100+ datasets found
  1. d

    HIV/AIDS Cases

    • catalog.data.gov
    • data.chhs.ca.gov
    • +1more
    Updated Nov 27, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    California Department of Public Health (2024). HIV/AIDS Cases [Dataset]. https://catalog.data.gov/dataset/hiv-aids-cases-5805c
    Explore at:
    Dataset updated
    Nov 27, 2024
    Dataset provided by
    California Department of Public Health
    Description

    This data set includes tables on persons living with HIV/AIDS, newly diagnosed HIV cases and all cause deaths in HIV/AIDS cases by gender, age, race/ethnicity and transmission category. In all tables, cases are reported as of December 31 of the given year, as reported by January 9, 2019, to allow a minimum of 12 months reporting delay. Gender is determined by both current gender and sex at birth variables; transgender values are assigned when current gender is identified as "Transgender" or when a discrepancy is identified between a person's sex at birth and their current gender (e.g., cases where sex at birth is "Male" and current gender is "Female" will become Transgender: Male to Female.) Prior to 2003, Asian and Native Hawaiian/Pacific Islanders were classified as one combined group. In order to present these race/ethnicities separately, living cases recorded under this combined classification were split and redistributed according to their expected proportional population representation estimated from post-2003 data.

  2. d

    HIV/AIDS Diagnoses by Neighborhood, Age Group, and Race/Ethnicity

    • catalog.data.gov
    • data.cityofnewyork.us
    Updated Mar 18, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    data.cityofnewyork.us (2023). HIV/AIDS Diagnoses by Neighborhood, Age Group, and Race/Ethnicity [Dataset]. https://catalog.data.gov/dataset/hiv-aids-diagnoses-by-neighborhood-age-group-and-race-ethnicity
    Explore at:
    Dataset updated
    Mar 18, 2023
    Dataset provided by
    data.cityofnewyork.us
    Description

    These data were reported to the NYC DOHMH by March 31, 2021 This dataset includes data on new diagnoses of HIV and AIDS in NYC for the calendar years 2016 through 2020. Reported cases and case rates (per 100,000 population) are stratified by United Hospital Fund (UHF) neighborhood, age group, and race/ethnicity. Note: - Cells marked "NA" cannot be calculated because of cell suppression or 0 denominator.

  3. a

    Indicator 3.3.1: Number of new HIV infections per 1 000 uninfected...

    • sdgs-amerigeoss.opendata.arcgis.com
    • sdgs.amerigeoss.org
    • +2more
    Updated Sep 9, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    UN DESA Statistics Division (2021). Indicator 3.3.1: Number of new HIV infections per 1 000 uninfected population by sex and age (per 1 000 uninfected population) [Dataset]. https://sdgs-amerigeoss.opendata.arcgis.com/items/16a4939c88964a4094c9d22d8ff83c43
    Explore at:
    Dataset updated
    Sep 9, 2021
    Dataset authored and provided by
    UN DESA Statistics Division
    Area covered
    Pacific Ocean, North Pacific Ocean
    Description

    Series Name: Number of new HIV infections per 1 000 uninfected population by sex and age (per 1 000 uninfected population)Series Code: SH_HIV_INCDRelease Version: 2021.Q2.G.03 This dataset is the part of the Global SDG Indicator Database compiled through the UN System in preparation for the Secretary-General's annual report on Progress towards the Sustainable Development Goals.Indicator 3.3.1: Number of new HIV infections per 1,000 uninfected population, by sex, age and key populationsTarget 3.3: By 2030, end the epidemics of AIDS, tuberculosis, malaria and neglected tropical diseases and combat hepatitis, water-borne diseases and other communicable diseasesGoal 3: Ensure healthy lives and promote well-being for all at all agesFor more information on the compilation methodology of this dataset, see https://unstats.un.org/sdgs/metadata/

  4. a

    Word Bank - HIV Rates (% female)

    • hub.arcgis.com
    Updated Mar 8, 2016
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Urban Observatory by Esri (2016). Word Bank - HIV Rates (% female) [Dataset]. https://hub.arcgis.com/items/cdbdbe3b563540a0b44bbc79670541a0
    Explore at:
    Dataset updated
    Mar 8, 2016
    Dataset authored and provided by
    Urban Observatory by Esri
    License

    https://data.worldbank.org/summary-terms-of-usehttps://data.worldbank.org/summary-terms-of-use

    Area covered
    Description

    This map displays the percentage of people ages 15+ with HIV that are female from the 2013 to 2014 dataset. According to the World Bank: "HIV prevalence rates reflect the rate of HIV infection in each country's population. Low national prevalence rates can be misleading, however. They often disguise epidemics that are initially concentrated in certain localities or population groups and threaten to spill over into the wider population. In many developing countries most new infections occur in young adults, with young women especially vulnerable. Data on HIV are from the Joint United Nations Programme on HIV/AIDS (UNAIDS). Changes in procedures and assumptions for estimating the data and better coordination with countries have resulted in improved estimates of HIV and AIDS. The models, which are routinely updated, track the course of HIV epidemics and their impact, making full use of information in HIV prevalence trends from surveillance data as well as survey data. The models take into account reduced infectivity among people receiving antiretroviral therapy (which is having a larger impact on HIV prevalence and allowing HIV-positive people to live longer) and allow for changes in urbanization over time in generalized epidemics. The estimates include plausibility bounds, which reflect the certainty associated with each of the estimates."Source: The World Bank

  5. U

    United States US: Incidence of HIV: per 1,000 Uninfected Population

    • ceicdata.com
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    CEICdata.com, United States US: Incidence of HIV: per 1,000 Uninfected Population [Dataset]. https://www.ceicdata.com/en/united-states/social-health-statistics/us-incidence-of-hiv-per-1000-uninfected-population
    Explore at:
    Dataset provided by
    CEICdata.com
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Dec 1, 2010 - Dec 1, 2019
    Area covered
    United States
    Description

    United States US: Incidence of HIV: per 1,000 Uninfected Population data was reported at 0.110 Ratio in 2019. This stayed constant from the previous number of 0.110 Ratio for 2018. United States US: Incidence of HIV: per 1,000 Uninfected Population data is updated yearly, averaging 0.120 Ratio from Dec 2010 (Median) to 2019, with 10 observations. The data reached an all-time high of 0.130 Ratio in 2012 and a record low of 0.110 Ratio in 2019. United States US: Incidence of HIV: per 1,000 Uninfected Population data remains active status in CEIC and is reported by World Bank. The data is categorized under Global Database’s United States – Table US.World Bank.WDI: Social: Health Statistics. Number of new HIV infections among uninfected populations expressed per 1,000 uninfected population in the year before the period.;UNAIDS estimates.;Weighted average;This is the Sustainable Development Goal indicator 3.3.1 [https://unstats.un.org/sdgs/metadata/].

  6. a

    Nigeria - HIV Statistics by State

    • grid3.africageoportal.com
    • nigeria.africageoportal.com
    Updated Nov 5, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    GRID3 (2020). Nigeria - HIV Statistics by State [Dataset]. https://grid3.africageoportal.com/datasets/949ae375295e414db90cde24162f76ca
    Explore at:
    Dataset updated
    Nov 5, 2020
    Dataset authored and provided by
    GRID3
    Area covered
    Description

    This shapefile provides HIV statistics by state that can be used in conjunction with the co-morbidities risk profile to provide more nuance on levels of risk by state. Note that values of 0 mean there is no data for that particular state.The source of data for HIV prevalence rates is the Nigeria Institute for Health Metrics and Evaluation (IHME), HIV Prevalence Geospatial Estimates 2000-2017.

  7. HIV/AIDS yearly statistics in Hong Kong

    • data.gov.hk
    Updated Dec 25, 2019
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    data.gov.hk (2019). HIV/AIDS yearly statistics in Hong Kong [Dataset]. https://data.gov.hk/en-data/dataset/hk-dh-dh_spp-dh-spp-hiv-aids-1984-to-2023-yearly-figures
    Explore at:
    Dataset updated
    Dec 25, 2019
    Dataset provided by
    data.gov.hk
    Area covered
    Hong Kong
    Description

    HIV/AIDS yearly statistics in Hong Kong 1984 - 2023

  8. d

    HIV Care Continuum

    • catalog.data.gov
    • datahub.austintexas.gov
    • +3more
    Updated Aug 25, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    data.austintexas.gov (2024). HIV Care Continuum [Dataset]. https://catalog.data.gov/dataset/hiv-care-continuum
    Explore at:
    Dataset updated
    Aug 25, 2024
    Dataset provided by
    data.austintexas.gov
    Description

    The ultimate goal of HIV treatment is to achieve viral suppression, which means the amount of HIV in the body is very low or undetectable. This is important for people with HIV to stay healthy, have improved quality of life, and live longer. People living with HIV who maintain viral suppression have effectively no risk of passing HIV to others. Texas DSHS is the source of this data. Diagnosed- received a diagnosis of HIV Linked to care-visited an HIV heath care provider within 1 month (30 days) after learning they were HIV positive Received- or were retained in care** received medical care for HIV infection Viral suppression- their HIV “viral load” – the amount of HIV in the blood – was at a very low level.

  9. f

    Data from: Modeling the Marked Presence-Only Data: A Case Study of...

    • tandf.figshare.com
    pdf
    Updated Jun 6, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Ian Laga; Xiaoyue Niu; Le Bao (2023). Modeling the Marked Presence-Only Data: A Case Study of Estimating the Female Sex Worker Size in Malawi [Dataset]. http://doi.org/10.6084/m9.figshare.14818313.v2
    Explore at:
    pdfAvailable download formats
    Dataset updated
    Jun 6, 2023
    Dataset provided by
    Taylor & Francis
    Authors
    Ian Laga; Xiaoyue Niu; Le Bao
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Malawi
    Description

    Certain subpopulations like female sex workers (FSW), men who have sex with men (MSM), and people who inject drugs (PWID) often have higher prevalence of HIV/AIDS and are difficult to map directly due to stigma, discrimination, and criminalization. Fine-scale mapping of those populations contributes to the progress toward reducing the inequalities and ending the AIDS epidemic. In 2016 and 2017, the PLACE surveys were conducted at 3290 venues in 20 out of the total 28 districts in Malawi to estimate the FSW sizes. These venues represent a presence-only dataset where, instead of knowing both where people live and do not live (presence–absence data), only information about visited locations is available. In this study, we develop a Bayesian model for presence-only data and utilize the PLACE data to estimate the FSW size and uncertainty interval at a1.5×1.5-km resolution for all of Malawi. The estimates can also be aggregated to any desirable level (city/district/region) for implementing targeted HIV prevention and treatment programs in FSW communities, which have been successful in lowering the incidence of HIV and other sexually transmitted infections. Supplementary materials for this article, including a standardized description of the materials available for reproducing the work, are available as an online supplement.

  10. C

    Cyprus CY: Incidence of HIV: per 1,000 Uninfected Population

    • ceicdata.com
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    CEICdata.com, Cyprus CY: Incidence of HIV: per 1,000 Uninfected Population [Dataset]. https://www.ceicdata.com/en/cyprus/social-health-statistics/cy-incidence-of-hiv-per-1000-uninfected-population
    Explore at:
    Dataset provided by
    CEICdata.com
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Dec 1, 2010 - Dec 1, 2021
    Area covered
    Cyprus
    Description

    Cyprus CY: Incidence of HIV: per 1,000 Uninfected Population data was reported at 0.030 Ratio in 2021. This stayed constant from the previous number of 0.030 Ratio for 2020. Cyprus CY: Incidence of HIV: per 1,000 Uninfected Population data is updated yearly, averaging 0.035 Ratio from Dec 1990 (Median) to 2021, with 32 observations. The data reached an all-time high of 0.060 Ratio in 2015 and a record low of 0.020 Ratio in 2000. Cyprus CY: Incidence of HIV: per 1,000 Uninfected Population data remains active status in CEIC and is reported by World Bank. The data is categorized under Global Database’s Cyprus – Table CY.World Bank.WDI: Social: Health Statistics. Number of new HIV infections among uninfected populations expressed per 1,000 uninfected population in the year before the period.;UNAIDS estimates.;Weighted average;This is the Sustainable Development Goal indicator 3.3.1 [https://unstats.un.org/sdgs/metadata/].

  11. I

    Data for Spatial Accessibility to HIV (Human Immunodeficiency Virus)...

    • databank.illinois.edu
    Updated Aug 9, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Data for Spatial Accessibility to HIV (Human Immunodeficiency Virus) Testing, Treatment, and Prevention Services in Illinois and Chicago, USA [Dataset]. https://databank.illinois.edu/datasets/IDB-9096476
    Explore at:
    Dataset updated
    Aug 9, 2022
    Authors
    Jeon-Young Kang; Bita Fayaz Farkhad; Man-pui Sally Chan; Alexander Michels; Dolores Albarracin; Shaowen Wang
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Chicago, Illinois
    Dataset funded by
    U.S. National Science Foundation (NSF)
    U.S. National Institutes of Health (NIH)
    Description

    This dataset helps to investigate the Spatial Accessibility to HIV Testing, Treatment, and Prevention Services in Illinois and Chicago, USA. The main components are: population data, healthcare data, GTFS feeds, and road network data. The core components are: 1) GTFS which contains GTFS (General Transit Feed Specification) data which is provided by Chicago Transit Authority (CTA) from Google's GTFS feeds. Documentation defines the format and structure of the files that comprise a GTFS dataset: https://developers.google.com/transit/gtfs/reference?csw=1. 2) HealthCare contains shapefiles describing HIV healthcare providers in Chicago and Illinois respectively. The services come from Locator.HIV.gov. 3) PopData contains population data for Chicago and Illinois respectively. Data come from The American Community Survey and AIDSVu. AIDSVu (https://map.aidsvu.org/map) provides data on PLWH in Chicago at the census tract level for the year 2017 and in the State of Illinois at the county level for the year 2016. The American Community Survey (ACS) provided the number of people aged 15 to 64 at the census tract level for the year 2017 and at the county level for the year 2016. The ACS provides annually updated information on demographic and socio economic characteristics of people and housing in the U.S. 4) RoadNetwork contains the road networks for Chicago and Illinois respectively from OpenStreetMap using the Python osmnx package. The abstract for our paper is: Accomplishing the goals outlined in “Ending the HIV (Human Immunodeficiency Virus) Epidemic: A Plan for America Initiative” will require properly estimating and increasing access to HIV testing, treatment, and prevention services. In this research, a computational spatial method for estimating access was applied to measure distance to services from all points of a city or state while considering the size of the population in need for services as well as both driving and public transportation. Specifically, this study employed the enhanced two-step floating catchment area (E2SFCA) method to measure spatial accessibility to HIV testing, treatment (i.e., Ryan White HIV/AIDS program), and prevention (i.e., Pre-Exposure Prophylaxis [PrEP]) services. The method considered the spatial location of MSM (Men Who have Sex with Men), PLWH (People Living with HIV), and the general adult population 15-64 depending on what HIV services the U.S. Centers for Disease Control (CDC) recommends for each group. The study delineated service- and population-specific accessibility maps, demonstrating the method’s utility by analyzing data corresponding to the city of Chicago and the state of Illinois. Findings indicated health disparities in the south and the northwest of Chicago and particular areas in Illinois, as well as unique health disparities for public transportation compared to driving. The methodology details and computer code are shared for use in research and public policy.

  12. A

    Azerbaijan AZ: Incidence of HIV: per 1,000 Uninfected Population

    • ceicdata.com
    Updated Apr 15, 2021
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    CEICdata.com (2021). Azerbaijan AZ: Incidence of HIV: per 1,000 Uninfected Population [Dataset]. https://www.ceicdata.com/en/azerbaijan/social-health-statistics/az-incidence-of-hiv-per-1000-uninfected-population
    Explore at:
    Dataset updated
    Apr 15, 2021
    Dataset provided by
    CEICdata.com
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Dec 1, 2011 - Dec 1, 2022
    Area covered
    Azerbaijan
    Description

    Azerbaijan Incidence of HIV: per 1,000 Uninfected Population data was reported at 0.050 Ratio in 2022. This stayed constant from the previous number of 0.050 Ratio for 2021. Azerbaijan Incidence of HIV: per 1,000 Uninfected Population data is updated yearly, averaging 0.060 Ratio from Dec 1990 (Median) to 2022, with 33 observations. The data reached an all-time high of 0.110 Ratio in 2004 and a record low of 0.010 Ratio in 1993. Azerbaijan Incidence of HIV: per 1,000 Uninfected Population data remains active status in CEIC and is reported by World Bank. The data is categorized under Global Database’s Azerbaijan – Table AZ.World Bank.WDI: Social: Health Statistics. Number of new HIV infections among uninfected populations expressed per 1,000 uninfected population in the year before the period.;UNAIDS estimates.;Weighted average;This is the Sustainable Development Goal indicator 3.3.1 [https://unstats.un.org/sdgs/metadata/].

  13. US State Level HIV Cases

    • johnsnowlabs.com
    csv
    Updated Jan 20, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    John Snow Labs (2021). US State Level HIV Cases [Dataset]. https://www.johnsnowlabs.com/marketplace/us-state-level-hiv-cases/
    Explore at:
    csvAvailable download formats
    Dataset updated
    Jan 20, 2021
    Dataset authored and provided by
    John Snow Labs
    Time period covered
    2017 - 2019
    Area covered
    United States
    Description

    This dataset contains surveillance data on diagnoses of HIV for the United States in estimates rates and numbers for Human Immunodeficiency Virus (HIV) infection diagnosis and stage 3 infection Acquired Immunodeficiency Syndrome (AIDS) as collected by the Centers for Disease Control and Prevention (CDC).

  14. a

    Number of new HIV infections per 1,000 uninfected population, by sex, age...

    • arc-gis-hub-home-arcgishub.hub.arcgis.com
    • hub.arcgis.com
    Updated May 16, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    UN DESA Statistics Division (2023). Number of new HIV infections per 1,000 uninfected population, by sex, age and key populations [Dataset]. https://arc-gis-hub-home-arcgishub.hub.arcgis.com/datasets/1d5da8d7e24441d89b91e6d8c4935b92
    Explore at:
    Dataset updated
    May 16, 2023
    Dataset authored and provided by
    UN DESA Statistics Division
    Description

    Data Series: Number of new HIV infections per 1,000 uninfected population, by sex, age and key populations Indicator: III.8 - Number of new HIV infections per 1,000 uninfected population, by sex, age and key populations Source year: 2022 This dataset is part of the Minimum Gender Dataset compiled by the United Nations Statistics Division. Domain: Health and related services

  15. U

    United Arab Emirates AE: Incidence of HIV: per 1,000 Uninfected Population

    • ceicdata.com
    Updated Jun 15, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    CEICdata.com (2024). United Arab Emirates AE: Incidence of HIV: per 1,000 Uninfected Population [Dataset]. https://www.ceicdata.com/en/united-arab-emirates/health-statistics/ae-incidence-of-hiv-per-1000-uninfected-population
    Explore at:
    Dataset updated
    Jun 15, 2024
    Dataset provided by
    CEICdata.com
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Dec 1, 2009 - Dec 1, 2020
    Area covered
    United Arab Emirates
    Description

    United Arab Emirates AE: Incidence of HIV: per 1,000 Uninfected Population data was reported at 0.130 Ratio in 2020. This records an increase from the previous number of 0.120 Ratio for 2019. United Arab Emirates AE: Incidence of HIV: per 1,000 Uninfected Population data is updated yearly, averaging 0.020 Ratio from Dec 1990 (Median) to 2020, with 31 observations. The data reached an all-time high of 0.130 Ratio in 2020 and a record low of 0.010 Ratio in 2004. United Arab Emirates AE: Incidence of HIV: per 1,000 Uninfected Population data remains active status in CEIC and is reported by World Bank. The data is categorized under Global Database’s United Arab Emirates – Table AE.World Bank.WDI: Social: Health Statistics. Number of new HIV infections among uninfected populations expressed per 1,000 uninfected population in the year before the period.;UNAIDS estimates.;Weighted average;This is the Sustainable Development Goal indicator 3.3.1 [https://unstats.un.org/sdgs/metadata/].

  16. A

    Austria AT: Incidence of HIV: % of Uninfected Population Aged 15-49

    • ceicdata.com
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Austria AT: Incidence of HIV: % of Uninfected Population Aged 15-49 [Dataset]. https://www.ceicdata.com/en/austria/health-statistics/at-incidence-of-hiv--of-uninfected-population-aged-1549
    Explore at:
    Dataset provided by
    CEICdata.com
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Dec 1, 2006 - Dec 1, 2017
    Area covered
    Austria
    Description

    Austria AT: Incidence of HIV: % of Uninfected Population Aged 15-49 data was reported at 0.010 % in 2017. This stayed constant from the previous number of 0.010 % for 2016. Austria AT: Incidence of HIV: % of Uninfected Population Aged 15-49 data is updated yearly, averaging 0.010 % from Dec 1990 (Median) to 2017, with 28 observations. The data reached an all-time high of 0.010 % in 2017 and a record low of 0.010 % in 2017. Austria AT: Incidence of HIV: % of Uninfected Population Aged 15-49 data remains active status in CEIC and is reported by World Bank. The data is categorized under Global Database’s Austria – Table AT.World Bank: Health Statistics. Number of new HIV infections among uninfected populations ages 15-49 expressed per 100 uninfected population in the year before the period.; ; UNAIDS estimates.; Weighted average;

  17. L

    Laos LA: Incidence of HIV: per 1,000 Uninfected Population

    • ceicdata.com
    Updated Apr 15, 2021
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    CEICdata.com (2021). Laos LA: Incidence of HIV: per 1,000 Uninfected Population [Dataset]. https://www.ceicdata.com/en/laos/social-health-statistics/la-incidence-of-hiv-per-1000-uninfected-population
    Explore at:
    Dataset updated
    Apr 15, 2021
    Dataset provided by
    CEICdata.com
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Dec 1, 2011 - Dec 1, 2022
    Area covered
    Laos
    Description

    Laos LA: Incidence of HIV: per 1,000 Uninfected Population data was reported at 0.140 Ratio in 2022. This stayed constant from the previous number of 0.140 Ratio for 2021. Laos LA: Incidence of HIV: per 1,000 Uninfected Population data is updated yearly, averaging 0.150 Ratio from Dec 1990 (Median) to 2022, with 33 observations. The data reached an all-time high of 0.170 Ratio in 2013 and a record low of 0.010 Ratio in 1993. Laos LA: Incidence of HIV: per 1,000 Uninfected Population data remains active status in CEIC and is reported by World Bank. The data is categorized under Global Database’s Laos – Table LA.World Bank.WDI: Social: Health Statistics. Number of new HIV infections among uninfected populations expressed per 1,000 uninfected population in the year before the period.;UNAIDS estimates.;Weighted average;This is the Sustainable Development Goal indicator 3.3.1 [https://unstats.un.org/sdgs/metadata/].

  18. Find Ryan White HIV/AIDS Medical Care Providers

    • datasets.ai
    • data.virginia.gov
    • +5more
    21
    Updated Sep 8, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Department of Health & Human Services (2024). Find Ryan White HIV/AIDS Medical Care Providers [Dataset]. https://datasets.ai/datasets/find-ryan-white-hiv-aids-medical-care-providers
    Explore at:
    21Available download formats
    Dataset updated
    Sep 8, 2024
    Dataset provided by
    United States Department of Health and Human Serviceshttp://www.hhs.gov/
    Authors
    U.S. Department of Health & Human Services
    Description

    The Find Ryan White HIV/AIDS Medical Care Providers tool is a locator that helps people living with HIV/AIDS access medical care and related services. Users can search for Ryan White-funded medical care providers near a specific complete address, city and state, state and county, or ZIP code.

    Search results are sorted by distance away and include the Ryan White HIV/AIDS facility name, address, approximate distance from the search point, telephone number, website address, and a link for driving directions.

    HRSA's Ryan White program funds an array of grants at the state and local levels in areas where most needed. These grants provide medical and support services to more than a half million people who otherwise would be unable to afford care.

  19. HIV-AIDS Indicator and Impact Survey 2018 - Nigeria

    • catalog.ihsn.org
    • datacatalog.ihsn.org
    Updated Jan 14, 2022
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    National Agency for the Control of AIDS (NACA) (2022). HIV-AIDS Indicator and Impact Survey 2018 - Nigeria [Dataset]. https://catalog.ihsn.org/catalog/9945
    Explore at:
    Dataset updated
    Jan 14, 2022
    Dataset provided by
    Federal Ministry of Health and Social Welfarehttps://www.health.gov.ng/
    University of Maryland (UMB)
    National Agency for the Control of AIDS (NACA)
    Time period covered
    2018
    Area covered
    Nigeria
    Description

    Abstract

    The 2018 Nigeria AIDS Indicator and Impact Survey (NAIIS) is a cross-sectional survey that will assess the prevalence of key human immunodeficiency virus (HIV)-related health indicators. This survey is a two-stage cluster survey of 88,775 randomly-selected households in Nigeria, sampled from among 3,551 nationally-representative sample clusters. The survey is expected to include approximately 168,029 participants, ages 15-64 years and children, ages 0-14 years, from the selected household. The 2018 NAIIS will characterize HIV incidence, prevalence, viral load suppression, CD4 T-cell distribution, and risk behaviors in a household-based, nationally-representative sample of the population of Nigeria, and will describe uptake of key HIV prevention, care, and treatment services. The 2018 NAIIS will also estimate the prevalence of hepatitis B virus (HBV), hepatitis C virus (HCV) infections, and HBV/HIV and HCV/HIV co-infections.

    Geographic coverage

    National coverage, the survey covered the Federal Republic and was undertaken in each state and the Federal Capital.

    Analysis unit

    Household Health Survey

    Universe

    1. Women and men aged 15-64 years living in residential households and visitors who slept in the household the night before the survey
    2. Children aged 0-14 years living in residential households and child visitors who slept in the household the night before the survey

    Kind of data

    Sample survey data [ssd]

    Sampling procedure

    This cross-sectional, household-based survey uses a two-stage cluster sampling design (enumeration area followed by households). The target population is people 15-64 and children ages 0-14 years. The overall size and distribution of the sample is determined by analysis of existing estimates of national HIV incidence, sub-national HIV prevalence, and the number of HIV-positive cases needed to obtain estimates of VLS among adults 15-64 years for each of the 36 states and the FCT while not unnecessarily inflating the sample size needed.

    From a sampling perspective, the three primary objectives of this proposal are based on competing demands, one focused on national incidence and the other on state-level estimates in a large number of states (37). Since the denominator used for estimating VLS is HIV-positive individuals, the required minimum number of blood draws in a stratum is inversely proportional to the expected HIV prevalence rate in that stratum. This objective requires a disproportionate amount of sample to be allocated to states with the lowest prevalence. A review of state-level prevalence estimates for sources in the last 3 to 5 years shows that state-level estimates are often divergent from one source to the next, making it difficult to ascertain the sample size needed to obtain the roughly 100 PLHIV needed to achieve a 95% confidence interval (CI) of +/- 10 for VLS estimates.

    An equal-size approach is proposed with a sample size of 3,700 blood specimens in each state. Three-thousand seven hundred specimens will be sufficiently large to obtain robust estimates of HIV prevalence and VLS among HIV-infected individuals in most states. In states with a HIV prevalence above 2.5%, we can anticipate 95% CI of less than +/-10% and relative standard errors (RSEs) of less than 11% for estimates of VLS. In these states, with HIV prevalence above 2.5%, the anticipated 95% CI around prevalence is +/- 0.7% to a high of 1.1-1.3% in states with prevalence above 6%. In states with prevalence between 1.2 and 2.5% HIV prevalence estimates would remain robust with 95% CI of +/- 0.5-0.6% and RSE of less than 20% while 95% CI around VLS would range between 10-15% (and RSE below 15%). With this proposal only a few states, with HIV prevalence below 1.0%, would have less than robust estimates for VLS and HIV prevalence.

    Mode of data collection

    Face-to-face [f2f]

    Research instrument

    Three questionnaires were used for the 2018 NAIIS: Household Questionnaire, Adult Questionnaire, and Early Adolescent Questionnaire (10-14 Years).

    Cleaning operations

    During the household data collection, questionnaire and laboratory data were transmitted between tablets via Bluetooth connection. This facilitated synchronization of household rosters and ensured data collection for each participant followed the correct pathway. All field data collected in CSPro and the Laboratory Data Management System (LDMS) were transmitted to a central server using File Transfer Protocol Secure (FTPS) over a 4G or 3G telecommunication provider at least once a day. Questionnaire data cleaning was conducted using CSPro and SAS 9.4 (SAS Institute Inc., Cary, North Carolina, United States). Laboratory data were cleaned and merged with the final questionnaire database using unique specimen barcodes and study identification numbers.

    Response rate

    A total of 101,267 households were selected, 89,345 were occupied and 83,909 completed the household interview . • For adults aged 15-64 years, interview response rate was 91.6% for women and 88.2% for men; blood draw response rate was 92.9% for women and 93.6% for men. • For adolescents aged 10-14 years, interview response rate was 86.8% for women and 86.2% for men; blood draw response rate was 91.2% for women and 92.3% for men. • For children aged 0-9 years, blood draw response rate was 68.5% for women and men.

    Sampling error estimates

    Estimates from sample surveys are affected by two types of errors: non-sampling errors and sampling errors. Non-sampling errors result from mistakes made during data collection, e.g., misinterpretation of an HIV test result and data management errors such as transcription errors during data entry. While NAIIS implemented numerous quality assurance and control measures to minimize non-sampling errors, these were impossible to avoid and difficult to evaluate statistically. In contrast, sampling errors can be evaluated statistically. Sampling errors are a measure of the variability between all possible samples.

    The sample of respondents selected for NAIIS was only one of many samples that could have been selected from the same population, using the same design and expected size. Each of these samples could yield results that differed somewhat from the results of the actual sample selected. Although the degree of variability cannot be known exactly, it can be estimated from the survey results. The standard error, which is the square root of the variance, is the usual measurement of sampling error for a statistic (e.g., proportion, mean, rate, count). In turn, the standard error can be used to calculate confidence intervals within which the true value for the population can reasonably be assumed to fall. For example, for any given statistic calculated from a sample survey, the value of that statistic will fall within a range of approximately plus or minus two times the standard error of that statistic in 95% of all possible samples of identical size and design.

    NAIIS utilized a multi-stage stratified sample design, which required complex calculations to obtain sampling errors. The Taylor linearization method of variance estimation was used for survey estimates that are proportions, e.g., HIV prevalence. The Jackknife repeated replication method was used for variance estimation of more complex statistics such as rates, e.g., annual HIV incidence and counts such as the number of people living with HIV.

    The Taylor linearization method treats any percentage or average as a ratio estimate, , where y represents the total sample value for variable y and x represents the total number of cases in the group or subgroup under consideration. The variance of r is computed using the formula given below, with the standard error being the square root of the variance: in which Where represents the stratum, which varies from 1 to H, is the total number of clusters selected in the hth stratum, is the sum of the weighted values of variable y in the ith cluster in the hth stratum, is the sum of the weighted number of cases in the ith cluster in the hth stratum and, f is the overall sampling fraction, which is so small that it is ignored.

    In addition to the standard error, the design effect for each estimate is also calculated. The design effect is defined as the ratio of the standard error using the given sample design to the standard error that would result if a simple random sample had been used. A design effect of 1.0 indicates that the sample design is as efficient as a simple random sample, while a value greater than 1.0 indicates the increase in the sampling error due to the use of a more complex and less statistically efficient design. Confidence limits for the estimates, which are calculated as where t(0.975, K) is the 97.5th percentile of a t-distribution with K degrees of freedom, are also computed.

    Data appraisal

    Remote data quality check was carried out using data editor

  20. Project SOAR: Piloting the People Living with HIV Stigma Index 2.0 in...

    • catalog.data.gov
    Updated Jun 25, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    data.usaid.gov (2024). Project SOAR: Piloting the People Living with HIV Stigma Index 2.0 in Cameroon, Senegal, and Uganda [Dataset]. https://catalog.data.gov/dataset/project-soar-piloting-the-people-living-with-hiv-stigma-index-2-0-in-cameroon-senegal-and-
    Explore at:
    Dataset updated
    Jun 25, 2024
    Dataset provided by
    United States Agency for International Developmenthttps://usaid.gov/
    Area covered
    Senegal, Uganda, Cameroon
    Description

    Since the People Living with HIV Stigma Index was launched in 2008, shifts in the HIV epidemic, growth in the evidence base on how different populations are affected by stigma, and changes in the global response to HIV — particularly given the recommendation of early initiation of treatment — have highlighted the need to update and strengthen the Stigma Index as a measurement and advocacy tool. In October 2015, with support from USAID/PEPFAR, Project SOAR established a small working group (SWG) with representatives from the Global Network of People Living with HIV (GNP+), the International Community of Women Living with HIV (ICW), the Joint United Nations Programme on HIV/AIDS (UNAIDS), USAID, and several experts within and external to SOAR. The SWG outlined a process for evaluating and updating the Stigma Index that would be transparent and incorporate as many perspectives as possible in the process. The updated draft survey was then formally pilot-tested before being finalized and disseminated in late 2017.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
California Department of Public Health (2024). HIV/AIDS Cases [Dataset]. https://catalog.data.gov/dataset/hiv-aids-cases-5805c

HIV/AIDS Cases

Explore at:
Dataset updated
Nov 27, 2024
Dataset provided by
California Department of Public Health
Description

This data set includes tables on persons living with HIV/AIDS, newly diagnosed HIV cases and all cause deaths in HIV/AIDS cases by gender, age, race/ethnicity and transmission category. In all tables, cases are reported as of December 31 of the given year, as reported by January 9, 2019, to allow a minimum of 12 months reporting delay. Gender is determined by both current gender and sex at birth variables; transgender values are assigned when current gender is identified as "Transgender" or when a discrepancy is identified between a person's sex at birth and their current gender (e.g., cases where sex at birth is "Male" and current gender is "Female" will become Transgender: Male to Female.) Prior to 2003, Asian and Native Hawaiian/Pacific Islanders were classified as one combined group. In order to present these race/ethnicities separately, living cases recorded under this combined classification were split and redistributed according to their expected proportional population representation estimated from post-2003 data.

Search
Clear search
Close search
Google apps
Main menu