Context
Since 2008, guests and hosts have used Airbnb to travel in a more unique, personalized way. This dataset describes the listing activity of homestays in Copenhagen, Denmark.
Content
The following Airbnb activity is included in the dataset:
Inspiration
Can you describe the vibe of each neighborhood using listing descriptions? What are the busiest times of the year to visit Copenhagen? By how much do prices spike? Is there a general upward trend of both new Airbnb listings and total Airbnb visitors to Copenhagen?
Acknowledgement
This dataset is part of Airbnb Inside, and the original source can be found here. The data is available and can be downloaded from Here.
Columns name:
['id', 'name', 'host_id', 'host_name', 'neighbourhood_group',
'neighbourhood', 'latitude', 'longitude', 'room_type', 'price',
'minimum_nights', 'number_of_reviews', 'last_review',
'reviews_per_month', 'calculated_host_listings_count',
'availability_365', 'number_of_reviews_ltm', 'license']
Number of rows: 13815
Disclaimers:
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Listings per region on Airbnb declined from 2020 to 2021. Globally in 2021, there were a total of 12.7 million listings.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The majority of guests on Airbnb are women. Most Airbnb guests are aged 25 to 34.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The current average price per night globally on Airbnb is $137 per night.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Airbnb has a total of 6,132 employees that work for the company. 52.5% of Airbnb workers are male and 47.5% are female.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
These are the Airbnb statistics on gross revenue by country.
https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
Since 2008, guests and hosts have used Airbnb to expand on traveling possibilities and present a more unique, personalized way of experiencing the world. This dataset describes the listing activity and metrics in Milan, Italy for 2021.
This data file includes all needed information to find out more about hosts, geographical availability, necessary metrics to make predictions and draw conclusions.
This public dataset is part of Airbnb, and the original source can be found on this website.
What can we learn about different hosts and areas? What can we learn from predictions? (ex: locations, prices, reviews, etc) Which hosts are the busiest and why? Is there any noticeable difference in traffic among different areas and what could be the reason for it?
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This is the complete breakdown of how much revenue Airbnb makes in commission from listings in each region.
https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
Since 2008, guests and hosts have used Airbnb to travel in a more unique, personalized way. As part of the Airbnb Inside initiative, this dataset describes the listing activity of homestays in Seattle, WA.
The following Airbnb activity is included in this Seattle dataset: * Listings, including full descriptions and average review score * Reviews, including unique id for each reviewer and detailed comments * Calendar, including listing id and the price and availability for that day
For more ideas, visualizations of all Seattle datasets can be found here.
This dataset is part of Airbnb Inside, and the original source can be found here.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This repository contains supplementary materials for the article:
Determinants of Airbnb prices in European cities: A spatial econometrics approach
(DOI: https://doi.org/10.1016/j.tourman.2021.104319)
The materials include the used datasets and Python scripts for spatial regression models.
Datasets
For each city two files are provided: data for weekday and weekend offers
The columns are as following:
Programming Scripts
In this repository you will find a script for spatial regressions in Python using PySAL (models_robust.py).
The codes cover the following regression models:
Main parameters:
Key functions:
https://www.kappasignal.com/p/legal-disclaimer.htmlhttps://www.kappasignal.com/p/legal-disclaimer.html
This analysis presents a rigorous exploration of financial data, incorporating a diverse range of statistical features. By providing a robust foundation, it facilitates advanced research and innovative modeling techniques within the field of finance.
Historical daily stock prices (open, high, low, close, volume)
Fundamental data (e.g., market capitalization, price to earnings P/E ratio, dividend yield, earnings per share EPS, price to earnings growth, debt-to-equity ratio, price-to-book ratio, current ratio, free cash flow, projected earnings growth, return on equity, dividend payout ratio, price to sales ratio, credit rating)
Technical indicators (e.g., moving averages, RSI, MACD, average directional index, aroon oscillator, stochastic oscillator, on-balance volume, accumulation/distribution A/D line, parabolic SAR indicator, bollinger bands indicators, fibonacci, williams percent range, commodity channel index)
Feature engineering based on financial data and technical indicators
Sentiment analysis data from social media and news articles
Macroeconomic data (e.g., GDP, unemployment rate, interest rates, consumer spending, building permits, consumer confidence, inflation, producer price index, money supply, home sales, retail sales, bond yields)
Stock price prediction
Portfolio optimization
Algorithmic trading
Market sentiment analysis
Risk management
Researchers investigating the effectiveness of machine learning in stock market prediction
Analysts developing quantitative trading Buy/Sell strategies
Individuals interested in building their own stock market prediction models
Students learning about machine learning and financial applications
The dataset may include different levels of granularity (e.g., daily, hourly)
Data cleaning and preprocessing are essential before model training
Regular updates are recommended to maintain the accuracy and relevance of the data
https://www.kappasignal.com/p/legal-disclaimer.htmlhttps://www.kappasignal.com/p/legal-disclaimer.html
This analysis presents a rigorous exploration of financial data, incorporating a diverse range of statistical features. By providing a robust foundation, it facilitates advanced research and innovative modeling techniques within the field of finance.
Historical daily stock prices (open, high, low, close, volume)
Fundamental data (e.g., market capitalization, price to earnings P/E ratio, dividend yield, earnings per share EPS, price to earnings growth, debt-to-equity ratio, price-to-book ratio, current ratio, free cash flow, projected earnings growth, return on equity, dividend payout ratio, price to sales ratio, credit rating)
Technical indicators (e.g., moving averages, RSI, MACD, average directional index, aroon oscillator, stochastic oscillator, on-balance volume, accumulation/distribution A/D line, parabolic SAR indicator, bollinger bands indicators, fibonacci, williams percent range, commodity channel index)
Feature engineering based on financial data and technical indicators
Sentiment analysis data from social media and news articles
Macroeconomic data (e.g., GDP, unemployment rate, interest rates, consumer spending, building permits, consumer confidence, inflation, producer price index, money supply, home sales, retail sales, bond yields)
Stock price prediction
Portfolio optimization
Algorithmic trading
Market sentiment analysis
Risk management
Researchers investigating the effectiveness of machine learning in stock market prediction
Analysts developing quantitative trading Buy/Sell strategies
Individuals interested in building their own stock market prediction models
Students learning about machine learning and financial applications
The dataset may include different levels of granularity (e.g., daily, hourly)
Data cleaning and preprocessing are essential before model training
Regular updates are recommended to maintain the accuracy and relevance of the data
https://www.kappasignal.com/p/legal-disclaimer.htmlhttps://www.kappasignal.com/p/legal-disclaimer.html
This analysis presents a rigorous exploration of financial data, incorporating a diverse range of statistical features. By providing a robust foundation, it facilitates advanced research and innovative modeling techniques within the field of finance.
Historical daily stock prices (open, high, low, close, volume)
Fundamental data (e.g., market capitalization, price to earnings P/E ratio, dividend yield, earnings per share EPS, price to earnings growth, debt-to-equity ratio, price-to-book ratio, current ratio, free cash flow, projected earnings growth, return on equity, dividend payout ratio, price to sales ratio, credit rating)
Technical indicators (e.g., moving averages, RSI, MACD, average directional index, aroon oscillator, stochastic oscillator, on-balance volume, accumulation/distribution A/D line, parabolic SAR indicator, bollinger bands indicators, fibonacci, williams percent range, commodity channel index)
Feature engineering based on financial data and technical indicators
Sentiment analysis data from social media and news articles
Macroeconomic data (e.g., GDP, unemployment rate, interest rates, consumer spending, building permits, consumer confidence, inflation, producer price index, money supply, home sales, retail sales, bond yields)
Stock price prediction
Portfolio optimization
Algorithmic trading
Market sentiment analysis
Risk management
Researchers investigating the effectiveness of machine learning in stock market prediction
Analysts developing quantitative trading Buy/Sell strategies
Individuals interested in building their own stock market prediction models
Students learning about machine learning and financial applications
The dataset may include different levels of granularity (e.g., daily, hourly)
Data cleaning and preprocessing are essential before model training
Regular updates are recommended to maintain the accuracy and relevance of the data
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
This dataset contains information on rent pricing surrounding Kuala Lumpur and Selangor region, Malaysia. The information was scraped from mudah.my
Content
There are 13 features with one unique ids (ads_id
) and one target feature (monthly_rent
)
ads_id
: the listing ids (unique)prop_name
: name of the building/ propertycompletion_year
: completion/ established year of the propertymonthly_rent
: monthly rent in ringgit malaysia (RM)location
: property location in Kuala Lumpur regionproperty_type
:property type such as apartment, condominium, flat, duplex, studio, etcrooms
: number of rooms in the unitparking
: number of parking space for the unitbathroom
: number of bathrooms in the unitsize
: total area of the unit in square feetfurnished
: furnishing status of the unit (fully, partial, non-furnished)facilities
: main facilities availableadditional_facilities
: additional facilities (proximity to attraction area, mall, school, shopping, railways, etc)Acknowledgements The data was scraped from mudah.my
Inspiration I have been living in Kuala Lumpur, Malaysia since 2017, and in the past there was no easy way to understand whether certain unit pricing is making sense or not. With this dataset, I wanted to be able to answer the following questions:
Not seeing a result you expected?
Learn how you can add new datasets to our index.
Context
Since 2008, guests and hosts have used Airbnb to travel in a more unique, personalized way. This dataset describes the listing activity of homestays in Copenhagen, Denmark.
Content
The following Airbnb activity is included in the dataset:
Inspiration
Can you describe the vibe of each neighborhood using listing descriptions? What are the busiest times of the year to visit Copenhagen? By how much do prices spike? Is there a general upward trend of both new Airbnb listings and total Airbnb visitors to Copenhagen?
Acknowledgement
This dataset is part of Airbnb Inside, and the original source can be found here. The data is available and can be downloaded from Here.
Columns name:
['id', 'name', 'host_id', 'host_name', 'neighbourhood_group',
'neighbourhood', 'latitude', 'longitude', 'room_type', 'price',
'minimum_nights', 'number_of_reviews', 'last_review',
'reviews_per_month', 'calculated_host_listings_count',
'availability_365', 'number_of_reviews_ltm', 'license']
Number of rows: 13815
Disclaimers: