list) in some forums you can add a descriptor such as [RageFuel] to each topic, and you may also have special types of posts, like sticked/pool/locked posts.
    "title": (str) title of the thread; "link": (str) link to the thread; "author_topic": (str) username that created the thread; "replies": (int) number of replies, may differ from number of posts due to difference in crawling date; "views": (int) number of views; "subforum": (str) name of the subforum; "collected": (bool) indicates if raw posts have been collected; "crawled_idx_at": (str) datetime of the collection.

    processed_posts each key is the relative address to a thread and maps to a list with posts (in order). Each post is represented by a dict:

    "author": (str) author's username; "resume_author": (str) author's little description; "joined_author": (str) date author joined; "messages_author": (int) number of messages the author has; "text_post": (str) text of the main post; "number_post": (int) number of the post in the thread; "id_post": (str) unique post identifier (depends), for sure unique within thread; "id_post_interaction": (list) list with other posts ids this post quoted; "date_post": (str) datetime of the post, "links": (tuple) nice tuple with the url parsed, e.g. ('https', 'www.youtube.com', '/S5t6K9iwcdw'); "thread": (str) same as key; "crawled_at": (str) datetime of the collection.

    raw_posts each key is the relative address to a thread and maps to a list with unprocessed posts (in order). Each post is represented by a dict:

    "post_raw": (binary) raw html binary; "crawled_at": (str) datetime of the collection.

    2.2 .ndjson

    Each line consists of a json object representing a different comment with the following fields:

    "author": (str) author's username; "resume_author": (str) author's little description; "joined_author": (str) date author joined; "messages_author": (int) number of messages the author has; "text_post": (str) text of the main post; "number_post": (int) number of the post in the thread; "id_post": (str) unique post identifier (depends), for sure unique within thread; "id_post_interaction": (list) list with other posts ids this post quoted; "date_post": (str) datetime of the post, "links": (tuple) nice tuple with the url parsed, e.g. ('https', 'www.youtube.com', '/S5t6K9iwcdw'); "thread": (str) same as key; "crawled_at": (str) datetime of the collection.

    1. Perspective

    We also run each post and reddit post through perspective, the files are located in the /perspective/ folder. They are compressed with gzip. One example output

    { "id_post": 5200, "hate_output": { "text": "I still can\u2019t wrap my mind around both of those articles about these c~~~s sleeping with poor Haitian Men. Where\u2019s the uproar?, where the hell is the outcry?, the \u201cpig\u201d comments or the \u201ccreeper comments\u201d. F~~~ing hell, if roles were reversed and it was an article about Men going to Europe where under 18 sex in legal, you better believe they would crucify the writer of that article and DEMAND an apology by the paper that wrote it.. This is exactly what I try and explain to people about the double standards within our modern society. A bunch of older women, wanna get their kicks off by sleeping with poor Men, just before they either hit or are at menopause age. F~~~ing unreal, I\u2019ll never forget going to Sweden and Norway a few years ago with one of my buddies and his girlfriend who was from there, the legal age of consent in Norway is 16 and in Sweden it\u2019s 15. I couldn\u2019t believe it, but my friend told me \u201c hey, it\u2019s normal here\u201d . Not only that but the age wasn\u2019t a big different in other European countries as well. One thing i learned very quickly was how very Misandric Sweden as well as Denmark were.", "TOXICITY": 0.6079781, "SEVERE_TOXICITY": 0.53744453, "INFLAMMATORY": 0.7279288, "PROFANITY": 0.58842486, "INSULT": 0.5511079, "OBSCENE": 0.9830818, "SPAM": 0.17009115 } }

    1. Working with sqlite

    A nice way to read some of the files of the dataset is using SqliteDict, for example:

    from sqlitedict import SqliteDict processed_posts = SqliteDict("./data/forums/incels.sqlite", tablename="processed_posts")

    for key, posts in processed_posts.items(): for post in posts: # here you could do something with each post in the dataset pass

    1. Helpers

    Additionally, we provide two .sqlite files that are helpers used in the analyses. These are related to reddit, and not to the forums! They are:

    channel_dict.sqlite a sqlite where each key corresponds to a subreddit and values are lists of dictionaries users who posted on it, along with timestamps.

    author_dict.sqlite a sqlite where each key corresponds to an author and values are lists of dictionaries of the subreddits they posted on, along with timestamps.

    These are used in the paper for the migration analyses.

    1. Examples and particularities for forums

    Although we did our best to clean the data and be consistent across forums, this is not always possible. In the following subsections we talk about the particularities of each forum, directions to improve the parsing which were not pursued as well as give some examples on how things work in each forum.

    6.1 incels

    Check out an archived version of the front page, the thread page and a post page, as well as a dump of the data stored for a thread page and a post page.

    types: for the incel forums the special types associated with each thread in the idx table are “Sticky”, “Pool”, “Closed”, and the custom types added by users, such as [LifeFuel]. These last ones are all in brackets. You can see some examples of these in the on the example thread page.

    quotes: quotes in this forum were quite nice and thus, all quotations are deterministic.

    6.2 LoveShy

    Check out an archived version of the front page, the thread page and a post page, as well as a dump of the data stored for a thread page and a post page.

    types: no types were parsed. There are some rules in the forum, but not significant.

    quotes: quotes were obtained from exact text+author match, or author match + a jaccard

  16. h

    A dataset of hospitalised patients with Sarcoma

    • healthdatagateway.org
    • web.dev.hdruk.cloud
    unknown
    Updated Jan 20, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    This publication uses data from PIONEER, an ethically approved database and analytical environment (East Midlands Derby Research Ethics 20/EM/0158) (2022). A dataset of hospitalised patients with Sarcoma [Dataset]. https://healthdatagateway.org/dataset/195
    Explore at:
    unknownAvailable download formats
    Dataset updated
    Jan 20, 2022
    Dataset authored and provided by
    This publication uses data from PIONEER, an ethically approved database and analytical environment (East Midlands Derby Research Ethics 20/EM/0158)
    License

    https://www.pioneerdatahub.co.uk/data/data-request-process/https://www.pioneerdatahub.co.uk/data/data-request-process/

    Description

    Background

    Sarcomas are uncommon cancers that can affect any part of the body. There are many different types of sarcoma and subtypes can be grouped into soft tissue or bone sarcomas. About 15 people are diagnosed every day in the UK. 3 in every 200 people with cancer in the UK have sarcoma.

    A highly granular dataset with a confirmed sarcoma event including hospital presentation, serial physiology, demography, treatment prescribed and administered, prescribed and administered drugs. The infographic includes data from 27/12/2004 to 31/12/2021 but data is available from the past 10 years+.

    PIONEER geography: The West Midlands (WM) has a population of 5.9 million & includes a diverse ethnic & socio-economic mix.

    EHR. UHB is one of the largest NHS Trusts in England, providing direct acute services & specialist care across four hospital sites, with 2.2 million patient episodes per year, 2750 beds & an expanded 250 ITU bed capacity during COVID. UHB runs a fully electronic healthcare record (EHR) (PICS; Birmingham Systems), a shared primary & secondary care record (Your Care Connected) & a patient portal “My Health”.

    Scope: All hospitalised patients from 2004 onwards, curated to focus on Sarcoma. Longitudinal & individually linked, so that the preceding & subsequent health journey can be mapped & healthcare utilisation prior to & after admission understood. The dataset includes highly granular patient demographics & co-morbidities taken from ICD-10 & SNOMED-CT codes. Serial, structured data pertaining to acute care process (timings, staff grades, specialty review, wards and triage). Along with presenting complaints, outpatients admissions, microbiology results, referrals, procedures, therapies, all physiology readings (pulse, blood pressure, respiratory rate, oxygen saturations and others), and all blood results (urea, albumin, platelets, white blood cells and others). Includes all prescribed & administered treatments and all outcomes. Linked images are also available (radiographs, CT scans, MRI).

    Available supplementary data: Matched controls; ambulance, OMOP data, synthetic data.

    Available supplementary support: Analytics, Model build, validation & refinement; A.I.; Data partner support for ETL (extract, transform & load) process, Clinical expertise, Patient & end-user access, Purchaser access, Regulatory requirements, Data-driven trials, “fast screen” services.

  17. Amount of data created, consumed, and stored 2010-2023, with forecasts to...

    • statista.com
    Updated Nov 21, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2024). Amount of data created, consumed, and stored 2010-2023, with forecasts to 2028 [Dataset]. https://www.statista.com/statistics/871513/worldwide-data-created/
    Explore at:
    Dataset updated
    Nov 21, 2024
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    May 2024
    Area covered
    Worldwide
    Description

    The total amount of data created, captured, copied, and consumed globally is forecast to increase rapidly, reaching 149 zettabytes in 2024. Over the next five years up to 2028, global data creation is projected to grow to more than 394 zettabytes. In 2020, the amount of data created and replicated reached a new high. The growth was higher than previously expected, caused by the increased demand due to the COVID-19 pandemic, as more people worked and learned from home and used home entertainment options more often. Storage capacity also growing Only a small percentage of this newly created data is kept though, as just two percent of the data produced and consumed in 2020 was saved and retained into 2021. In line with the strong growth of the data volume, the installed base of storage capacity is forecast to increase, growing at a compound annual growth rate of 19.2 percent over the forecast period from 2020 to 2025. In 2020, the installed base of storage capacity reached 6.7 zettabytes.

  18. N

    Willet, New York Age Group Population Dataset: A Complete Breakdown of...

    • neilsberg.com
    csv, json
    Updated Feb 22, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Neilsberg Research (2025). Willet, New York Age Group Population Dataset: A Complete Breakdown of Willet town Age Demographics from 0 to 85 Years and Over, Distributed Across 18 Age Groups // 2025 Edition [Dataset]. https://www.neilsberg.com/insights/willet-ny-population-by-age/
    Explore at:
    json, csvAvailable download formats
    Dataset updated
    Feb 22, 2025
    Dataset authored and provided by
    Neilsberg Research
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    New York, Willet
    Variables measured
    Population Under 5 Years, Population over 85 years, Population Between 5 and 9 years, Population Between 10 and 14 years, Population Between 15 and 19 years, Population Between 20 and 24 years, Population Between 25 and 29 years, Population Between 30 and 34 years, Population Between 35 and 39 years, Population Between 40 and 44 years, and 9 more
    Measurement technique
    The data presented in this dataset is derived from the latest U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates. To measure the two variables, namely (a) population and (b) population as a percentage of the total population, we initially analyzed and categorized the data for each of the age groups. For age groups we divided it into roughly a 5 year bucket for ages between 0 and 85. For over 85, we aggregated data into a single group for all ages. For further information regarding these estimates, please feel free to reach out to us via email at research@neilsberg.com.
    Dataset funded by
    Neilsberg Research
    Description
    About this dataset

    Context

    The dataset tabulates the Willet town population distribution across 18 age groups. It lists the population in each age group along with the percentage population relative of the total population for Willet town. The dataset can be utilized to understand the population distribution of Willet town by age. For example, using this dataset, we can identify the largest age group in Willet town.

    Key observations

    The largest age group in Willet, New York was for the group of age 10 to 14 years years with a population of 110 (13.02%), according to the ACS 2019-2023 5-Year Estimates. At the same time, the smallest age group in Willet, New York was the 85 years and over years with a population of 3 (0.36%). Source: U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates

    Content

    When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates

    Age groups:

    • Under 5 years
    • 5 to 9 years
    • 10 to 14 years
    • 15 to 19 years
    • 20 to 24 years
    • 25 to 29 years
    • 30 to 34 years
    • 35 to 39 years
    • 40 to 44 years
    • 45 to 49 years
    • 50 to 54 years
    • 55 to 59 years
    • 60 to 64 years
    • 65 to 69 years
    • 70 to 74 years
    • 75 to 79 years
    • 80 to 84 years
    • 85 years and over

    Variables / Data Columns

    • Age Group: This column displays the age group in consideration
    • Population: The population for the specific age group in the Willet town is shown in this column.
    • % of Total Population: This column displays the population of each age group as a proportion of Willet town total population. Please note that the sum of all percentages may not equal one due to rounding of values.

    Good to know

    Margin of Error

    Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.

    Custom data

    If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.

    Inspiration

    Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.

    Recommended for further research

    This dataset is a part of the main dataset for Willet town Population by Age. You can refer the same here

  19. COVID-19 Vaccine Progress Dashboard Data by ZIP Code

    • data.ca.gov
    • data.chhs.ca.gov
    csv, xlsx, zip
    Updated Feb 25, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    California Department of Public Health (2025). COVID-19 Vaccine Progress Dashboard Data by ZIP Code [Dataset]. https://data.ca.gov/dataset/covid-19-vaccine-progress-dashboard-data-by-zip-code
    Explore at:
    zip, csv, xlsxAvailable download formats
    Dataset updated
    Feb 25, 2025
    Dataset authored and provided by
    California Department of Public Healthhttps://www.cdph.ca.gov/
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Note: In these datasets, a person is defined as up to date if they have received at least one dose of an updated COVID-19 vaccine. The Centers for Disease Control and Prevention (CDC) recommends that certain groups, including adults ages 65 years and older, receive additional doses.

    Starting on July 13, 2022, the denominator for calculating vaccine coverage has been changed from age 5+ to all ages to reflect new vaccine eligibility criteria. Previously the denominator was changed from age 16+ to age 12+ on May 18, 2021, then changed from age 12+ to age 5+ on November 10, 2021, to reflect previous changes in vaccine eligibility criteria. The previous datasets based on age 12+ and age 5+ denominators have been uploaded as archived tables.

    Starting June 30, 2021, the dataset has been reconfigured so that all updates are appended to one dataset to make it easier for API and other interfaces. In addition, historical data has been extended back to January 5, 2021.

    This dataset shows full, partial, and at least 1 dose coverage rates by zip code tabulation area (ZCTA) for the state of California. Data sources include the California Immunization Registry and the American Community Survey’s 2015-2019 5-Year data.

    This is the data table for the LHJ Vaccine Equity Performance dashboard. However, this data table also includes ZTCAs that do not have a VEM score.

    This dataset also includes Vaccine Equity Metric score quartiles (when applicable), which combine the Public Health Alliance of Southern California’s Healthy Places Index (HPI) measure with CDPH-derived scores to estimate factors that impact health, like income, education, and access to health care. ZTCAs range from less healthy community conditions in Quartile 1 to more healthy community conditions in Quartile 4.

    The Vaccine Equity Metric is for weekly vaccination allocation and reporting purposes only. CDPH-derived quartiles should not be considered as indicative of the HPI score for these zip codes. CDPH-derived quartiles were assigned to zip codes excluded from the HPI score produced by the Public Health Alliance of Southern California due to concerns with statistical reliability and validity in populations smaller than 1,500 or where more than 50% of the population resides in a group setting.

    These data do not include doses administered by the following federal agencies who received vaccine allocated directly from CDC: Indian Health Service, Veterans Health Administration, Department of Defense, and the Federal Bureau of Prisons.

    For some ZTCAs, vaccination coverage may exceed 100%. This may be a result of many people from outside the county coming to that ZTCA to get their vaccine and providers reporting the county of administration as the county of residence, and/or the DOF estimates of the population in that ZTCA are too low. Please note that population numbers provided by DOF are projections and so may not be accurate, especially given unprecedented shifts in population as a result of the pandemic.

  20. COVID-19 Vaccine Progress Dashboard Data

    • data.chhs.ca.gov
    • data.ca.gov
    • +2more
    csv, xlsx, zip
    Updated Mar 26, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    California Department of Public Health (2025). COVID-19 Vaccine Progress Dashboard Data [Dataset]. https://data.chhs.ca.gov/dataset/vaccine-progress-dashboard
    Explore at:
    xlsx(7708), csv(18403068), csv(82754), csv(675610), csv(2447143), csv(12877811), csv(188895), csv(111682), csv(54906), csv(638738), csv(26828), csv(2641927), csv(110928434), csv(7777694), csv(503270), csv(83128924), csv(724860), xlsx(11249), xlsx(11870), xlsx(11534), csv(148732), csv(303068812), zip, xlsx(11731), csv(6772350)Available download formats
    Dataset updated
    Mar 26, 2025
    Dataset authored and provided by
    California Department of Public Healthhttps://www.cdph.ca.gov/
    Description

    Note: In these datasets, a person is defined as up to date if they have received at least one dose of an updated COVID-19 vaccine. The Centers for Disease Control and Prevention (CDC) recommends that certain groups, including adults ages 65 years and older, receive additional doses.

    On 6/16/2023 CDPH replaced the booster measures with a new “Up to Date” measure based on CDC’s new recommendations, replacing the primary series, boosted, and bivalent booster metrics The definition of “primary series complete” has not changed and is based on previous recommendations that CDC has since simplified. A person cannot complete their primary series with a single dose of an updated vaccine. Whereas the booster measures were calculated using the eligible population as the denominator, the new up to date measure uses the total estimated population. Please note that the rates for some groups may change since the up to date measure is calculated differently than the previous booster and bivalent measures.

    This data is from the same source as the Vaccine Progress Dashboard at https://covid19.ca.gov/vaccination-progress-data/ which summarizes vaccination data at the county level by county of residence. Where county of residence was not reported in a vaccination record, the county of provider that vaccinated the resident is included. This applies to less than 1% of vaccination records. The sum of county-level vaccinations does not equal statewide total vaccinations due to out-of-state residents vaccinated in California.

    These data do not include doses administered by the following federal agencies who received vaccine allocated directly from CDC: Indian Health Service, Veterans Health Administration, Department of Defense, and the Federal Bureau of Prisons.

    Totals for the Vaccine Progress Dashboard and this dataset may not match, as the Dashboard totals doses by Report Date and this dataset totals doses by Administration Date. Dose numbers may also change for a particular Administration Date as data is updated.

    Previous updates:

    • On March 3, 2023, with the release of HPI 3.0 in 2022, the previous equity scores have been updated to reflect more recent community survey information. This change represents an improvement to the way CDPH monitors health equity by using the latest and most accurate community data available. The HPI uses a collection of data sources and indicators to calculate a measure of community conditions ranging from the most to the least healthy based on economic, housing, and environmental measures.

    • Starting on July 13, 2022, the denominator for calculating vaccine coverage has been changed from age 5+ to all ages to reflect new vaccine eligibility criteria. Previously the denominator was changed from age 16+ to age 12+ on May 18, 2021, then changed from age 12+ to age 5+ on November 10, 2021, to reflect previous changes in vaccine eligibility criteria. The previous datasets based on age 16+ and age 5+ denominators have been uploaded as archived tables.

    • Starting on May 29, 2021 the methodology for calculating on-hand inventory in the shipped/delivered/on-hand dataset has changed. Please see the accompanying data dictionary for details. In addition, this dataset is now down to the ZIP code level.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Centers for Disease Control and Prevention (2025). Post-COVID Conditions [Dataset]. https://catalog.data.gov/dataset/post-covid-conditions-89bb3
Organization logo

Post-COVID Conditions

Explore at:
Dataset updated
Feb 3, 2025
Dataset provided by
Centers for Disease Control and Preventionhttp://www.cdc.gov/
Description

As part of an ongoing partnership with the Census Bureau, the National Center for Health Statistics (NCHS) recently added questions to assess the prevalence of post-COVID-19 conditions (long COVID), on the experimental Household Pulse Survey. This 20-minute online survey was designed to complement the ability of the federal statistical system to rapidly respond and provide relevant information about the impact of the coronavirus pandemic in the U.S. Data collection began on April 23, 2020. Beginning in Phase 3.5 (on June 1, 2022), NCHS included questions about the presence of symptoms of COVID that lasted three months or longer. Phase 3.5 will continue with a two-weeks on, two-weeks off collection and dissemination approach. Estimates on this page are derived from the Household Pulse Survey and show the percentage of adults aged 18 and over who a) as a proportion of the U.S. population, the percentage of adults who EVER experienced post-COVID conditions (long COVID). These adults had COVID and had some symptoms that lasted three months or longer; b) as a proportion of adults who said they ever had COVID, the percentage who EVER experienced post-COVID conditions; c) as a proportion of the U.S. population, the percentage of adults who are CURRENTLY experiencing post-COVID conditions. These adults had COVID, had long-term symptoms, and are still experiencing symptoms; d) as a proportion of adults who said they ever had COVID, the percentage who are CURRENTLY experiencing post-COVID conditions; and e) as a proportion of the U.S. population, the percentage of adults who said they ever had COVID.

Search
Clear search
Close search
Google apps
Main menu