Facebook
TwitterHow much time do people spend on social media?
As of 2024, the average daily social media usage of internet users worldwide amounted to 143 minutes per day, down from 151 minutes in the previous year. Currently, the country with the most time spent on social media per day is Brazil, with online users spending an average of three hours and 49 minutes on social media each day. In comparison, the daily time spent with social media in
the U.S. was just two hours and 16 minutes. Global social media usageCurrently, the global social network penetration rate is 62.3 percent. Northern Europe had an 81.7 percent social media penetration rate, topping the ranking of global social media usage by region. Eastern and Middle Africa closed the ranking with 10.1 and 9.6 percent usage reach, respectively.
People access social media for a variety of reasons. Users like to find funny or entertaining content and enjoy sharing photos and videos with friends, but mainly use social media to stay in touch with current events friends. Global impact of social mediaSocial media has a wide-reaching and significant impact on not only online activities but also offline behavior and life in general.
During a global online user survey in February 2019, a significant share of respondents stated that social media had increased their access to information, ease of communication, and freedom of expression. On the flip side, respondents also felt that social media had worsened their personal privacy, increased a polarization in politics and heightened everyday distractions.
Facebook
Twitterhttps://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
Description:
The "Daily Social Media Active Users" dataset provides a comprehensive and dynamic look into the digital presence and activity of global users across major social media platforms. The data was generated to simulate real-world usage patterns for 13 popular platforms, including Facebook, YouTube, WhatsApp, Instagram, WeChat, TikTok, Telegram, Snapchat, X (formerly Twitter), Pinterest, Reddit, Threads, LinkedIn, and Quora. This dataset contains 10,000 rows and includes several key fields that offer insights into user demographics, engagement, and usage habits.
Dataset Breakdown:
Platform: The name of the social media platform where the user activity is tracked. It includes globally recognized platforms, such as Facebook, YouTube, and TikTok, that are known for their large, active user bases.
Owner: The company or entity that owns and operates the platform. Examples include Meta for Facebook, Instagram, and WhatsApp, Google for YouTube, and ByteDance for TikTok.
Primary Usage: This category identifies the primary function of each platform. Social media platforms differ in their primary usage, whether it's for social networking, messaging, multimedia sharing, professional networking, or more.
Country: The geographical region where the user is located. The dataset simulates global coverage, showcasing users from diverse locations and regions. It helps in understanding how user behavior varies across different countries.
Daily Time Spent (min): This field tracks how much time a user spends on a given platform on a daily basis, expressed in minutes. Time spent data is critical for understanding user engagement levels and the popularity of specific platforms.
Verified Account: Indicates whether the user has a verified account. This feature mimics real-world patterns where verified users (often public figures, businesses, or influencers) have enhanced status on social media platforms.
Date Joined: The date when the user registered or started using the platform. This data simulates user account history and can provide insights into user retention trends or platform growth over time.
Context and Use Cases:
Researchers, data scientists, and developers can use this dataset to:
Model User Behavior: By analyzing patterns in daily time spent, verified status, and country of origin, users can model and predict social media engagement behavior.
Test Analytics Tools: Social media monitoring and analytics platforms can use this dataset to simulate user activity and optimize their tools for engagement tracking, reporting, and visualization.
Train Machine Learning Algorithms: The dataset can be used to train models for various tasks like user segmentation, recommendation systems, or churn prediction based on engagement metrics.
Create Dashboards: This dataset can serve as the foundation for creating user-friendly dashboards that visualize user trends, platform comparisons, and engagement patterns across the globe.
Conduct Market Research: Business intelligence teams can use the data to understand how various demographics use social media, offering valuable insights into the most engaged regions, platform preferences, and usage behaviors.
Sources of Inspiration: This dataset is inspired by public data from industry reports, such as those from Statista, DataReportal, and other market research platforms. These sources provide insights into the global user base and usage statistics of popular social media platforms. The synthetic nature of this dataset allows for the use of realistic engagement metrics without violating any privacy concerns, making it an ideal tool for educational, analytical, and research purposes.
The structure and design of the dataset are based on real-world usage patterns and aim to represent a variety of users from different backgrounds, countries, and activity levels. This diversity makes it an ideal candidate for testing data-driven solutions and exploring social media trends.
Future Considerations:
As the social media landscape continues to evolve, this dataset can be updated or extended to include new platforms, engagement metrics, or user behaviors. Future iterations may incorporate features like post frequency, follower counts, engagement rates (likes, comments, shares), or even sentiment analysis from user-generated content.
By leveraging this dataset, analysts and data scientists can create better, more effective strategies ...
Facebook
TwitterHow many people use social media?
Social media usage is one of the most popular online activities. In 2024, over five billion people were using social media worldwide, a number projected to increase to over six billion in 2028.
Who uses social media?
Social networking is one of the most popular digital activities worldwide and it is no surprise that social networking penetration across all regions is constantly increasing. As of January 2023, the global social media usage rate stood at 59 percent. This figure is anticipated to grow as lesser developed digital markets catch up with other regions
when it comes to infrastructure development and the availability of cheap mobile devices. In fact, most of social media’s global growth is driven by the increasing usage of mobile devices. Mobile-first market Eastern Asia topped the global ranking of mobile social networking penetration, followed by established digital powerhouses such as the Americas and Northern Europe.
How much time do people spend on social media?
Social media is an integral part of daily internet usage. On average, internet users spend 151 minutes per day on social media and messaging apps, an increase of 40 minutes since 2015. On average, internet users in Latin America had the highest average time spent per day on social media.
What are the most popular social media platforms?
Market leader Facebook was the first social network to surpass one billion registered accounts and currently boasts approximately 2.9 billion monthly active users, making it the most popular social network worldwide. In June 2023, the top social media apps in the Apple App Store included mobile messaging apps WhatsApp and Telegram Messenger, as well as the ever-popular app version of Facebook.
Facebook
TwitterOpen Database License (ODbL) v1.0https://www.opendatacommons.org/licenses/odbl/1.0/
License information was derived automatically
This dataset was originally collected for a data science and machine learning project that aimed at investigating the potential correlation between the amount of time an individual spends on social media and the impact it has on their mental health.
The project involves conducting a survey to collect data, organizing the data, and using machine learning techniques to create a predictive model that can determine whether a person should seek professional help based on their answers to the survey questions.
This project was completed as part of a Statistics course at a university, and the team is currently in the process of writing a report and completing a paper that summarizes and discusses the findings in relation to other research on the topic.
The following is the Google Colab link to the project, done on Jupyter Notebook -
https://colab.research.google.com/drive/1p7P6lL1QUw1TtyUD1odNR4M6TVJK7IYN
The following is the GitHub Repository of the project -
https://github.com/daerkns/social-media-and-mental-health
Libraries used for the Project -
Pandas
Numpy
Matplotlib
Seaborn
Sci-kit Learn
Facebook
Twitterhttps://brightdata.com/licensehttps://brightdata.com/license
Gain valuable insights with our comprehensive Social Media Dataset, designed to help businesses, marketers, and analysts track trends, monitor engagement, and optimize strategies. This dataset provides structured and reliable social media data from multiple platforms.
Dataset Features
User Profiles: Access public social media profiles, including usernames, bios, follower counts, engagement metrics, and more. Ideal for audience analysis, influencer marketing, and competitive research. Posts & Content: Extract posts, captions, hashtags, media (images/videos), timestamps, and engagement metrics such as likes, shares, and comments. Useful for trend analysis, sentiment tracking, and content strategy optimization. Comments & Interactions: Analyze user interactions, including replies, mentions, and discussions. This data helps brands understand audience sentiment and engagement patterns. Hashtag & Trend Tracking: Monitor trending hashtags, topics, and viral content across platforms to stay ahead of industry trends and consumer interests.
Customizable Subsets for Specific Needs Our Social Media Dataset is fully customizable, allowing you to filter data based on platform, region, keywords, engagement levels, or specific user profiles. Whether you need a broad dataset for market research or a focused subset for brand monitoring, we tailor the dataset to your needs.
Popular Use Cases
Brand Monitoring & Reputation Management: Track brand mentions, customer feedback, and sentiment analysis to manage online reputation effectively. Influencer Marketing & Audience Analysis: Identify key influencers, analyze engagement metrics, and optimize influencer partnerships. Competitive Intelligence: Monitor competitor activity, content performance, and audience engagement to refine marketing strategies. Market Research & Consumer Insights: Analyze social media trends, customer preferences, and emerging topics to inform business decisions. AI & Predictive Analytics: Leverage structured social media data for AI-driven trend forecasting, sentiment analysis, and automated content recommendations.
Whether you're tracking brand sentiment, analyzing audience engagement, or monitoring industry trends, our Social Media Dataset provides the structured data you need. Get started today and customize your dataset to fit your business objectives.
Facebook
TwitterFacebook received 73,390 user data requests from federal agencies and courts in the United States during the second half of 2023. The social network produced some user data in 88.84 percent of requests from U.S. federal authorities. The United States accounts for the largest share of Facebook user data requests worldwide.
Facebook
Twitterhttps://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
this graphs was created in R and Ourdataworld:
https://www.googleapis.com/download/storage/v1/b/kaggle-user-content/o/inbox%2F16731800%2F1ad74af652d524e84410babe6ac5fe61%2Fgraph1.png?generation=1711651132634613&alt=media" alt="">
https://www.googleapis.com/download/storage/v1/b/kaggle-user-content/o/inbox%2F16731800%2F7c2b6427cb38f50eae417d741d09cd8d%2Fgraph2.png?generation=1711651140030127&alt=media" alt="">
https://www.googleapis.com/download/storage/v1/b/kaggle-user-content/o/inbox%2F16731800%2Ffea08aaf9fe8038659f6a081729f1bb2%2Fgraph3.gif?generation=1711651145884218&alt=media" alt="">
https://www.googleapis.com/download/storage/v1/b/kaggle-user-content/o/inbox%2F16731800%2F6cbb7538ed8f73a5bfed936ef7396a6d%2Fgraph4.gif?generation=1711651153848054&alt=media" alt="">
Introduction:
The dawn of the internet era has heralded an unprecedented age of connectivity, transforming the way we live, communicate, and interact on a global scale. As of 2020, approximately 60% of the world's population had access to the internet, marking a significant milestone in the digital revolution. From facilitating seamless communication to enabling cross-border collaborations, the internet has become an indispensable tool in our daily lives. This essay explores the multifaceted impact of the internet across various domains, highlighting its role as a catalyst for global connectivity and innovation.
Communication and Collaboration:
One of the most profound implications of the internet is its ability to bridge geographical distances and facilitate instant communication. Platforms such as email, social media, and messaging apps have revolutionized how we interact with one another, transcending borders and time zones. Whether it's connecting with loved ones halfway across the globe or collaborating with colleagues on a project, the internet has made communication more accessible and efficient than ever before. Video conferencing tools have further enhanced remote collaboration, enabling teams to work seamlessly regardless of their physical location. As a result, businesses have embraced remote work models, unlocking new possibilities for flexibility and productivity.
Financial Inclusion and Remittances:
The internet has democratized access to financial services, empowering individuals to participate in the global economy irrespective of their location. Online banking, mobile payment apps, and digital wallets have revolutionized the way we manage our finances, offering convenience and security. Moreover, the internet has facilitated international money transfers, including remittances, which play a vital role in supporting families and economies worldwide. Platforms like PayPal, TransferWise, and Western Union have streamlined the process of sending and receiving money across borders, reducing transaction costs and increasing efficiency. This newfound accessibility to financial services has contributed to greater financial inclusion and economic empowerment, particularly in underserved communities.
Education and Knowledge Sharing:
The internet has democratized access to education, breaking down traditional barriers to learning and knowledge dissemination. Online courses, tutorials, and educational platforms have made quality education accessible to anyone with an internet connection. Whether it's acquiring new skills, pursuing higher education, or accessing resources for self-improvement, the internet offers a wealth of learning opportunities. Open educational resources (OERs) and Massive Open Online Courses (MOOCs) have revolutionized the way we approach education, fostering a culture of lifelong learning and skill development. Furthermore, online forums and communities provide avenues for knowledge sharing and collaboration, enabling individuals to learn from experts and peers across the globe. This democratization of education holds the promise of narrowing the digital divide and fostering global innovation and prosperity.
Cross-Border Social Connections:
The internet has transcended cultural and linguistic barriers, facilitating cross-border social connections and fostering a sense of global citizenship. Social media platforms have become virtual gathering spaces where people from diverse backgrounds can connect, share experiences, and engage in meaningful dialogue. Whether it's forming friendships with individuals from different countries or participating in online communities centered around shared interests, the internet has enriched our social interactions in unprecedented ways. Moreover, platforms like language exchange forums and cultural exchange programs promote intercultural understanding and empathy, bridging gaps between people of different nationalities and backgrounds. By facilitating cross-border social connections, the internet has the potential to foster a more inclusive and interconnected global comm...
Facebook
TwitterBy CrowdFlower [source]
Welcome to the disaster tweets dataset! This collection of tweets holds a wealth of information about global disasters and their effects on people, governments, and organizations all over the world. With over 10,000 tweets collected and carefully annotated with labels of whether they reported an actual disaster or not, this dataset provides unique insight into what these events look like in terms of social media conversations.
This information is derived from a variety of key terms related to disaster events, such as “ablaze” and “pandemonium” which was used to gather each individual tweet for analysis. The columns for each tweet include detailed metadata about the user who posted it along with variables such as keyword relevance and location. Alongside all these attributes is the core text belonging to each individual tweet- giving you access to all sorts of stories from natural disasters, contagious disease outbreaks or conflicts between nations that can be found in one place!
So whatever you're looking for - whether it's observations about first-hand accounts or conducting research on public sentiment during a major event - this dataset offers you an invaluable source full of timely information that could potentially save lives down the line. So take your journey through this data now and embark upon discovering what devastation looks like through social media!
For more datasets, click here.
- 🚨 Your notebook can be here! 🚨!
This dataset contains tweets related to disaster events, including the keyword, location, text, tweetid and userid. It provides insights into how people interact with each other on social media during a disaster. Using this dataset you can gain valuable insight into the dynamics of online communication in disasters and provide an important point of reference for future disaster management initiatives.
- Analyzing the effectiveness of disaster relief and humanitarian aid efforts, by mapping tweets against public data of areas affected by disasters and donations made to help those affected.
- Developing advanced statistical models to predict the magnitude and impact of an oncoming natural disaster using keyword analysis in social media posts related to past disasters.
- Creating text-based classifiers to accurately detect disaster-related tweets in real-time, allowing emergency services providers early warning signs before a potential event occurs
If you use this dataset in your research, please credit the original authors. Data Source
Unknown License - Please check the dataset description for more information.
File: socialmedia-disaster-tweets-DFE.csv | Column name | Description | |:-----------------------|:-----------------------------------------------------------------------------------| | _golden | A boolean value indicating whether the tweet is a golden tweet or not. (Boolean) | | _unit_state | The state of the tweet (e.g. finalized, judged, etc.). (String) | | _trusted_judgments | The number of trusted judgments for the tweet. (Integer) | | _last_judgment_at | The date and time of the last judgment for the tweet. (DateTime) | | choose_one | The label assigned to the tweet (e.g. relevant, not relevant, etc.). (String) | | choose_one_gold | The gold label assigned to the tweet (e.g. relevant, not relevant, etc.). (String) | | keyword | The keyword associated with the tweet. (String) | | location | The location associated with the tweet. (String) | | text | The text content of the tweet. (String) |
If you use this dataset in your research, please credit the original authors. If you use this dataset in your research, please credit CrowdFlower.
Facebook
TwitterDuring a 2024 survey, 77 percent of respondents from Nigeria stated that they used social media as a source of news. In comparison, just 23 percent of Japanese respondents said the same. Large portions of social media users around the world admit that they do not trust social platforms either as media sources or as a way to get news, and yet they continue to access such networks on a daily basis.
Social media: trust and consumption
Despite the majority of adults surveyed in each country reporting that they used social networks to keep up to date with news and current affairs, a 2018 study showed that social media is the least trusted news source in the world. Less than 35 percent of adults in Europe considered social networks to be trustworthy in this respect, yet more than 50 percent of adults in Portugal, Poland, Romania, Hungary, Bulgaria, Slovakia and Croatia said that they got their news on social media.
What is clear is that we live in an era where social media is such an enormous part of daily life that consumers will still use it in spite of their doubts or reservations. Concerns about fake news and propaganda on social media have not stopped billions of users accessing their favorite networks on a daily basis.
Most Millennials in the United States use social media for news every day, and younger consumers in European countries are much more likely to use social networks for national political news than their older peers.
Like it or not, reading news on social is fast becoming the norm for younger generations, and this form of news consumption will likely increase further regardless of whether consumers fully trust their chosen network or not.
Facebook
Twitterhttps://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
Social Media has been taking up everything on the Internet. People getting the latest news, useful resources, life partner and what not. In a world where Social media plays a big role in giving news, we must also know that news which affects our sentiments are going to get spread like a wildfire. Based on the Headline and the title, and according to the date given and the Social media platforms, you have to predict how it has affected the human sentiment scores. You have to predict the column “SentimentTitle” and “SentimentHeadline”.
This is a subset of the dataset of the same name available in the UCI Machine Learning Repository The collected data relates to a period of 8 months, between November 2015 and July 2016, accounting for about 100,000 news items on four different topics: economy, microsoft, obama and palestine.
The attributes for each of the dataset are : - IDLink (numeric): Unique identifier of news items - Title (string): Title of the news item according to the official media sources - Headline (string): Headline of the news item according to the official media sources - Source (string): Original news outlet that published the news item - Topic (string): Query topic used to obtain the items in the official media sources - Publish-Date (timestamp): Date and time of the news items' publication - Facebook (numeric): Final value of the news items' popularity according to the social media source Facebook - Google-Plus (numeric): Final value of the news items' popularity according to the social media source Google+ - LinkedIn (numeric): Final value of the news items' popularity according to the social media source LinkedIn - SentimentTitle: Sentiment score of the title, Higher the score, better is the impact or +ve sentiment and vice-versa. (Target Variable 1) - SentimentHeadline: Sentiment score of the text in the news items' headline. Higher the score, better is the impact or +ve sentiment. (Target Variable 2)
Facebook
TwitterAttribution-NonCommercial-ShareAlike 4.0 (CC BY-NC-SA 4.0)https://creativecommons.org/licenses/by-nc-sa/4.0/
License information was derived automatically
I read a USA Today article from June 2020, where they discuss library usage during the pandemic. Some libraries set up wi-fi networks that extended outside the building, so that people would have access to the Internet even when the library was shutdown. This had me curious about how many people have convenient access to the Internet. There are some companies that rely on web pages instead of phone numbers for customer service. If someone wanted to determine the validity of claims and rumors spread by social media, they either need to have a trusted radio/television new source, or they need convenient access to the Internet to be able to investigate the information (by searching for original articles or unaltered video).
I found a pair of datasets that had information that would let me look at the situation. But while doing data cleaning, I found some problems that required significant effort to diagnose. I figured it would be useful to create a new dataset, and provide it on Kaggle in case others were interested.
I started with the dataset provided by the Institute of Museum and Library Services (IMLS), titled "IMLS Indicators Workbook: Economic Status and Broadband Availability and Adoption". The workbook contained statistics blended from three sources: the U.S. Census Bureau American Community Survey (ACS 5-year 2014-2018 estimates); broadbandnow.com (commercial aggregator of FCC data); and the Bureau of Labor Statistics (local area unemployment statistics).
On December 10, 2020, BroadbandNow.Com (bbn) provided a dataset hosted at GitHub as part of their Open Data Challenge. This had the features I wanted to cross check with the IMLS dataset.
I decided it would be worth it to do a partial clean-up of both sets, and then merge them to create a dataset with fewer problems. However, that still required some choices and compromises, so not problem-free. For example, I retained the 3 BBN features that were present in the original IMLS file, but I plan to use the information saved directly from the BBN file instead.
Facebook
TwitterThe global number of Facebook users was forecast to continuously increase between 2023 and 2027 by in total 391 million users (+14.36 percent). After the fourth consecutive increasing year, the Facebook user base is estimated to reach 3.1 billion users and therefore a new peak in 2027. Notably, the number of Facebook users was continuously increasing over the past years. User figures, shown here regarding the platform Facebook, have been estimated by taking into account company filings or press material, secondary research, app downloads and traffic data. They refer to the average monthly active users over the period and count multiple accounts by persons only once.The shown data are an excerpt of Statista's Key Market Indicators (KMI). The KMI are a collection of primary and secondary indicators on the macro-economic, demographic and technological environment in up to 150 countries and regions worldwide. All indicators are sourced from international and national statistical offices, trade associations and the trade press and they are processed to generate comparable data sets (see supplementary notes under details for more information).
Facebook
Twitterhttps://www.ibisworld.com/about/termsofuse/https://www.ibisworld.com/about/termsofuse/
Over the five years through 2025-26, industry revenue is forecast to expand at a compound annual rate of 20.3% to reach ÂŁ12.5 billion. Social media platforms are integral to people's lives, offering ways to communicate, create and view content and share information. According to Ofcom, approximately 89% of UK internet users in 2023 used social media apps or sites. Teenagers and young adults are the biggest users. Advertising is the primary revenue source for social media platforms, although subscription-based services are gaining momentum as platforms seek to diversify their incomes. TikTok is the success story of the past five years, becoming the most downloaded app between 2020 and 2022, according to Apptopia. The short-form video platform has over 30 million monthly users in the UK in 2025. After Musk's takeover, X, formerly known as Twitter, adjusted its content moderation and allowed previously banned accounts to return. As a result, over 600 advertisers pulled their ads from the site because of fears their brand may be associated with malcontent. In response to falling ad revenue, X has introduced a subscription-based service which enables users to verify themselves and boosts the number of people who view their tweets. Meta-owned Facebook and Instagram have responded by introducing a similar service. In 2025, more social media platforms are using AI to boost user engagement. This improves click-through rates and drives higher advertising revenue. Industry revenue is expected to grow by 6.3% in 2025-26. Over the five years through 2030-31, social media platforms' revenue is projected to climb at an estimated 9.2% to reach ÂŁ19.4 billion. Regulations relating to how data is collected, stored, and shared will force advertisers and platforms to rethink how they can target their desired demographics. The tightening of regulations will raise industry compliance costs, weighing on profit margin. Older age groups present a new revenue opportunity for social media platforms if they can bridge the gap between passive TV consumption and interactive digital engagement. Augmented Reality (AR) technology will move beyond filters to become standard for immersive product trials, interactive ads, and virtual meetups
Facebook
TwitterThe global social media penetration rate in was forecast to continuously increase between 2024 and 2028 by in total 11.6 (+18.19 percent). After the ninth consecutive increasing year, the penetration rate is estimated to reach 75.31 and therefore a new peak in 2028. Notably, the social media penetration rate of was continuously increasing over the past years.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Please cite the following paper when using this dataset: N. Thakur, “MonkeyPox2022Tweets: The first public Twitter dataset on the 2022 MonkeyPox outbreak,” Preprints, 2022, DOI: 10.20944/preprints202206.0172.v2
Abstract The world is currently facing an outbreak of the monkeypox virus, and confirmed cases have been reported from 28 countries. Following a recent “emergency meeting”, the World Health Organization just declared monkeypox a global health emergency. As a result, people from all over the world are using social media platforms, such as Twitter, for information seeking and sharing related to the outbreak, as well as for familiarizing themselves with the guidelines and protocols that are being recommended by various policy-making bodies to reduce the spread of the virus. This is resulting in the generation of tremendous amounts of Big Data related to such paradigms of social media behavior. Mining this Big Data and compiling it in the form of a dataset can serve a wide range of use-cases and applications such as analysis of public opinions, interests, views, perspectives, attitudes, and sentiment towards this outbreak. Therefore, this work presents MonkeyPox2022Tweets, an open-access dataset of Tweets related to the 2022 monkeypox outbreak that were posted on Twitter since the first detected case of this outbreak on May 7, 2022. The dataset is compliant with the privacy policy, developer agreement, and guidelines for content redistribution of Twitter, as well as with the FAIR principles (Findability, Accessibility, Interoperability, and Reusability) principles for scientific data management.
Data Description The dataset consists of a total of 255,363 Tweet IDs of the same number of tweets about monkeypox that were posted on Twitter from 7th May 2022 to 23rd July 2022 (the most recent date at the time of dataset upload). The Tweet IDs are presented in 6 different .txt files based on the timelines of the associated tweets. The following provides the details of these dataset files. • Filename: TweetIDs_Part1.txt (No. of Tweet IDs: 13926, Date Range of the Tweet IDs: May 7, 2022 to May 21, 2022) • Filename: TweetIDs_Part2.txt (No. of Tweet IDs: 17705, Date Range of the Tweet IDs: May 21, 2022 to May 27, 2022) • Filename: TweetIDs_Part3.txt (No. of Tweet IDs: 17585, Date Range of the Tweet IDs: May 27, 2022 to June 5, 2022) • Filename: TweetIDs_Part4.txt (No. of Tweet IDs: 19718, Date Range of the Tweet IDs: June 5, 2022 to June 11, 2022) • Filename: TweetIDs_Part5.txt (No. of Tweet IDs: 47718, Date Range of the Tweet IDs: June 12, 2022 to June 30, 2022) • Filename: TweetIDs_Part6.txt (No. of Tweet IDs: 138711, Date Range of the Tweet IDs: July 1, 2022 to July 23, 2022)
The dataset contains only Tweet IDs in compliance with the terms and conditions mentioned in the privacy policy, developer agreement, and guidelines for content redistribution of Twitter. The Tweet IDs need to be hydrated to be used.
Facebook
Twitterhttps://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
By Twitter [source]
This dataset is an invaluable resource for exploring the type and extent of interactions taking place on social media platforms in relation to TEDTalks. With over 12,000 tweets containing more than 10 attributes each, researchers have a heightened potential to gain insight into their target audience's feedback, measure their engagement through likes, replies and retweets, and ultimately make the much-needed changes for improvement. Analyzing this information allows them to dive deeper into how users interact with TEDTalks posts across Twitter networks and evaluate the level of influence that each post has had in terms of publicity. The dataset contains tweets content, creation dates (UTC), like counts, media links contained within messages (e.g., photos), outlinks (URLs other than those used for media), quote counts (Retweets with comments - RTs from here on out), quoted tweet IDs which contain user IDs who experienced prior interactions with other users through Retweeting or Quote tweeting activities as well as reply count numbers , retweet count amounts , retwetted tweet ids along with URLs/links included in every message as well discovering something we haven't seen before called a 'Unique Tweet ID' along with Conversation ID values that provide further context surrounding these particular encounters on Twitter according to each response. By having access to all this data related to what people are saying about TEDTalks online can help broaden the awareness of topics trending at any given moment giving greater possibilities towards optimizing performance outcomes due viewers reception engagement thus driving better positive results!
For more datasets, click here.
- 🚨 Your notebook can be here! 🚨!
Introduction
Exploring Attributes
In this dataset, you'll find twelve individual attributes associated with each tweet. Here is a brief explanation of the major ones:
Content: The content can be used to identify topics associated with each tweet and gain insights into user behaviour by identifying its keywords. Like Count: The like count can be used to track engagement rate of a particular tweet, and also gives an idea of public opinion towards tweets posted by users throughout their life cycle.
Media: This attribute tracks if any media was attached along with a post or not which could potentially give more understanding about its engagement rate or other related information like reach, seeding etc. Outlinks: Outlinks are URLs shared within posts which could give a deeper understanding about what kind of resources people are looking for when they come across such posts online in general bahavioural analysis from one platform- othersocial media platforms as well or analyzing offtake towards other websites as well considering linked urls/pages present within every post which would help understand overall performance for suggested links or generated leads from them . Quote Count & Quoted Tweet: These two attributes are particularly helpful when conducting sentiment analysis, as they allow you to track how people feel about certain topics discussed in tweets - even those that have been quoted from other sources such as blogs or news articles! Reply Count & Retweeted Tweet : Reply count reveals directly proportional relationship between engagements vs replied counts & retweeted tweets help provide insights into viral trends based upon retweeting patterns & gives us some deeper level customer journeys perspective indirectly also if analyzed further using different sets of data say customer information availible through different CRMplatforms/databases etc..Analyzing Data
With so many factors at play, analyzing data properly BEFORE making conclusions becomes all the more important. The process begins by cleaning unnecessary variables - including deleting duplicate entries (if any). Next step involves exploring the content columns for keyword extraction and identifying distinct trends amongst those generated words/phrases based on trends over a particular period (monthly/yearly). Additionally, analytics tools may be employed for better visuals regarding growth rate comparisons between outlinks usage numbers and retweets/likes generated over certain timeframe specified especially during specific marketing campaigns’ execution frames
- Analysis of Engagement Drivers: This dataset can be used to effectively analyze the engagement drivers that are driving user interactions with TEDTalks content, such as the volume and...
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
ABSTRACT
The Albero study analyzes the personal transitions of a cohort of high school students at the end of their studies. The data consist of (a) the longitudinal social network of the students, before (n = 69) and after (n = 57) finishing their studies; and (b) the longitudinal study of the personal networks of each of the participants in the research. The two observations of the complete social network are presented in two matrices in Excel format. For each respondent, two square matrices of 45 alters of their personal networks are provided, also in Excel format. For each respondent, both psychological sense of community and frequency of commuting is provided in a SAV file (SPSS). The database allows the combined analysis of social networks and personal networks of the same set of individuals.
INTRODUCTION
Ecological transitions are key moments in the life of an individual that occur as a result of a change of role or context. This is the case, for example, of the completion of high school studies, when young people start their university studies or try to enter the labor market. These transitions are turning points that carry a risk or an opportunity (Seidman & French, 2004). That is why they have received special attention in research and psychological practice, both from a developmental point of view and in the situational analysis of stress or in the implementation of preventive strategies.
The data we present in this article describe the ecological transition of a group of young people from Alcala de Guadaira, a town located about 16 kilometers from Seville. Specifically, in the “Albero” study we monitored the transition of a cohort of secondary school students at the end of the last pre-university academic year. It is a turning point in which most of them began a metropolitan lifestyle, with more displacements to the capital and a slight decrease in identification with the place of residence (Maya-Jariego, Holgado & Lubbers, 2018).
Normative transitions, such as the completion of studies, affect a group of individuals simultaneously, so they can be analyzed both individually and collectively. From an individual point of view, each student stops attending the institute, which is replaced by new interaction contexts. Consequently, the structure and composition of their personal networks are transformed. From a collective point of view, the network of friendships of the cohort of high school students enters into a gradual process of disintegration and fragmentation into subgroups (Maya-Jariego, Lubbers & Molina, 2019).
These two levels, individual and collective, were evaluated in the “Albero” study. One of the peculiarities of this database is that we combine the analysis of a complete social network with a survey of personal networks in the same set of individuals, with a longitudinal design before and after finishing high school. This allows combining the study of the multiple contexts in which each individual participates, assessed through the analysis of a sample of personal networks (Maya-Jariego, 2018), with the in-depth analysis of a specific context (the relationships between a promotion of students in the institute), through the analysis of the complete network of interactions. This potentially allows us to examine the covariation of the social network with the individual differences in the structure of personal networks.
PARTICIPANTS
The social network and personal networks of the students of the last two years of high school of an institute of Alcala de Guadaira (Seville) were analyzed. The longitudinal follow-up covered approximately a year and a half. The first wave was composed of 31 men (44.9%) and 38 women (55.1%) who live in Alcala de Guadaira, and who mostly expect to live in Alcala (36.2%) or in Seville (37.7%) in the future. In the second wave, information was obtained from 27 men (47.4%) and 30 women (52.6%).
DATE STRUCTURE AND ARCHIVES FORMAT
The data is organized in two longitudinal observations, with information on the complete social network of the cohort of students of the last year, the personal networks of each individual and complementary information on the sense of community and frequency of metropolitan movements, among other variables.
Social network
The file “Red_Social_t1.xlsx” is a valued matrix of 69 actors that gathers the relations of knowledge and friendship between the cohort of students of the last year of high school in the first observation. The file “Red_Social_t2.xlsx” is a valued matrix of 57 actors obtained 17 months after the first observation.
The data is organized in two longitudinal observations, with information on the complete social network of the cohort of students of the last year, the personal networks of each individual and complementary information on the sense of community and frequency of metropolitan movements, among other variables.
In order to generate each complete social network, the list of 77 students enrolled in the last year of high school was passed to the respondents, asking that in each case they indicate the type of relationship, according to the following values: 1, “his/her name sounds familiar"; 2, "I know him/her"; 3, "we talk from time to time"; 4, "we have good relationship"; and 5, "we are friends." The two resulting complete networks are represented in Figure 2. In the second observation, it is a comparatively less dense network, reflecting the gradual disintegration process that the student group has initiated.
Personal networks
Also in this case the information is organized in two observations. The compressed file “Redes_Personales_t1.csv” includes 69 folders, corresponding to personal networks. Each folder includes a valued matrix of 45 alters in CSV format. Likewise, in each case a graphic representation of the network obtained with Visone (Brandes and Wagner, 2004) is included. Relationship values range from 0 (do not know each other) to 2 (know each other very well).
Second, the compressed file “Redes_Personales_t2.csv” includes 57 folders, with the information equivalent to each respondent referred to the second observation, that is, 17 months after the first interview. The structure of the data is the same as in the first observation.
Sense of community and metropolitan displacements
The SPSS file “Albero.sav” collects the survey data, together with some information-summary of the network data related to each respondent. The 69 rows correspond to the 69 individuals interviewed, and the 118 columns to the variables related to each of them in T1 and T2, according to the following list:
• Socio-economic data.
• Data on habitual residence.
• Information on intercity journeys.
• Identity and sense of community.
• Personal network indicators.
• Social network indicators.
DATA ACCESS
Social networks and personal networks are available in CSV format. This allows its use directly with UCINET, Visone, Pajek or Gephi, among others, and they can be exported as Excel or text format files, to be used with other programs.
The visual representation of the personal networks of the respondents in both waves is available in the following album of the Graphic Gallery of Personal Networks on Flickr: <https://www.flickr.com/photos/25906481@N07/albums/72157667029974755>.
In previous work we analyzed the effects of personal networks on the longitudinal evolution of the socio-centric network. It also includes additional details about the instruments applied. In case of using the data, please quote the following reference:
The English version of this article can be downloaded from: https://tinyurl.com/yy9s2byl
CONCLUSION
The database of the “Albero” study allows us to explore the co-evolution of social networks and personal networks. In this way, we can examine the mutual dependence of individual trajectories and the structure of the relationships of the cohort of students as a whole. The complete social network corresponds to the same context of interaction: the secondary school. However, personal networks collect information from the different contexts in which the individual participates. The structural properties of personal networks may partly explain individual differences in the position of each student in the entire social network. In turn, the properties of the entire social network partly determine the structure of opportunities in which individual trajectories are displayed.
The longitudinal character and the combination of the personal networks of individuals with a common complete social network, make this database have unique characteristics. It may be of interest both for multi-level analysis and for the study of individual differences.
ACKNOWLEDGEMENTS
The fieldwork for this study was supported by the Complementary Actions of the Ministry of Education and Science (SEJ2005-25683), and was part of the project “Dynamics of actors and networks across levels: individuals,
Facebook
Twitterhttps://brightdata.com/licensehttps://brightdata.com/license
Access detailed insights with our Instagram datasets, featuring follower counts, verified status, account types, and engagement scores. Explore post information including URLs, descriptions, hashtags, comments, likes, media, posting dates, locations, and reel URLs. Perfect for understanding user engagement and content trends to drive informed decisions and optimize your social media strategies. Over 750M records available Price starts at $250/100K records Data formats are available in JSON, NDJSON, CSV, XLSX and Parquet. 100% ethical and compliant data collection Included datapoints:
Account Fbid Id Followers Posts Count Is Business Account Is Professional Account Is Verified Avg Engagement External Url Biography Business Category Name Category Name Post Hashtags Following Posts Profile Image Link Profile URL Profile Name Highlights Count Highlights Full Name Is Private Bio Hashtags URL Is Joined Recently And much more
Facebook
TwitterWhich county has the most Facebook users?
There are more than 378 million Facebook users in India alone, making it the leading country in terms of Facebook audience size. To put this into context, if India’s Facebook audience were a country then it would be ranked third in terms of largest population worldwide. Apart from India, there are several other markets with more than 100 million Facebook users each: The United States, Indonesia, and Brazil with 193.8 million, 119.05 million, and 112.55 million Facebook users respectively.
Facebook – the most used social media
Meta, the company that was previously called Facebook, owns four of the most popular social media platforms worldwide, WhatsApp, Facebook Messenger, Facebook, and Instagram. As of the third quarter of 2021, there were around 3,5 billion cumulative monthly users of the company’s products worldwide. With around 2.9 billion monthly active users, Facebook is the most popular social media worldwide. With an audience of this scale, it is no surprise that the vast majority of Facebook’s revenue is generated through advertising.
Facebook usage by device
As of July 2021, it was found that 98.5 percent of active users accessed their Facebook account from mobile devices. In fact, almost 81.8 percent of Facebook audiences worldwide access the platform only via mobile phone. Facebook is not only available through mobile browser as the company has published several mobile apps for users to access their products and services. As of the third quarter 2021, the four core Meta products were leading the ranking of most downloaded mobile apps worldwide, with WhatsApp amassing approximately six billion downloads.
Facebook
TwitterGovernments may have the capacity to flood social media with fake news, but little is known about the use of flooding by ordinary voters. In this work, we identify 2107 registered US voters that account for 80% of the fake news shared on Twitter during the 2020 US presidential election by an entire panel of 664,391 voters. We find that supersharers are important members of the network, reaching a sizable 5.2% of registered voters on the platform. Supersharers have a significant overrepresentation of women, older adults, and registered Republicans. Supersharers' massive volume does not seem automated but is rather generated through manual and persistent retweeting. These findings highlight a vulnerability of social media for democracy, where a small group of people distort the political reality for many., This dataset contains aggregated information necessary to replicate the results reported in our work on Supersharers of Fake News on Twitter while respecting and preserving the privacy expectations of individuals included in the analysis. No individual-level data is provided as part of this dataset.Ă‚ The data collection process that enabled the creation of this dataset leveraged a large-scale panel of registered U.S. voters matched to Twitter accounts. We examined the activity of 664,391 panel members who were active on Twitter during the months of the 2020 U.S. presidential election (August to November 2020, inclusive), and identified a subset of 2,107 supersharers, which are the most prolific sharers of fake news in the panel that together account for 80% of fake news content shared on the platform. We rely on a source-level definition of fake news, that uses the manually-labeled list of fake news sites by Grinberg et al. 2019 and an updated list based on NewsGuard ratings (commercial..., , # Supersharers of Fake News on Twitter
This repository contains data and code for replication of the results presented in the paper.
The folders are mostly organized by research questions as detailed below. Each folder contains the code and publicly available data necessary for the replication of results. Importantly, no individual-level data is provided as part of this repository. De-identified individual-level data can be attained for IRB-approved uses under the terms and conditions specified in the paper. Once access is granted, the restricted-access data is expected to be located under ./restricted_data.
The folders in this repository are the following:
Code under the preprocessing folder contains the following:
Facebook
TwitterHow much time do people spend on social media?
As of 2024, the average daily social media usage of internet users worldwide amounted to 143 minutes per day, down from 151 minutes in the previous year. Currently, the country with the most time spent on social media per day is Brazil, with online users spending an average of three hours and 49 minutes on social media each day. In comparison, the daily time spent with social media in
the U.S. was just two hours and 16 minutes. Global social media usageCurrently, the global social network penetration rate is 62.3 percent. Northern Europe had an 81.7 percent social media penetration rate, topping the ranking of global social media usage by region. Eastern and Middle Africa closed the ranking with 10.1 and 9.6 percent usage reach, respectively.
People access social media for a variety of reasons. Users like to find funny or entertaining content and enjoy sharing photos and videos with friends, but mainly use social media to stay in touch with current events friends. Global impact of social mediaSocial media has a wide-reaching and significant impact on not only online activities but also offline behavior and life in general.
During a global online user survey in February 2019, a significant share of respondents stated that social media had increased their access to information, ease of communication, and freedom of expression. On the flip side, respondents also felt that social media had worsened their personal privacy, increased a polarization in politics and heightened everyday distractions.