100+ datasets found
  1. N

    United States Age Group Population Dataset: A Complete Breakdown of United...

    • neilsberg.com
    csv, json
    Updated Jul 24, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Neilsberg Research (2024). United States Age Group Population Dataset: A Complete Breakdown of United States Age Demographics from 0 to 85 Years and Over, Distributed Across 18 Age Groups // 2024 Edition [Dataset]. https://www.neilsberg.com/research/datasets/aabf26b9-4983-11ef-ae5d-3860777c1fe6/
    Explore at:
    csv, jsonAvailable download formats
    Dataset updated
    Jul 24, 2024
    Dataset authored and provided by
    Neilsberg Research
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    United States
    Variables measured
    Population Under 5 Years, Population over 85 years, Population Between 5 and 9 years, Population Between 10 and 14 years, Population Between 15 and 19 years, Population Between 20 and 24 years, Population Between 25 and 29 years, Population Between 30 and 34 years, Population Between 35 and 39 years, Population Between 40 and 44 years, and 9 more
    Measurement technique
    The data presented in this dataset is derived from the latest U.S. Census Bureau American Community Survey (ACS) 2018-2022 5-Year Estimates. To measure the two variables, namely (a) population and (b) population as a percentage of the total population, we initially analyzed and categorized the data for each of the age groups. For age groups we divided it into roughly a 5 year bucket for ages between 0 and 85. For over 85, we aggregated data into a single group for all ages. For further information regarding these estimates, please feel free to reach out to us via email at research@neilsberg.com.
    Dataset funded by
    Neilsberg Research
    Description
    About this dataset

    Context

    The dataset tabulates the United States population distribution across 18 age groups. It lists the population in each age group along with the percentage population relative of the total population for United States. The dataset can be utilized to understand the population distribution of United States by age. For example, using this dataset, we can identify the largest age group in United States.

    Key observations

    The largest age group in United States was for the group of age 30 to 34 years years with a population of 22.71 million (6.86%), according to the ACS 2018-2022 5-Year Estimates. At the same time, the smallest age group in United States was the 80 to 84 years years with a population of 6.25 million (1.89%). Source: U.S. Census Bureau American Community Survey (ACS) 2018-2022 5-Year Estimates

    Content

    When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2018-2022 5-Year Estimates

    Age groups:

    • Under 5 years
    • 5 to 9 years
    • 10 to 14 years
    • 15 to 19 years
    • 20 to 24 years
    • 25 to 29 years
    • 30 to 34 years
    • 35 to 39 years
    • 40 to 44 years
    • 45 to 49 years
    • 50 to 54 years
    • 55 to 59 years
    • 60 to 64 years
    • 65 to 69 years
    • 70 to 74 years
    • 75 to 79 years
    • 80 to 84 years
    • 85 years and over

    Variables / Data Columns

    • Age Group: This column displays the age group in consideration
    • Population: The population for the specific age group in the United States is shown in this column.
    • % of Total Population: This column displays the population of each age group as a proportion of United States total population. Please note that the sum of all percentages may not equal one due to rounding of values.

    Good to know

    Margin of Error

    Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.

    Custom data

    If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.

    Inspiration

    Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.

    Recommended for further research

    This dataset is a part of the main dataset for United States Population by Age. You can refer the same here

  2. N

    California annual income distribution by work experience and gender dataset:...

    • neilsberg.com
    csv, json
    Updated Feb 27, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Neilsberg Research (2025). California annual income distribution by work experience and gender dataset: Number of individuals ages 15+ with income, 2023 // 2025 Edition [Dataset]. https://www.neilsberg.com/research/datasets/ba9b0e46-f4ce-11ef-8577-3860777c1fe6/
    Explore at:
    json, csvAvailable download formats
    Dataset updated
    Feb 27, 2025
    Dataset authored and provided by
    Neilsberg Research
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    California
    Variables measured
    Income for Male Population, Income for Female Population, Income for Male Population working full time, Income for Male Population working part time, Income for Female Population working full time, Income for Female Population working part time, Number of males working full time for a given income bracket, Number of males working part time for a given income bracket, Number of females working full time for a given income bracket, Number of females working part time for a given income bracket
    Measurement technique
    The data presented in this dataset is derived from the latest U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates. To portray the number of individuals for both the genders (Male and Female), within each income bracket we conducted an initial analysis and categorization of the American Community Survey data. Households are categorized, and median incomes are reported based on the self-identified gender of the head of the household. For additional information about these estimations, please contact us via email at research@neilsberg.com
    Dataset funded by
    Neilsberg Research
    Description
    About this dataset

    Context

    The dataset presents the detailed breakdown of the count of individuals within distinct income brackets, categorizing them by gender (men and women) and employment type - full-time (FT) and part-time (PT), offering valuable insights into the diverse income landscapes within California. The dataset can be utilized to gain insights into gender-based income distribution within the California population, aiding in data analysis and decision-making..

    Key observations

    • Employment patterns: Within California, among individuals aged 15 years and older with income, there were 13.93 million men and 13.07 million women in the workforce. Among them, 7.74 million men were engaged in full-time, year-round employment, while 5.52 million women were in full-time, year-round roles.
    • Annual income under $24,999: Of the male population working full-time, 7.12% fell within the income range of under $24,999, while 9.32% of the female population working full-time was represented in the same income bracket.
    • Annual income above $100,000: 35.40% of men in full-time roles earned incomes exceeding $100,000, while 27.36% of women in full-time positions earned within this income bracket.
    • Refer to the research insights for more key observations on more income brackets ( Annual income under $24,999, Annual income between $25,000 and $49,999, Annual income between $50,000 and $74,999, Annual income between $75,000 and $99,999 and Annual income above $100,000) and employment types (full-time year-round and part-time)
    Content

    When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates.

    Income brackets:

    • $1 to $2,499 or loss
    • $2,500 to $4,999
    • $5,000 to $7,499
    • $7,500 to $9,999
    • $10,000 to $12,499
    • $12,500 to $14,999
    • $15,000 to $17,499
    • $17,500 to $19,999
    • $20,000 to $22,499
    • $22,500 to $24,999
    • $25,000 to $29,999
    • $30,000 to $34,999
    • $35,000 to $39,999
    • $40,000 to $44,999
    • $45,000 to $49,999
    • $50,000 to $54,999
    • $55,000 to $64,999
    • $65,000 to $74,999
    • $75,000 to $99,999
    • $100,000 or more

    Variables / Data Columns

    • Income Bracket: This column showcases 20 income brackets ranging from $1 to $100,000+..
    • Full-Time Males: The count of males employed full-time year-round and earning within a specified income bracket
    • Part-Time Males: The count of males employed part-time and earning within a specified income bracket
    • Full-Time Females: The count of females employed full-time year-round and earning within a specified income bracket
    • Part-Time Females: The count of females employed part-time and earning within a specified income bracket

    Employment type classifications include:

    • Full-time, year-round: A full-time, year-round worker is a person who worked full time (35 or more hours per week) and 50 or more weeks during the previous calendar year.
    • Part-time: A part-time worker is a person who worked less than 35 hours per week during the previous calendar year.

    Good to know

    Margin of Error

    Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.

    Custom data

    If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.

    Inspiration

    Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.

    Recommended for further research

    This dataset is a part of the main dataset for California median household income by race. You can refer the same here

  3. NYC Open Data

    • kaggle.com
    zip
    Updated Mar 20, 2019
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    NYC Open Data (2019). NYC Open Data [Dataset]. https://www.kaggle.com/nycopendata/new-york
    Explore at:
    zip(0 bytes)Available download formats
    Dataset updated
    Mar 20, 2019
    Dataset authored and provided by
    NYC Open Data
    License

    https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/

    Description

    Context

    NYC Open Data is an opportunity to engage New Yorkers in the information that is produced and used by City government. We believe that every New Yorker can benefit from Open Data, and Open Data can benefit from every New Yorker. Source: https://opendata.cityofnewyork.us/overview/

    Content

    Thanks to NYC Open Data, which makes public data generated by city agencies available for public use, and Citi Bike, we've incorporated over 150 GB of data in 5 open datasets into Google BigQuery Public Datasets, including:

    • Over 8 million 311 service requests from 2012-2016

    • More than 1 million motor vehicle collisions 2012-present

    • Citi Bike stations and 30 million Citi Bike trips 2013-present

    • Over 1 billion Yellow and Green Taxi rides from 2009-present

    • Over 500,000 sidewalk trees surveyed decennially in 1995, 2005, and 2015

    This dataset is deprecated and not being updated.

    Fork this kernel to get started with this dataset.

    Acknowledgements

    https://opendata.cityofnewyork.us/

    https://cloud.google.com/blog/big-data/2017/01/new-york-city-public-datasets-now-available-on-google-bigquery

    This dataset is publicly available for anyone to use under the following terms provided by the Dataset Source - https://data.cityofnewyork.us/ - and is provided "AS IS" without any warranty, express or implied, from Google. Google disclaims all liability for any damages, direct or indirect, resulting from the use of the dataset.

    By accessing datasets and feeds available through NYC Open Data, the user agrees to all of the Terms of Use of NYC.gov as well as the Privacy Policy for NYC.gov. The user also agrees to any additional terms of use defined by the agencies, bureaus, and offices providing data. Public data sets made available on NYC Open Data are provided for informational purposes. The City does not warranty the completeness, accuracy, content, or fitness for any particular purpose or use of any public data set made available on NYC Open Data, nor are any such warranties to be implied or inferred with respect to the public data sets furnished therein.

    The City is not liable for any deficiencies in the completeness, accuracy, content, or fitness for any particular purpose or use of any public data set, or application utilizing such data set, provided by any third party.

    Banner Photo by @bicadmedia from Unplash.

    Inspiration

    On which New York City streets are you most likely to find a loud party?

    Can you find the Virginia Pines in New York City?

    Where was the only collision caused by an animal that injured a cyclist?

    What’s the Citi Bike record for the Longest Distance in the Shortest Time (on a route with at least 100 rides)?

    https://cloud.google.com/blog/big-data/2017/01/images/148467900588042/nyc-dataset-6.png" alt="enter image description here"> https://cloud.google.com/blog/big-data/2017/01/images/148467900588042/nyc-dataset-6.png

  4. Data from: Robotic manipulation datasets for offline compositional...

    • data.niaid.nih.gov
    • search.dataone.org
    • +1more
    zip
    Updated Jun 6, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Marcel Hussing; Jorge Mendez; Anisha Singrodia; Cassandra Kent; Eric Eaton (2024). Robotic manipulation datasets for offline compositional reinforcement learning [Dataset]. http://doi.org/10.5061/dryad.9cnp5hqps
    Explore at:
    zipAvailable download formats
    Dataset updated
    Jun 6, 2024
    Dataset provided by
    Massachusetts Institute of Technology
    University of Pennsylvania
    Authors
    Marcel Hussing; Jorge Mendez; Anisha Singrodia; Cassandra Kent; Eric Eaton
    License

    https://spdx.org/licenses/CC0-1.0.htmlhttps://spdx.org/licenses/CC0-1.0.html

    Description

    Offline reinforcement learning (RL) is a promising direction that allows RL agents to be pre-trained from large datasets avoiding recurrence of expensive data collection. To advance the field, it is crucial to generate large-scale datasets. Compositional RL is particularly appealing for generating such large datasets, since 1) it permits creating many tasks from few components, and 2) the task structure may enable trained agents to solve new tasks by combining relevant learned components. This submission provides four offline RL datasets for simulated robotic manipulation created using the 256 tasks from CompoSuite Mendez et al., 2022. In every task in CompoSuite, a robot arm is used to manipulate an object to achieve an objective all while trying to avoid an obstacle. There are for components for each of these four axes that can be combined arbitrarily leading to a total of 256 tasks. The component choices are * Robot: IIWA, Jaco, Kinova3, Panda* Object: Hollow box, box, dumbbell, plate* Objective: Push, pick and place, put in shelf, put in trashcan* Obstacle: None, wall between robot and object, wall between goal and object, door between goal and object The four included datasets are collected using separate agents each trained to a different degree of performance, and each dataset consists of 256 million transitions. The degrees of performance are expert data, medium data, warmstart data and replay data: * Expert dataset: Transitions from an expert agent that was trained to achieve 90% success on every task.* Medium dataset: Transitions from a medium agent that was trained to achieve 30% success on every task.* Warmstart dataset: Transitions from a Soft-actor critic agent trained for a fixed duration of one million steps.* Medium-replay-subsampled dataset: Transitions that were stored during the training of a medium agent up to 30% success. These datasets are intended for the combined study of compositional generalization and offline reinforcement learning. Methods The datasets were collected by using several deep reinforcement learning agents trained to the various degrees of performance described above on the CompoSuite benchmark (https://github.com/Lifelong-ML/CompoSuite) which builds on top of robosuite (https://github.com/ARISE-Initiative/robosuite) and uses the MuJoCo simulator (https://github.com/deepmind/mujoco). During reinforcement learning training, we stored the data that was collected by each agent in a separate buffer for post-processing. Then, after training, to collect the expert and medium dataset, we run the trained agents for 2000 trajectories of length 500 online in the CompoSuite benchmark and store the trajectories. These add up to a total of 1 million state-transitions tuples per dataset, totalling a full 256 million datapoints per dataset. The warmstart and medium-replay-subsampled dataset contain trajectories from the stored training buffer of the SAC agent trained for a fixed duration and the medium agent respectively. For medium-replay-subsampled data, we uniformly sample trajectories from the training buffer until we reach more than 1 million transitions. Since some of the tasks have termination conditions, some of these trajectories are trunctated and not of length 500. This sometimes results in a number of sampled transitions larger than 1 million. Therefore, after sub-sampling, we artificially truncate the last trajectory and place a timeout at the final position. This can in some rare cases lead to one incorrect trajectory if the datasets are used for finite horizon experimentation. However, this truncation is required to ensure consistent dataset sizes, easy data readability and compatibility with other standard code implementations. The four datasets are split into four tar.gz folders each yielding a total of 12 compressed folders. Every sub-folder contains all the tasks for one of the four robot arms for that dataset. In other words, every tar.gz folder contains a total of 64 tasks using the same robot arm and four tar.gz files form a full dataset. This is done to enable people to only download a part of the dataset in case they do not need all 256 tasks. For every task, the data is separately stored in an hdf5 file allowing for the usage of arbitrary task combinations and mixing of data qualities across the four datasets. Every task is contained in a folder that is named after the CompoSuite elements it uses. In other words, every task is represented as a folder named

  5. mediabias

    • kaggle.com
    Updated Jul 20, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Max Tegmark (2022). mediabias [Dataset]. http://doi.org/10.34740/kaggle/dsv/3966214
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Jul 20, 2022
    Dataset provided by
    Kagglehttp://kaggle.com/
    Authors
    Max Tegmark
    License

    Attribution-NonCommercial 4.0 (CC BY-NC 4.0)https://creativecommons.org/licenses/by-nc/4.0/
    License information was derived automatically

    Description

    Many people believe that news media they dislike are biased, while their favorite news source isn't. Can we move beyond such subjectivity and measure media bias objectively, from data alone? The auto-generated figure below answers this question with a resounding "yes", showing left-leaning media on the left, right-leaning media on the right, establishment-critical media at the bottom, etc. https://space.mit.edu/home/tegmark/phrasebias.jpg" alt="Media bias landscape">

    Our algorithm analyzed over a million articles from over a hundred newspapers. It first audo-identifies phrases that help predict which newspaper a givens article is from (e.g. "undocumented immigrant" vs. "illegal immigrant"). It then analyzes the frequencies of such phrases across newspapers and topics, producing the media bias landscape below. This means that although news bias is inherently political, its measurement need not be.

    Here's our paper: arXiv:2109.00024. Our Kaggle data set here contains the discriminative phrases and phrase counts needed to reproduce all the plots in our paper. The files contain the following data: - The directory phrase_selection contains tables such as immigration_phrases.csv that you can open with Microsoft Excel. They contain the phrases that our method found most informative for predicting which newspaper an article is from, sorted by decreasing utility. Our analysis ones only the ones passing all our screenings, i.e., with ones in columns D, E and F. - The directory counts contains tables such as immigration_counts.csv, listing the number of times that each phrase in occurs in each newspaper's coverage of that topic. - The file blacklist.csv contains journalist names and other phrases that were discarded because they helped revealed the identity of a newspaper without reflecting any political bias.

    If you have questions, please contact Samantha at sdalonzo@mit.edu or Max at tegmark@mit.edu.

  6. N

    Florida annual income distribution by work experience and gender dataset:...

    • neilsberg.com
    csv, json
    Updated Feb 27, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Neilsberg Research (2025). Florida annual income distribution by work experience and gender dataset: Number of individuals ages 15+ with income, 2023 // 2025 Edition [Dataset]. https://www.neilsberg.com/research/datasets/baa5d2a8-f4ce-11ef-8577-3860777c1fe6/
    Explore at:
    csv, jsonAvailable download formats
    Dataset updated
    Feb 27, 2025
    Dataset authored and provided by
    Neilsberg Research
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Florida
    Variables measured
    Income for Male Population, Income for Female Population, Income for Male Population working full time, Income for Male Population working part time, Income for Female Population working full time, Income for Female Population working part time, Number of males working full time for a given income bracket, Number of males working part time for a given income bracket, Number of females working full time for a given income bracket, Number of females working part time for a given income bracket
    Measurement technique
    The data presented in this dataset is derived from the latest U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates. To portray the number of individuals for both the genders (Male and Female), within each income bracket we conducted an initial analysis and categorization of the American Community Survey data. Households are categorized, and median incomes are reported based on the self-identified gender of the head of the household. For additional information about these estimations, please contact us via email at research@neilsberg.com
    Dataset funded by
    Neilsberg Research
    Description
    About this dataset

    Context

    The dataset presents the detailed breakdown of the count of individuals within distinct income brackets, categorizing them by gender (men and women) and employment type - full-time (FT) and part-time (PT), offering valuable insights into the diverse income landscapes within Florida. The dataset can be utilized to gain insights into gender-based income distribution within the Florida population, aiding in data analysis and decision-making..

    Key observations

    • Employment patterns: Within Florida, among individuals aged 15 years and older with income, there were 7.97 million men and 7.97 million women in the workforce. Among them, 4.20 million men were engaged in full-time, year-round employment, while 3.34 million women were in full-time, year-round roles.
    • Annual income under $24,999: Of the male population working full-time, 9.71% fell within the income range of under $24,999, while 13.26% of the female population working full-time was represented in the same income bracket.
    • Annual income above $100,000: 24.10% of men in full-time roles earned incomes exceeding $100,000, while 13.68% of women in full-time positions earned within this income bracket.
    • Refer to the research insights for more key observations on more income brackets ( Annual income under $24,999, Annual income between $25,000 and $49,999, Annual income between $50,000 and $74,999, Annual income between $75,000 and $99,999 and Annual income above $100,000) and employment types (full-time year-round and part-time)
    Content

    When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates.

    Income brackets:

    • $1 to $2,499 or loss
    • $2,500 to $4,999
    • $5,000 to $7,499
    • $7,500 to $9,999
    • $10,000 to $12,499
    • $12,500 to $14,999
    • $15,000 to $17,499
    • $17,500 to $19,999
    • $20,000 to $22,499
    • $22,500 to $24,999
    • $25,000 to $29,999
    • $30,000 to $34,999
    • $35,000 to $39,999
    • $40,000 to $44,999
    • $45,000 to $49,999
    • $50,000 to $54,999
    • $55,000 to $64,999
    • $65,000 to $74,999
    • $75,000 to $99,999
    • $100,000 or more

    Variables / Data Columns

    • Income Bracket: This column showcases 20 income brackets ranging from $1 to $100,000+..
    • Full-Time Males: The count of males employed full-time year-round and earning within a specified income bracket
    • Part-Time Males: The count of males employed part-time and earning within a specified income bracket
    • Full-Time Females: The count of females employed full-time year-round and earning within a specified income bracket
    • Part-Time Females: The count of females employed part-time and earning within a specified income bracket

    Employment type classifications include:

    • Full-time, year-round: A full-time, year-round worker is a person who worked full time (35 or more hours per week) and 50 or more weeks during the previous calendar year.
    • Part-time: A part-time worker is a person who worked less than 35 hours per week during the previous calendar year.

    Good to know

    Margin of Error

    Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.

    Custom data

    If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.

    Inspiration

    Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.

    Recommended for further research

    This dataset is a part of the main dataset for Florida median household income by race. You can refer the same here

  7. 50Million Rows Turkish Market Sales Dataset(MSSQL)

    • kaggle.com
    Updated Aug 31, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Omer Colakoglu (2023). 50Million Rows Turkish Market Sales Dataset(MSSQL) [Dataset]. https://www.kaggle.com/datasets/omercolakoglu/50million-rows-turkish-market-sales-datasetmssql/data
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Aug 31, 2023
    Dataset provided by
    Kagglehttp://kaggle.com/
    Authors
    Omer Colakoglu
    Description

    50 Million Rows MSSQL Backup File with Clustered Columnstore Index.

    This dataset contains -27K categorized Turkish supermarket items. -81 stores (Every city of Turkey has a store) -100K real Turkish names customer, address -10M rows sales data generated randomly. -All data has a near real price with influation factor by the time.

    All the data generated randomly. So the usernames have been generated with real Turkish names and surnames but they are not real people. The sale data generated randomly. But it has some rules. For example, every order can contains 1-9 kind of item. Every orderline amount can be 1-9 pieces. The randomise function works according to population of the city. So the number of orders for Istanbul (the biggest city of Turkey) is about 20% of all data and another city for example orders for the Gaziantep (the population is 2.5% of Turkey population) is about 2.5% off all data. https://www.googleapis.com/download/storage/v1/b/kaggle-user-content/o/inbox%2F1611072%2F9442f2a1dbae7f05ead4fde9e1033ac6%2Finbox_1611072_135236e39b79d6fae8830dec3fca4961_1.png?generation=1693509562300174&alt=media" alt=""> https://www.googleapis.com/download/storage/v1/b/kaggle-user-content/o/inbox%2F1611072%2F1c39195270db87250e59d9f2917ccea1%2Finbox_1611072_b73d9ca432dae956564cfa5bfe42268c_3.png?generation=1693509575061587&alt=media" alt=""> https://www.googleapis.com/download/storage/v1/b/kaggle-user-content/o/inbox%2F1611072%2Fa908389f33ae5c983e383d17f0d9a763%2Finbox_1611072_c5d349aa1f33c0fc4fc74b79b7167d3a_F3za81TXkAA1Il4.png?generation=1693509586158658&alt=media" alt="">

  8. S&P 500 stock data

    • kaggle.com
    zip
    Updated Aug 11, 2017
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Cam Nugent (2017). S&P 500 stock data [Dataset]. https://www.kaggle.com/camnugent/sandp500
    Explore at:
    zip(31994392 bytes)Available download formats
    Dataset updated
    Aug 11, 2017
    Authors
    Cam Nugent
    License

    https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/

    Description

    Context

    Stock market data can be interesting to analyze and as a further incentive, strong predictive models can have large financial payoff. The amount of financial data on the web is seemingly endless. A large and well structured dataset on a wide array of companies can be hard to come by. Here I provide a dataset with historical stock prices (last 5 years) for all companies currently found on the S&P 500 index.

    The script I used to acquire all of these .csv files can be found in this GitHub repository In the future if you wish for a more up to date dataset, this can be used to acquire new versions of the .csv files.

    Content

    The data is presented in a couple of formats to suit different individual's needs or computational limitations. I have included files containing 5 years of stock data (in the all_stocks_5yr.csv and corresponding folder) and a smaller version of the dataset (all_stocks_1yr.csv) with only the past year's stock data for those wishing to use something more manageable in size.

    The folder individual_stocks_5yr contains files of data for individual stocks, labelled by their stock ticker name. The all_stocks_5yr.csv and all_stocks_1yr.csv contain this same data, presented in merged .csv files. Depending on the intended use (graphing, modelling etc.) the user may prefer one of these given formats.

    All the files have the following columns: Date - in format: yy-mm-dd Open - price of the stock at market open (this is NYSE data so all in USD) High - Highest price reached in the day Low Close - Lowest price reached in the day Volume - Number of shares traded Name - the stock's ticker name

    Acknowledgements

    I scraped this data from Google finance using the python library 'pandas_datareader'. Special thanks to Kaggle, Github and The Market.

    Inspiration

    This dataset lends itself to a some very interesting visualizations. One can look at simple things like how prices change over time, graph an compare multiple stocks at once, or generate and graph new metrics from the data provided. From these data informative stock stats such as volatility and moving averages can be easily calculated. The million dollar question is: can you develop a model that can beat the market and allow you to make statistically informed trades!

  9. Instagram accounts with the most followers worldwide 2024

    • statista.com
    • davegsmith.com
    Updated Jun 17, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Stacy Jo Dixon (2025). Instagram accounts with the most followers worldwide 2024 [Dataset]. https://www.statista.com/topics/1164/social-networks/
    Explore at:
    Dataset updated
    Jun 17, 2025
    Dataset provided by
    Statistahttp://statista.com/
    Authors
    Stacy Jo Dixon
    Description

    Cristiano Ronaldo has one of the most popular Instagram accounts as of April 2024.

                  The Portuguese footballer is the most-followed person on the photo sharing app platform with 628 million followers. Instagram's own account was ranked first with roughly 672 million followers.
    
                  How popular is Instagram?
    
                  Instagram is a photo-sharing social networking service that enables users to take pictures and edit them with filters. The platform allows users to post and share their images online and directly with their friends and followers on the social network. The cross-platform app reached one billion monthly active users in mid-2018. In 2020, there were over 114 million Instagram users in the United States and experts project this figure to surpass 127 million users in 2023.
    
                  Who uses Instagram?
    
                  Instagram audiences are predominantly young – recent data states that almost 60 percent of U.S. Instagram users are aged 34 years or younger. Fall 2020 data reveals that Instagram is also one of the most popular social media for teens and one of the social networks with the biggest reach among teens in the United States.
    
                  Celebrity influencers on Instagram
                  Many celebrities and athletes are brand spokespeople and generate additional income with social media advertising and sponsored content. Unsurprisingly, Ronaldo ranked first again, as the average media value of one of his Instagram posts was 985,441 U.S. dollars.
    
  10. GitHub Repos

    • kaggle.com
    zip
    Updated Mar 20, 2019
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Github (2019). GitHub Repos [Dataset]. https://www.kaggle.com/datasets/github/github-repos
    Explore at:
    zip(0 bytes)Available download formats
    Dataset updated
    Mar 20, 2019
    Dataset provided by
    GitHubhttps://github.com/
    Authors
    Github
    Description

    GitHub is how people build software and is home to the largest community of open source developers in the world, with over 12 million people contributing to 31 million projects on GitHub since 2008.

    This 3TB+ dataset comprises the largest released source of GitHub activity to date. It contains a full snapshot of the content of more than 2.8 million open source GitHub repositories including more than 145 million unique commits, over 2 billion different file paths, and the contents of the latest revision for 163 million files, all of which are searchable with regular expressions.

    Querying BigQuery tables

    You can use the BigQuery Python client library to query tables in this dataset in Kernels. Note that methods available in Kernels are limited to querying data. Tables are at bigquery-public-data.github_repos.[TABLENAME]. Fork this kernel to get started to learn how to safely manage analyzing large BigQuery datasets.

    Acknowledgements

    This dataset was made available per GitHub's terms of service. This dataset is available via Google Cloud Platform's Marketplace, GitHub Activity Data, as part of GCP Public Datasets.

    Inspiration

    • This is the perfect dataset for fighting language wars.
    • Can you identify any signals that predict which packages or languages will become popular, in advance of their mass adoption?
  11. h

    OMOP dataset: Hospital COVID patients: severity, acuity, therapies, outcomes...

    • healthdatagateway.org
    unknown
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    This publication uses data from PIONEER, an ethically approved database and analytical environment (East Midlands Derby Research Ethics 20/EM/0158), OMOP dataset: Hospital COVID patients: severity, acuity, therapies, outcomes [Dataset]. https://healthdatagateway.org/dataset/139
    Explore at:
    unknownAvailable download formats
    Dataset authored and provided by
    This publication uses data from PIONEER, an ethically approved database and analytical environment (East Midlands Derby Research Ethics 20/EM/0158)
    License

    https://www.pioneerdatahub.co.uk/data/data-request-process/https://www.pioneerdatahub.co.uk/data/data-request-process/

    Description

    OMOP dataset: Hospital COVID patients: severity, acuity, therapies, outcomes Dataset number 2.0

    Coronavirus disease 2019 (COVID-19) was identified in January 2020. Currently, there have been more than 6 million cases & more than 1.5 million deaths worldwide. Some individuals experience severe manifestations of infection, including viral pneumonia, adult respiratory distress syndrome (ARDS) & death. There is a pressing need for tools to stratify patients, to identify those at greatest risk. Acuity scores are composite scores which help identify patients who are more unwell to support & prioritise clinical care. There are no validated acuity scores for COVID-19 & it is unclear whether standard tools are accurate enough to provide this support. This secondary care COVID OMOP dataset contains granular demographic, morbidity, serial acuity and outcome data to inform risk prediction tools in COVID-19.

    PIONEER geography The West Midlands (WM) has a population of 5.9 million & includes a diverse ethnic & socio-economic mix. There is a higher than average percentage of minority ethnic groups. WM has a large number of elderly residents but is the youngest population in the UK. Each day >100,000 people are treated in hospital, see their GP or are cared for by the NHS. The West Midlands was one of the hardest hit regions for COVID admissions in both wave 1 & 2.

    EHR. University Hospitals Birmingham NHS Foundation Trust (UHB) is one of the largest NHS Trusts in England, providing direct acute services & specialist care across four hospital sites, with 2.2 million patient episodes per year, 2750 beds & 100 ITU beds. UHB runs a fully electronic healthcare record (EHR) (PICS; Birmingham Systems), a shared primary & secondary care record (Your Care Connected) & a patient portal “My Health”. UHB has cared for >5000 COVID admissions to date. This is a subset of data in OMOP format.

    Scope: All COVID swab confirmed hospitalised patients to UHB from January – August 2020. The dataset includes highly granular patient demographics & co-morbidities taken from ICD-10 & SNOMED-CT codes. Serial, structured data pertaining to care process (timings, staff grades, specialty review, wards), presenting complaint, acuity, all physiology readings (pulse, blood pressure, respiratory rate, oxygen saturations), all blood results, microbiology, all prescribed & administered treatments (fluids, antibiotics, inotropes, vasopressors, organ support), all outcomes.

    Available supplementary data: Health data preceding & following admission event. Matched “non-COVID” controls; ambulance, 111, 999 data, synthetic data. Further OMOP data available as an additional service.

    Available supplementary support: Analytics, Model build, validation & refinement; A.I.; Data partner support for ETL (extract, transform & load) process, Clinical expertise, Patient & end-user access, Purchaser access, Regulatory requirements, Data-driven trials, “fast screen” services.

  12. Instagram: most popular posts as of 2024

    • statista.com
    • davegsmith.com
    Updated Jun 17, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Stacy Jo Dixon (2025). Instagram: most popular posts as of 2024 [Dataset]. https://www.statista.com/topics/1164/social-networks/
    Explore at:
    Dataset updated
    Jun 17, 2025
    Dataset provided by
    Statistahttp://statista.com/
    Authors
    Stacy Jo Dixon
    Description

    Instagram’s most popular post

                  As of April 2024, the most popular post on Instagram was Lionel Messi and his teammates after winning the 2022 FIFA World Cup with Argentina, posted by the account @leomessi. Messi's post, which racked up over 61 million likes within a day, knocked off the reigning post, which was 'Photo of an Egg'. Originally posted in January 2021, 'Photo of an Egg' surpassed the world’s most popular Instagram post at that time, which was a photo by Kylie Jenner’s daughter totaling 18 million likes.
                  After several cryptic posts published by the account, World Record Egg revealed itself to be a part of a mental health campaign aimed at the pressures of social media use.
    
                  Instagram’s most popular accounts
    
                  As of April 2024, the official Instagram account @instagram had the most followers of any account on the platform, with 672 million followers. Portuguese footballer Cristiano Ronaldo (@cristiano) was the most followed individual with 628 million followers, while Selena Gomez (@selenagomez) was the most followed woman on the platform with 429 million. Additionally, Inter Miami CF striker Lionel Messi (@leomessi) had a total of 502 million. Celebrities such as The Rock, Kylie Jenner, and Ariana Grande all had over 380 million followers each.
    
                  Instagram influencers
    
                  In the United States, the leading content category of Instagram influencers was lifestyle, with 15.25 percent of influencers creating lifestyle content in 2021. Music ranked in second place with 10.96 percent, followed by family with 8.24 percent. Having a large audience can be very lucrative: Instagram influencers in the United States, Canada and the United Kingdom with over 90,000 followers made around 1,221 US dollars per post.
    
                  Instagram around the globe
    
                  Instagram’s worldwide popularity continues to grow, and India is the leading country in terms of number of users, with over 362.9 million users as of January 2024. The United States had 169.65 million Instagram users and Brazil had 134.6 million users. The social media platform was also very popular in Indonesia and Turkey, with 100.9 and 57.1, respectively. As of January 2024, Instagram was the fourth most popular social network in the world, behind Facebook, YouTube and WhatsApp.
    
  13. w

    Synthetic Data for an Imaginary Country, Sample, 2023 - World

    • microdata.worldbank.org
    Updated Jul 7, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Development Data Group, Data Analytics Unit (2023). Synthetic Data for an Imaginary Country, Sample, 2023 - World [Dataset]. https://microdata.worldbank.org/index.php/catalog/5906
    Explore at:
    Dataset updated
    Jul 7, 2023
    Dataset authored and provided by
    Development Data Group, Data Analytics Unit
    Time period covered
    2023
    Area covered
    World, World
    Description

    Abstract

    The dataset is a relational dataset of 8,000 households households, representing a sample of the population of an imaginary middle-income country. The dataset contains two data files: one with variables at the household level, the other one with variables at the individual level. It includes variables that are typically collected in population censuses (demography, education, occupation, dwelling characteristics, fertility, mortality, and migration) and in household surveys (household expenditure, anthropometric data for children, assets ownership). The data only includes ordinary households (no community households). The dataset was created using REaLTabFormer, a model that leverages deep learning methods. The dataset was created for the purpose of training and simulation and is not intended to be representative of any specific country.

    The full-population dataset (with about 10 million individuals) is also distributed as open data.

    Geographic coverage

    The dataset is a synthetic dataset for an imaginary country. It was created to represent the population of this country by province (equivalent to admin1) and by urban/rural areas of residence.

    Analysis unit

    Household, Individual

    Universe

    The dataset is a fully-synthetic dataset representative of the resident population of ordinary households for an imaginary middle-income country.

    Kind of data

    ssd

    Sampling procedure

    The sample size was set to 8,000 households. The fixed number of households to be selected from each enumeration area was set to 25. In a first stage, the number of enumeration areas to be selected in each stratum was calculated, proportional to the size of each stratum (stratification by geo_1 and urban/rural). Then 25 households were randomly selected within each enumeration area. The R script used to draw the sample is provided as an external resource.

    Mode of data collection

    other

    Research instrument

    The dataset is a synthetic dataset. Although the variables it contains are variables typically collected from sample surveys or population censuses, no questionnaire is available for this dataset. A "fake" questionnaire was however created for the sample dataset extracted from this dataset, to be used as training material.

    Cleaning operations

    The synthetic data generation process included a set of "validators" (consistency checks, based on which synthetic observation were assessed and rejected/replaced when needed). Also, some post-processing was applied to the data to result in the distributed data files.

    Response rate

    This is a synthetic dataset; the "response rate" is 100%.

  14. Historic US census - 1930

    • redivis.com
    application/jsonl +7
    Updated Jan 10, 2020
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Stanford Center for Population Health Sciences (2020). Historic US census - 1930 [Dataset]. http://doi.org/10.57761/6e5q-rh85
    Explore at:
    application/jsonl, parquet, spss, csv, arrow, stata, avro, sasAvailable download formats
    Dataset updated
    Jan 10, 2020
    Dataset provided by
    Redivis Inc.
    Authors
    Stanford Center for Population Health Sciences
    Time period covered
    Jan 1, 1930 - Dec 31, 1930
    Area covered
    United States
    Description

    Abstract

    The Integrated Public Use Microdata Series (IPUMS) Complete Count Data include more than 650 million individual-level and 7.5 million household-level records. The microdata are the result of collaboration between IPUMS and the nation’s two largest genealogical organizations—Ancestry.com and FamilySearch—and provides the largest and richest source of individual level and household data.

    Before Manuscript Submission

    All manuscripts (and other items you'd like to publish) must be submitted to

    phsdatacore@stanford.edu for approval prior to journal submission.

    We will check your cell sizes and citations.

    For more information about how to cite PHS and PHS datasets, please visit:

    https:/phsdocs.developerhub.io/need-help/citing-phs-data-core

    Documentation

    This dataset was created on 2020-01-10 22:52:11.461 by merging multiple datasets together. The source datasets for this version were:

    IPUMS 1930 households: This dataset includes all households from the 1930 US census.

    IPUMS 1930 persons: This dataset includes all individuals from the 1930 US census.

    IPUMS 1930 Lookup: This dataset includes variable names, variable labels, variable values, and corresponding variable value labels for the IPUMS 1930 datasets.

    Section 2

    Historic data are scarce and often only exists in aggregate tables. The key advantage of historic US census data is the availability of individual and household level characteristics that researchers can tabulate in ways that benefits their specific research questions. The data contain demographic variables, economic variables, migration variables and family variables. Within households, it is possible to create relational data as all relations between household members are known. For example, having data on the mother and her children in a household enables researchers to calculate the mother’s age at birth. Another advantage of the Complete Count data is the possibility to follow individuals over time using a historical identifier.

    In sum: the historic US census data are a unique source for research on social and economic change and can provide population health researchers with information about social and economic determinants.Historic data are scarce and often only exists in aggregate tables. The key advantage of historic US census data is the availability of individual and household level characteristics that researchers can tabulate in ways that benefits their specific research questions. The data contain demographic variables, economic variables, migration variables and family variables. Within households, it is possible to create relational data as all relations between household members are known. For example, having data on the mother and her children in a household enables researchers to calculate the mother’s age at birth. Another advantage of the Complete Count data is the possibility to follow individuals over time using a historical identifier. In sum: the historic US census data are a unique source for research on social and economic change and can provide population health researchers with information about social and economic determinants.

    The historic US 1930 census data was collected in April 1930. Enumerators collected data traveling to households and counting the residents who regularly slept at the household. Individuals lacking permanent housing were counted as residents of the place where they were when the data was collected. Household members absent on the day of data collected were either listed to the household with the help of other household members or were scheduled for the last census subdivision.

    Notes

    • We provide IPUMS household and person data separately so that it is convenient to explore the descriptive statistics on each level. In order to obtain a full dataset, merge the household and person on the variables SERIAL and SERIALP. In order to create a longitudinal dataset, merge datasets on the variable HISTID.

    • Households with more than 60 people in the original data were broken up for processing purposes. Every person in the large households are considered to be in their own household. The original large households can be identified using the variable SPLIT, reconstructed using the variable SPLITHID, and the original count is found in the variable SPLITNUM.

    • Coded variables derived from string variables are still in progress. These variables include: occupation and industry.

    • Missing observations have been allocated and some inconsistencies have been edited for the following variables: SPEAKENG, YRIMMIG, CITIZEN, AGEMARR, AGE, BPL, MBPL, FBPL, LIT, SCHOOL, OWNERSHP, FARM, EMPSTAT, OCC1950, IND1950, MTONGUE, MARST, RACE, SEX, RELATE, CLASSWKR. The flag variables indicating an allocated observation for the associated variables can be included in your extract by clicking the ‘Select data quality flags’ box on the extract summary page.

    • Most inconsistent information was not edite

  15. Data from: Associations between environmental quality and adult asthma...

    • catalog.data.gov
    • s.cnmilf.com
    Updated Nov 12, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. EPA Office of Research and Development (ORD) (2020). Associations between environmental quality and adult asthma prevalence in medical claims data [Dataset]. https://catalog.data.gov/dataset/associations-between-environmental-quality-and-adult-asthma-prevalence-in-medical-claims-d
    Explore at:
    Dataset updated
    Nov 12, 2020
    Dataset provided by
    United States Environmental Protection Agencyhttp://www.epa.gov/
    Description

    The MarketScan health claims database is a compilation of nearly 110 million patient records with information from more than 100 private insurance carriers and large self-insuring companies. Public forms of insurance (i.e., Medicare and Medicaid) are not included, nor are small (< 100 employees) or medium (1000 employees). We excluded the relatively few (n=6735) individuals over 65 years of age because Medicare is the primary insurance of U.S. adults over 65. The EQI was constructed for 2000-2005 for all US counties and is composed of five domains (air, water, built, land, and sociodemographic), each composed of variables to represent the environmental quality of that domain. Domain-specific EQIs were developed using principal components analysis (PCA) to reduce these variables within each domain while the overall EQI was constructed from a second PCA from these individual domains (L. C. Messer et al., 2014). To account for differences in environment across rural and urban counties, the overall and domain-specific EQIs were stratified by rural urban continuum codes (RUCCs) (U.S. Department of Agriculture, 2015). This dataset is not publicly accessible because: EPA cannot release personally identifiable information regarding living individuals, according to the Privacy Act and the Freedom of Information Act (FOIA). This dataset contains information about human research subjects. Because there is potential to identify individual participants and disclose personal information, either alone or in combination with other datasets, individual level data are not appropriate to post for public access. Restricted access may be granted to authorized persons by contacting the party listed. It can be accessed through the following means: Human health data are not available publicly. EQI data are available at: https://edg.epa.gov/data/Public/ORD/NHEERL/EQI. Format: Data are stored as csv files. This dataset is associated with the following publication: Gray, C., D. Lobdell, K. Rappazzo, Y. Jian, J. Jagai, L. Messer, A. Patel, S. Deflorio-Barker, C. Lyttle, J. Solway, and A. Rzhetsky. Associations between environmental quality and adult asthma prevalence in medical claims data. ENVIRONMENTAL RESEARCH. Elsevier B.V., Amsterdam, NETHERLANDS, 166: 529-536, (2018).

  16. N

    United States annual income distribution by work experience and gender...

    • neilsberg.com
    csv, json
    Updated Feb 27, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Neilsberg Research (2025). United States annual income distribution by work experience and gender dataset: Number of individuals ages 15+ with income, 2023 // 2025 Edition [Dataset]. https://www.neilsberg.com/research/datasets/bacb49c0-f4ce-11ef-8577-3860777c1fe6/
    Explore at:
    json, csvAvailable download formats
    Dataset updated
    Feb 27, 2025
    Dataset authored and provided by
    Neilsberg Research
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    United States
    Variables measured
    Income for Male Population, Income for Female Population, Income for Male Population working full time, Income for Male Population working part time, Income for Female Population working full time, Income for Female Population working part time, Number of males working full time for a given income bracket, Number of males working part time for a given income bracket, Number of females working full time for a given income bracket, Number of females working part time for a given income bracket
    Measurement technique
    The data presented in this dataset is derived from the latest U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates. To portray the number of individuals for both the genders (Male and Female), within each income bracket we conducted an initial analysis and categorization of the American Community Survey data. Households are categorized, and median incomes are reported based on the self-identified gender of the head of the household. For additional information about these estimations, please contact us via email at research@neilsberg.com
    Dataset funded by
    Neilsberg Research
    Description
    About this dataset

    Context

    The dataset presents the detailed breakdown of the count of individuals within distinct income brackets, categorizing them by gender (men and women) and employment type - full-time (FT) and part-time (PT), offering valuable insights into the diverse income landscapes within United States. The dataset can be utilized to gain insights into gender-based income distribution within the United States population, aiding in data analysis and decision-making..

    Key observations

    • Employment patterns: Within United States, among individuals aged 15 years and older with income, there were 119.64 million men and 117.56 million women in the workforce. Among them, 66.07 million men were engaged in full-time, year-round employment, while 50.33 million women were in full-time, year-round roles.
    • Annual income under $24,999: Of the male population working full-time, 7.45% fell within the income range of under $24,999, while 10.76% of the female population working full-time was represented in the same income bracket.
    • Annual income above $100,000: 29.72% of men in full-time roles earned incomes exceeding $100,000, while 18.56% of women in full-time positions earned within this income bracket.
    • Refer to the research insights for more key observations on more income brackets ( Annual income under $24,999, Annual income between $25,000 and $49,999, Annual income between $50,000 and $74,999, Annual income between $75,000 and $99,999 and Annual income above $100,000) and employment types (full-time year-round and part-time)
    Content

    When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates.

    Income brackets:

    • $1 to $2,499 or loss
    • $2,500 to $4,999
    • $5,000 to $7,499
    • $7,500 to $9,999
    • $10,000 to $12,499
    • $12,500 to $14,999
    • $15,000 to $17,499
    • $17,500 to $19,999
    • $20,000 to $22,499
    • $22,500 to $24,999
    • $25,000 to $29,999
    • $30,000 to $34,999
    • $35,000 to $39,999
    • $40,000 to $44,999
    • $45,000 to $49,999
    • $50,000 to $54,999
    • $55,000 to $64,999
    • $65,000 to $74,999
    • $75,000 to $99,999
    • $100,000 or more

    Variables / Data Columns

    • Income Bracket: This column showcases 20 income brackets ranging from $1 to $100,000+..
    • Full-Time Males: The count of males employed full-time year-round and earning within a specified income bracket
    • Part-Time Males: The count of males employed part-time and earning within a specified income bracket
    • Full-Time Females: The count of females employed full-time year-round and earning within a specified income bracket
    • Part-Time Females: The count of females employed part-time and earning within a specified income bracket

    Employment type classifications include:

    • Full-time, year-round: A full-time, year-round worker is a person who worked full time (35 or more hours per week) and 50 or more weeks during the previous calendar year.
    • Part-time: A part-time worker is a person who worked less than 35 hours per week during the previous calendar year.

    Good to know

    Margin of Error

    Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.

    Custom data

    If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.

    Inspiration

    Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.

    Recommended for further research

    This dataset is a part of the main dataset for United States median household income by race. You can refer the same here

  17. Adult Datasets

    • kaggle.com
    Updated Jan 22, 2019
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Brijesh B. Mehta (2019). Adult Datasets [Dataset]. https://www.kaggle.com/datasets/brijeshbmehta/adult-datasets
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Jan 22, 2019
    Dataset provided by
    Kagglehttp://kaggle.com/
    Authors
    Brijesh B. Mehta
    Description

    Context

    I am working in the area of Privacy Preserving Big Data Publishing. The state-of-art approaches were tested on Adult dataset. I found that Adult dataset is available at UCI repository but synthetic version wasn't available anywhere. As I am working with big data, I need large size of data to justify my contribution. Therefore, I created my own version of synthetic datasets with 100 thousands, 1 million, 10 millions and 100 millions numbers of records. Here I am sharing the original Adult dataset with approx 33 thousands records and the synthesis versions Adult100k, Adult 1m, Adult10m and Adult100m.

    Content

    Adult dataset contains census information.

    Acknowledgements

    I would like to thank UCI repository for providing the base dataset without which I may not be able to synthesis the large data.

    Inspiration

    The datasets might be helpful to all those who wants to work on Big Data Privacy.

  18. Instagram: distribution of global audiences 2024, by age group

    • statista.com
    • davegsmith.com
    Updated Jun 17, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Stacy Jo Dixon (2025). Instagram: distribution of global audiences 2024, by age group [Dataset]. https://www.statista.com/topics/1164/social-networks/
    Explore at:
    Dataset updated
    Jun 17, 2025
    Dataset provided by
    Statistahttp://statista.com/
    Authors
    Stacy Jo Dixon
    Description

    As of April 2024, almost 32 percent of global Instagram audiences were aged between 18 and 24 years, and 30.6 percent of users were aged between 25 and 34 years. Overall, 16 percent of users belonged to the 35 to 44 year age group.

                  Instagram users
    
                  With roughly one billion monthly active users, Instagram belongs to the most popular social networks worldwide. The social photo sharing app is especially popular in India and in the United States, which have respectively 362.9 million and 169.7 million Instagram users each.
    
                  Instagram features
    
                  One of the most popular features of Instagram is Stories. Users can post photos and videos to their Stories stream and the content is live for others to view for 24 hours before it disappears. In January 2019, the company reported that there were 500 million daily active Instagram Stories users. Instagram Stories directly competes with Snapchat, another photo sharing app that initially became famous due to it’s “vanishing photos” feature.
                  As of the second quarter of 2021, Snapchat had 293 million daily active users.
    
  19. N

    Georgia annual income distribution by work experience and gender dataset:...

    • neilsberg.com
    csv, json
    Updated Feb 27, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Neilsberg Research (2025). Georgia annual income distribution by work experience and gender dataset: Number of individuals ages 15+ with income, 2023 // 2025 Edition [Dataset]. https://www.neilsberg.com/research/datasets/baa7a9c6-f4ce-11ef-8577-3860777c1fe6/
    Explore at:
    json, csvAvailable download formats
    Dataset updated
    Feb 27, 2025
    Dataset authored and provided by
    Neilsberg Research
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Georgia
    Variables measured
    Income for Male Population, Income for Female Population, Income for Male Population working full time, Income for Male Population working part time, Income for Female Population working full time, Income for Female Population working part time, Number of males working full time for a given income bracket, Number of males working part time for a given income bracket, Number of females working full time for a given income bracket, Number of females working part time for a given income bracket
    Measurement technique
    The data presented in this dataset is derived from the latest U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates. To portray the number of individuals for both the genders (Male and Female), within each income bracket we conducted an initial analysis and categorization of the American Community Survey data. Households are categorized, and median incomes are reported based on the self-identified gender of the head of the household. For additional information about these estimations, please contact us via email at research@neilsberg.com
    Dataset funded by
    Neilsberg Research
    Description
    About this dataset

    Context

    The dataset presents the detailed breakdown of the count of individuals within distinct income brackets, categorizing them by gender (men and women) and employment type - full-time (FT) and part-time (PT), offering valuable insights into the diverse income landscapes within Georgia. The dataset can be utilized to gain insights into gender-based income distribution within the Georgia population, aiding in data analysis and decision-making..

    Key observations

    • Employment patterns: Within Georgia, among individuals aged 15 years and older with income, there were 3.71 million men and 3.78 million women in the workforce. Among them, 2.14 million men were engaged in full-time, year-round employment, while 1.74 million women were in full-time, year-round roles.
    • Annual income under $24,999: Of the male population working full-time, 9.14% fell within the income range of under $24,999, while 13.44% of the female population working full-time was represented in the same income bracket.
    • Annual income above $100,000: 26.80% of men in full-time roles earned incomes exceeding $100,000, while 15.42% of women in full-time positions earned within this income bracket.
    • Refer to the research insights for more key observations on more income brackets ( Annual income under $24,999, Annual income between $25,000 and $49,999, Annual income between $50,000 and $74,999, Annual income between $75,000 and $99,999 and Annual income above $100,000) and employment types (full-time year-round and part-time)
    Content

    When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates.

    Income brackets:

    • $1 to $2,499 or loss
    • $2,500 to $4,999
    • $5,000 to $7,499
    • $7,500 to $9,999
    • $10,000 to $12,499
    • $12,500 to $14,999
    • $15,000 to $17,499
    • $17,500 to $19,999
    • $20,000 to $22,499
    • $22,500 to $24,999
    • $25,000 to $29,999
    • $30,000 to $34,999
    • $35,000 to $39,999
    • $40,000 to $44,999
    • $45,000 to $49,999
    • $50,000 to $54,999
    • $55,000 to $64,999
    • $65,000 to $74,999
    • $75,000 to $99,999
    • $100,000 or more

    Variables / Data Columns

    • Income Bracket: This column showcases 20 income brackets ranging from $1 to $100,000+..
    • Full-Time Males: The count of males employed full-time year-round and earning within a specified income bracket
    • Part-Time Males: The count of males employed part-time and earning within a specified income bracket
    • Full-Time Females: The count of females employed full-time year-round and earning within a specified income bracket
    • Part-Time Females: The count of females employed part-time and earning within a specified income bracket

    Employment type classifications include:

    • Full-time, year-round: A full-time, year-round worker is a person who worked full time (35 or more hours per week) and 50 or more weeks during the previous calendar year.
    • Part-time: A part-time worker is a person who worked less than 35 hours per week during the previous calendar year.

    Good to know

    Margin of Error

    Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.

    Custom data

    If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.

    Inspiration

    Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.

    Recommended for further research

    This dataset is a part of the main dataset for Georgia median household income by race. You can refer the same here

  20. P

    Kaggle EyePACS Dataset

    • paperswithcode.com
    Updated Oct 28, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2020). Kaggle EyePACS Dataset [Dataset]. https://paperswithcode.com/dataset/kaggle-eyepacs
    Explore at:
    Dataset updated
    Oct 28, 2020
    Description

    Diabetic retinopathy is the leading cause of blindness in the working-age population of the developed world. It is estimated to affect over 93 million people.

    retina

    The US Center for Disease Control and Prevention estimates that 29.1 million people in the US have diabetes and the World Health Organization estimates that 347 million people have the disease worldwide. Diabetic Retinopathy (DR) is an eye disease associated with long-standing diabetes. Around 40% to 45% of Americans with diabetes have some stage of the disease. Progression to vision impairment can be slowed or averted if DR is detected in time, however this can be difficult as the disease often shows few symptoms until it is too late to provide effective treatment.

    Currently, detecting DR is a time-consuming and manual process that requires a trained clinician to examine and evaluate digital color fundus photographs of the retina. By the time human readers submit their reviews, often a day or two later, the delayed results lead to lost follow up, miscommunication, and delayed treatment.

    Clinicians can identify DR by the presence of lesions associated with the vascular abnormalities caused by the disease. While this approach is effective, its resource demands are high. The expertise and equipment required are often lacking in areas where the rate of diabetes in local populations is high and DR detection is most needed. As the number of individuals with diabetes continues to grow, the infrastructure needed to prevent blindness due to DR will become even more insufficient.

    The need for a comprehensive and automated method of DR screening has long been recognized, and previous efforts have made good progress using image classification, pattern recognition, and machine learning. With color fundus photography as input, the goal of this competition is to push an automated detection system to the limit of what is possible – ideally resulting in models with realistic clinical potential. The winning models will be open sourced to maximize the impact such a model can have on improving DR detection.

    Acknowledgements This competition is sponsored by the California Healthcare Foundation.

    Retinal images were provided by EyePACS, a free platform for retinopathy screening.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Neilsberg Research (2024). United States Age Group Population Dataset: A Complete Breakdown of United States Age Demographics from 0 to 85 Years and Over, Distributed Across 18 Age Groups // 2024 Edition [Dataset]. https://www.neilsberg.com/research/datasets/aabf26b9-4983-11ef-ae5d-3860777c1fe6/

United States Age Group Population Dataset: A Complete Breakdown of United States Age Demographics from 0 to 85 Years and Over, Distributed Across 18 Age Groups // 2024 Edition

Explore at:
csv, jsonAvailable download formats
Dataset updated
Jul 24, 2024
Dataset authored and provided by
Neilsberg Research
License

Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically

Area covered
United States
Variables measured
Population Under 5 Years, Population over 85 years, Population Between 5 and 9 years, Population Between 10 and 14 years, Population Between 15 and 19 years, Population Between 20 and 24 years, Population Between 25 and 29 years, Population Between 30 and 34 years, Population Between 35 and 39 years, Population Between 40 and 44 years, and 9 more
Measurement technique
The data presented in this dataset is derived from the latest U.S. Census Bureau American Community Survey (ACS) 2018-2022 5-Year Estimates. To measure the two variables, namely (a) population and (b) population as a percentage of the total population, we initially analyzed and categorized the data for each of the age groups. For age groups we divided it into roughly a 5 year bucket for ages between 0 and 85. For over 85, we aggregated data into a single group for all ages. For further information regarding these estimates, please feel free to reach out to us via email at research@neilsberg.com.
Dataset funded by
Neilsberg Research
Description
About this dataset

Context

The dataset tabulates the United States population distribution across 18 age groups. It lists the population in each age group along with the percentage population relative of the total population for United States. The dataset can be utilized to understand the population distribution of United States by age. For example, using this dataset, we can identify the largest age group in United States.

Key observations

The largest age group in United States was for the group of age 30 to 34 years years with a population of 22.71 million (6.86%), according to the ACS 2018-2022 5-Year Estimates. At the same time, the smallest age group in United States was the 80 to 84 years years with a population of 6.25 million (1.89%). Source: U.S. Census Bureau American Community Survey (ACS) 2018-2022 5-Year Estimates

Content

When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2018-2022 5-Year Estimates

Age groups:

  • Under 5 years
  • 5 to 9 years
  • 10 to 14 years
  • 15 to 19 years
  • 20 to 24 years
  • 25 to 29 years
  • 30 to 34 years
  • 35 to 39 years
  • 40 to 44 years
  • 45 to 49 years
  • 50 to 54 years
  • 55 to 59 years
  • 60 to 64 years
  • 65 to 69 years
  • 70 to 74 years
  • 75 to 79 years
  • 80 to 84 years
  • 85 years and over

Variables / Data Columns

  • Age Group: This column displays the age group in consideration
  • Population: The population for the specific age group in the United States is shown in this column.
  • % of Total Population: This column displays the population of each age group as a proportion of United States total population. Please note that the sum of all percentages may not equal one due to rounding of values.

Good to know

Margin of Error

Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.

Custom data

If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.

Inspiration

Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.

Recommended for further research

This dataset is a part of the main dataset for United States Population by Age. You can refer the same here

Search
Clear search
Close search
Google apps
Main menu