Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This dataset is designed for the detection of persons and cars in surveillance camera footage. It can be utilized for various useful applications, including:
This dataset is based on images collected from various sources, including:
https://universe.roboflow.com/radoslaw-kawczak/virat-ve02s
https://universe.roboflow.com/seminar-object-detection/cars-o1ljf
With this dataset, you can train and develop machine learning models capable of accurately detecting persons and cars, thus empowering surveillance and security systems with advanced object recognition capabilities.
Data files containing detailed information about vehicles in the UK are also available, including make and model data.
Some tables have been withdrawn and replaced. The table index for this statistical series has been updated to provide a full map between the old and new numbering systems used in this page.
Tables VEH0101 and VEH1104 have not yet been revised to include the recent changes to Large Goods Vehicles (LGV) and Heavy Goods Vehicles (HGV) definitions for data earlier than 2023 quarter 4. This will be amended as soon as possible.
Overview
VEH0101: https://assets.publishing.service.gov.uk/media/6846e8dc57f3515d9611f119/veh0101.ods">Vehicles at the end of the quarter by licence status and body type: Great Britain and United Kingdom (ODS, 151 KB)
Detailed breakdowns
VEH0103: https://assets.publishing.service.gov.uk/media/6846e8dcd25e6f6afd4c01d5/veh0103.ods">Licensed vehicles at the end of the year by tax class: Great Britain and United Kingdom (ODS, 33 KB)
VEH0105: https://assets.publishing.service.gov.uk/media/6846e8dd57f3515d9611f11a/veh0105.ods">Licensed vehicles at the end of the quarter by body type, fuel type, keepership (private and company) and upper and lower tier local authority: Great Britain and United Kingdom (ODS, 16.3 MB)
VEH0206: https://assets.publishing.service.gov.uk/media/6846e8dee5a089417c806179/veh0206.ods">Licensed cars at the end of the year by VED band and carbon dioxide (CO2) emissions: Great Britain and United Kingdom (ODS, 42.3 KB)
VEH0601: https://assets.publishing.service.gov.uk/media/6846e8df5e92539572806176/veh0601.ods">Licensed buses and coaches at the end of the year by body type detail: Great Britain and United Kingdom (ODS, 24.6 KB)
VEH1102: https://assets.publishing.service.gov.uk/media/6846e8e0e5a089417c80617b/veh1102.ods">Licensed vehicles at the end of the year by body type and keepership (private and company): Great Britain and United Kingdom (ODS, 146 KB)
VEH1103: https://assets.publishing.service.gov.uk/media/6846e8e0e5a089417c80617c/veh1103.ods">Licensed vehicles at the end of the quarter by body type and fuel type: Great Britain and United Kingdom (ODS, 992 KB)
VEH1104: https://assets.publishing.service.gov.uk/media/6846e8e15e92539572806177/veh1104.ods">Licensed vehicles at the end of the
Open Government Licence - Canada 2.0https://open.canada.ca/en/open-government-licence-canada
License information was derived automatically
The data set contains registered vehicle population count by various criteria such as vehicle class, vehicle status, vechicle make, vehicle model, vehicle year, plate class, plate declaration, county, weight related class and other vehicle decriptors.
Over the course of the 20th century, the number of operational motor vehicles in the United States grew significantly, from just 8,000 automobiles in the year 1900 to more than 183 million private and commercial vehicles in the late 1980s. Generally, the number of vehicles increased in each year, with the most notable exceptions during the Great Depression and Second World War.
This dataset contains the file of vehicle, snowmobile and boat registrations in NYS. Registrations expired more than 2 years are excluded. Records that have a scofflaw, revocation and/or suspension are included with indicators specifying those kinds of records.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Analysis of ‘Used Car Data’ provided by Analyst-2 (analyst-2.ai), based on source dataset retrieved from https://www.kaggle.com/sanjeetsinghnaik/used-car-information on 28 January 2022.
--- Dataset description provided by original source is as follows ---
I have scraped the data of used cars which are out for sale. It is important to know the price and kms driven on the car as well as the brand to know if the car is a good purchase for second hand owner or not. This data can help many people reach to that conclusion.
--- Original source retains full ownership of the source dataset ---
This data contains information about people involved in a crash and if any injuries were sustained. This dataset should be used in combination with the traffic Crash and Vehicle dataset. Each record corresponds to an occupant in a vehicle listed in the Crash dataset. Some people involved in a crash may not have been an occupant in a motor vehicle, but may have been a pedestrian, bicyclist, or using another non-motor vehicle mode of transportation. Injuries reported are reported by the responding police officer. Fatalities that occur after the initial reports are typically updated in these records up to 30 days after the date of the crash. Person data can be linked with the Crash and Vehicle dataset using the “CRASH_RECORD_ID” field. A vehicle can have multiple occupants and hence have a one to many relationship between Vehicle and Person dataset. However, a pedestrian is a “unit” by itself and have a one to one relationship between the Vehicle and Person table. The Chicago Police Department reports crashes on IL Traffic Crash Reporting form SR1050. The crash data published on the Chicago data portal mostly follows the data elements in SR1050 form. The current version of the SR1050 instructions manual with detailed information on each data elements is available here. Change 11/21/2023: We have removed the RD_NO (Chicago Police Department report number) for privacy reasons.
The U.S. auto industry sold nearly ************* cars in 2024. That year, total car and light truck sales were approximately ************ in the United States. U.S. vehicle sales peaked in 2016 at roughly ************ units. Pandemic impact The COVID-19 pandemic deeply impacted the U.S. automotive market, accelerating the global automotive semiconductor shortage and leading to a drop in demand during the first months of 2020. However, as demand rebounded, new vehicle supply could not keep up with the market. U.S. inventory-to-sales ratio dropped to its lowest point in February 2022, as Russia's war on Ukraine lead to gasoline price hikes. During that same period, inflation also impacted new and used car prices, pricing many U.S. consumers out of a market with increasingly lower car stocks. Focus on fuel economy The U.S. auto industry had one of its worst years in 1982 when customers were beginning to feel the effects of the 1973 oil crisis and the energy crisis of 1979. Since light trucks would often be considered less fuel-efficient, cars accounted for about ** percent of light vehicle sales back then. Thanks to improved fuel economy for light trucks and cheaper gas prices, this picture had completely changed in 2020. That year, prices for Brent oil dropped to just over ** U.S. dollars per barrel. The decline occurred in tandem with lower gasoline prices, which came to about **** U.S. dollars per gallon in 2020 - and cars only accounted for less than one-fourth of light vehicle sales that year. Four years on, prices are dropping again, after being the highest on record since 1990 in 2022.
https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
A car (or automobile) is a wheeled motor vehicle that is used for transportation. Most definitions of cars say that they run primarily on roads, seat one to eight people, have four wheels, and mainly transport people instead of goods.[1][2]
The year 1886 is regarded as the birth year of the car, when German inventor Carl Benz patented his Benz Patent-Motorwagen.[3][4][5] Cars became widely available during the 20th century. One of the first cars affordable by the masses was the 1908 Model T, an American car manufactured by the Ford Motor Company. Cars were rapidly adopted in the US, where they replaced animal-drawn carriages and carts.[6] In Europe and other parts of the world, demand for automobiles did not increase until after World War II.[6] The car is considered an essential part of the developed economy.
The source of dataset is ../input/cars-cars-2/Cars_India_dataset.csv The dataset contains the following columns. 0 Model object - Model of the cars 1 Maker object - Maker of cars 2 Type object - type of cars 3 Seats int64 - number of seats in cars 4 Displacement float64 - displacement of car 5 Length int64 - length of car 6 Width int64 - width of car 7 Height int64 - height of car 8 Wheelbase int64 - wheel base of car 9 No_of_Cylinders float64 - number of cylinders in car 10 Fuel object - type of fuel in car 11 Engine Type object - type of engime 12 Transmission object - transmission in car 13 Front Brake object - front break of car 14 Rear Brake object - rear break of car 15 Drive object - drive of car 16 Turning Radius float64 - turning radius of car 17 Fuel Tank Capacity float64 - fuel capacity of car 18 Boot Space float - boot space
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Number of Cars: Privately Owned: Per 1000 Person: CF: City of Moscow data was reported at 282.272 Unit in 2022. This records a decrease from the previous number of 297.353 Unit for 2021. Number of Cars: Privately Owned: Per 1000 Person: CF: City of Moscow data is updated yearly, averaging 232.100 Unit from Dec 1990 (Median) to 2022, with 33 observations. The data reached an all-time high of 306.351 Unit in 2017 and a record low of 69.800 Unit in 1990. Number of Cars: Privately Owned: Per 1000 Person: CF: City of Moscow data remains active status in CEIC and is reported by Federal State Statistics Service. The data is categorized under Global Database’s Russian Federation – Table RU.RAD005: Number of Cars Privately Owned per 1000 Persons.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Analysis of ‘Indian Cars Dataset’ provided by Analyst-2 (analyst-2.ai), based on source dataset retrieved from https://www.kaggle.com/medhekarabhinav5/indian-cars-dataset on 13 February 2022.
--- Dataset description provided by original source is as follows ---
The Indian Automobile market has been flourishing over the years, attracting many foreign manufacturers to set up their factories in India. India has its own manufacturers to compete with them. Indian manufacturers like Tata and Mahindra started to sell their products overseas and also in the continuous process of continuous adaptation of new techs to lure more customers. Japanese Cae Brands Become famous in the Indian market. People Like to own them the most. European brands have rugged products for the Indian market. American Brands are still trying to set foot in here. Will they become successful? Can Indian brands keep up with competition from foreign brands? Let's Find out.
The following data dataset is having the latest information about cars in the Indian market. The dataset contains cars with their variants, In the dataset there are 1200+ models/variants to study. There is a variety of Makes/Models which can be studied. Cars Prices ranges from few lacs to few crores. All prices are on Rupee.
Dataset has updated information till September 2021.
--- Original source retains full ownership of the source dataset ---
Open Government Licence 3.0http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
License information was derived automatically
Average weekly household expenditure on goods and services in the UK. Data are shown by region, age, income (including equivalised) group (deciles and quintiles), economic status, socio-economic class, housing tenure, output area classification, urban and rural areas (Great Britain only), place of purchase and household composition.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
## Overview
Car And People Model is a dataset for object detection tasks - it contains Carro Pessoa annotations for 200 images.
## Getting Started
You can download this dataset for use within your own projects, or fork it into a workspace on Roboflow to create your own model.
## License
This dataset is available under the [CC BY 4.0 license](https://creativecommons.org/licenses/CC BY 4.0).
This dataset contains information about vehicles (or units as they are identified in crash reports) involved in a traffic crash. This dataset should be used in conjunction with the traffic Crash and People dataset available in the portal. “Vehicle” information includes motor vehicle and non-motor vehicle modes of transportation, such as bicycles and pedestrians. Each mode of transportation involved in a crash is a “unit” and get one entry here. Each vehicle, each pedestrian, each motorcyclist, and each bicyclist is considered an independent unit that can have a trajectory separate from the other units. However, people inside a vehicle including the driver do not have a trajectory separate from the vehicle in which they are travelling and hence only the vehicle they are travelling in get any entry here. This type of identification of “units” is needed to determine how each movement affected the crash. Data for occupants who do not make up an independent unit, typically drivers and passengers, are available in the People table. Many of the fields are coded to denote the type and location of damage on the vehicle. Vehicle information can be linked back to Crash data using the “CRASH_RECORD_ID” field. Since this dataset is a combination of vehicles, pedestrians, and pedal cyclists not all columns are applicable to each record. Look at the Unit Type field to determine what additional data may be available for that record. The Chicago Police Department reports crashes on IL Traffic Crash Reporting form SR1050. The crash data published on the Chicago data portal mostly follows the data elements in SR1050 form. The current version of the SR1050 instructions manual with detailed information on each data elements is available here. Change 11/21/2023: We have removed the RD_NO (Chicago Police Department report number) for privacy reasons.
Sales of used light vehicles in the United States came to around **** million units in 2024. In the same period, approximately **** million new light trucks and automobiles were sold here. Declining availability of vehicles In the fourth quarter of 2024, about ***** million vehicles were in operation in the United States, an increase of around *** percent year-over-year. The rising demand for vehicles paired with an overall price inflation lead to a rise in new vehicle prices. In contrast, used vehicle prices slightly decreased. E-commerce: a solution for the bumpy road ahead? Financial reports have revealed how the outbreak of the coronavirus pandemic has triggered a shift in vehicle-buying behavior. With many consumer goods and services now bought online due to COVID-19, the automobile industry has also started to digitally integrate its services online to reach consumers with a preference for contactless test driving amid the global crisis. Several dealers and automobile companies had already begun to tap into online car sales before the pandemic, some of them being Carvana and Tesla.
https://www.futurebeeai.com/policies/ai-data-license-agreementhttps://www.futurebeeai.com/policies/ai-data-license-agreement
Welcome to the US English Language In-car Speech Dataset, a comprehensive collection of audio recordings designed to facilitate the development of speech recognition models specifically tailored for in-car environments. This dataset aims to support research and innovation in automotive speech technology, enabling seamless and robust voice interactions within vehicles for drivers and co-passengers.
This dataset comprises over 5,000 high-quality audio recordings collected from various in-car environments. These recordings include scripted wake words and command-type prompts.
Apart from participant diversity, the dataset is diverse in terms of different wake words, voice commands, and recording environments.
The dataset provides comprehensive metadata for each audio recording and participant:
When asked about "Car ownership", 3 percent of U.S. respondents answer "Yes, a company car". This online survey was conducted in 2025, among 11,941 consumers. Looking to gain valuable insights about car owners across the globe? Check out our reports about consumers of car brands worldwide. These reports provide readers with a detailed understanding of car owners: their identities, preferences, opinions, and how to effectively engage with them.
The number of cars in operation per 1,000 people in the United Arab Emirates was forecast to continuously increase between 2023 and 2028 by in total 22.2 cars (+8.19 percent). The number of cars is estimated to amount to 293.22 cars in 2028.Cars in this context do not take into account vans or trucks.The shown data are an excerpt of Statista's Key Market Indicators (KMI). The KMI are a collection of primary and secondary indicators on the macro-economic, demographic and technological environment in up to 150 countries and regions worldwide. All indicators are sourced from international and national statistical offices, trade associations and the trade press and they are processed to generate comparable data sets (see supplementary notes under details for more information).Find more key insights for the number of cars in operation per 1,000 people in countries like Qatar and Iran.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
## Overview
People And Car is a dataset for object detection tasks - it contains People Car annotations for 2,047 images.
## Getting Started
You can download this dataset for use within your own projects, or fork it into a workspace on Roboflow to create your own model.
## License
This dataset is available under the [CC BY 4.0 license](https://creativecommons.org/licenses/CC BY 4.0).
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Key information about United States Motor Vehicle Production
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This dataset is designed for the detection of persons and cars in surveillance camera footage. It can be utilized for various useful applications, including:
This dataset is based on images collected from various sources, including:
https://universe.roboflow.com/radoslaw-kawczak/virat-ve02s
https://universe.roboflow.com/seminar-object-detection/cars-o1ljf
With this dataset, you can train and develop machine learning models capable of accurately detecting persons and cars, thus empowering surveillance and security systems with advanced object recognition capabilities.