100+ datasets found
  1. US Births by County and State

    • kaggle.com
    zip
    Updated Jan 22, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    The Devastator (2023). US Births by County and State [Dataset]. https://www.kaggle.com/datasets/thedevastator/us-births-by-county-and-state
    Explore at:
    zip(3159011 bytes)Available download formats
    Dataset updated
    Jan 22, 2023
    Authors
    The Devastator
    Area covered
    United States
    Description

    US Births by County and State

    1985-2015 Aggregated Data

    By data.world's Admin [source]

    About this dataset

    This dataset contains an aggregation of birth data from the United Statesbetween 1985 and 2015. It consists of information on mothers' locations by state (including District of Columbia) and county, as well as information such as the month they gave birth, and aggregates giving the sum of births during that month. This data has been provided by both the National Bureau for Economic Research and National Center for Health Statistics, whose shared mission is to understand how life works in order to aid individuals in making decisions about their health and wellbeing. This dataset provides valuable insight into population trends across time and location - for example, which states have higher or lower birthrates than others? Which counties experience dramatic fluctuations over time? Given its scope, this dataset could be used in a number of contexts--from epidemiology research to population forecasting. Be sure to check out our other datasets related to births while you're here!

    More Datasets

    For more datasets, click here.

    Featured Notebooks

    • 🚨 Your notebook can be here! 🚨!

    How to use the dataset

    This dataset could be used to examine local trends in birth rates over time or analyze births at different geographical locations. In order to maximize your use of this dataset, it is important that you understand what information the various columns contain.

    The main columns are: State (including District of Columbia), County (coded using the FIPS county code number), Month (numbering from 1 for January through 12 for December), Year (4-digit year) countyBirths (calculated sum of births that occurred to mothers living in a county for a given month) and stateBirths (calculated sum of births that occurred to mothers living in a state for a given month). These fields should provide enough information for you analyze trends across geographic locations both at monthly and yearly levels. You could also consider combining variables such as Year with State or Year with Month or any other grouping combinations depending on your analysis goal.

    In addition, while all data were downloaded on April 5th 2017, it is worth noting that all sources used followed privacy guidelines as laid out by NCHC so individual births occurring after 2005 are not included due to geolocation concerns.
    We hope you find this dataset useful and can benefit from its content! With proper understanding of what each field contains, we are confident you will gain valuable insights on birth rates across counties within the United States during this period

    Research Ideas

    • Establishing county-level trends in birth rates for the US over time.
    • Analyzing the relationship between month of birth and health outcomes for US babies after they are born (e.g., infant mortality, neurological development, etc.).
    • Comparing state/county-level differences in average numbers of twins born each year

    Acknowledgements

    If you use this dataset in your research, please credit the original authors. Data Source

    License

    See the dataset description for more information.

    Columns

    File: allBirthData.csv | Column name | Description | |:-----------------|:-----------------------------------------------------------------------------------------------------------------| | State | The numerical order of the state where the mother lives. (Integer) | | Month | The month in which the birth took place. (Integer) | | Year | The year of the birth. (Integer) | | countyBirths | The calculated sum of births that occurred to mothers living in that county for that particular month. (Integer) | | stateBirths | The aggregate number at the level of entire states for any given month-year combination. (Integer) | | County | The county where the mother lives, coded using FIPS County Code. (Integer) |

    Acknowledgements

    If you use this dataset in your research, please credit the original authors. If you use this dataset in your research, please credit data.world's Admin.

  2. Live Birth Profiles by County

    • data.chhs.ca.gov
    • data.ca.gov
    • +4more
    csv, zip
    Updated Nov 12, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    California Department of Public Health (2025). Live Birth Profiles by County [Dataset]. https://data.chhs.ca.gov/dataset/live-birth-profiles-by-county
    Explore at:
    csv(1911), csv(8256822), csv(9986780), zip, csv(562713)Available download formats
    Dataset updated
    Nov 12, 2025
    Dataset authored and provided by
    California Department of Public Healthhttps://www.cdph.ca.gov/
    Description

    This dataset contains counts of live births for California counties based on information entered on birth certificates. Final counts are derived from static data and include out of state births to California residents, whereas provisional counts are derived from incomplete and dynamic data. Provisional counts are based on the records available when the data was retrieved and may not represent all births that occurred during the time period.

    The final data tables include both births that occurred in California regardless of the place of residence (by occurrence) and births to California residents (by residence), whereas the provisional data table only includes births that occurred in California regardless of the place of residence (by occurrence). The data are reported as totals, as well as stratified by parent giving birth's age, parent giving birth's race-ethnicity, and birth place type. See temporal coverage for more information on which strata are available for which years.

  3. Japan Birth Demographics

    • kaggle.com
    zip
    Updated Jan 2, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Takumi Watanabe (2024). Japan Birth Demographics [Dataset]. https://www.kaggle.com/datasets/webdevbadger/japan-birth-statistics
    Explore at:
    zip(11535 bytes)Available download formats
    Dataset updated
    Jan 2, 2024
    Authors
    Takumi Watanabe
    License

    https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/

    Area covered
    Japan
    Description

    Collective data of Japan's birth-related statistics from 1899 to 2022. Some data are missing between the years 1944 and 1946 due to records lost during World War II.

    For use case and analysis reference, please take a look at this notebook Japan Birth Demographics Analysis

    Feature Descriptions

    • year: The year.
    • birth_total: The total number of births.
    • birth_male: The total number of male births.
    • birth_female: The total number of female births.
    • birth_rate: The birth rate. Equation is birth_total / population_total * 1,000
    • birth_gender_ratio: The birth gender ratio. Equation is birth_male / birth_female * 1,000
    • total_fertility_rate: The average number of children that are born to a woman over her lifetime.
    • population_total: The total population.
    • population_male: The total male population.
    • population_female: The total female population.
    • infant_death_total: The total infant deaths.
    • infant_death_male: The total male infant deaths.
    • infant_death_female: The total female infant deaths.
    • infant_death_unknown_gender: The total unknown gender infant deaths.
    • infant_death_rate: The infant death rate. Equation is infant_death_total / birth_total * 1,000
    • infant_death_gender_ratio: The infant death gender ratio. Equation is infant_death_male / infant_death_female * 1,000
    • infant_deaths_in_total_deaths: The infant death ratio among other deaths.
    • stillbirth_total: The total number of stillbirths (dead born).
    • stillbirth_male: The total number of male stillbirths.
    • stillbirth_female: The total number of female stillbirths.
    • stillbirth_unknown_gender: The total number of unknown gender stillbirths.
    • stillbirth_rate: The stillbirth rate. Equation is stillbirth_total / (birth_total + stillbirth_total) * 1,000
    • stillbirth_gender_ratio: The stillbirth gender ratio. Equation is stillbirth_male / stillbirth_female * 1,000
    • firstborn: The number of firstborns.
    • secondborn: The number of secondborns.
    • thirdborn: The number of thirdborns.
    • forthborn: The number of forthborns.
    • fifthborn_and_above: The number of fifthborns and above.
    • weeks_under_28: The number of births occurred under week 28. Early terms.
    • weeks_28-31: The number of births occurred between weeks 28 and 31. Early terms.
    • weeks_32-36: The number of births occurred between weeks 32 and 36. Early terms.
    • weeks_37-41: The number of births occurred between weeks 37 and 41. Full terms.
    • weeks_over_42: The number of births occurred over week 42. Late terms.
    • mother_age_avg: The mother's average age.
    • mother_age_firstborn: The mother's average age of the firstborn.
    • mother_age_secondborn: The mother's average age of the secondborn.
    • mother_age_thirdborn: The mother's average age of the thirdborn.
    • mother_age_under_19: The number of births by mothers under age 19.
    • mother_age_20-24: The number of births by mothers between age 20 and 24.
    • mother_age_25-29: The number of births by mothers between age 25 and 29.
    • mother_age_30-34: The number of births by mothers between age 30 and 34.
    • mother_age_35-39: The number of births by mothers between age 35 and 39.
    • mother_age_40-44: The number of births by mothers between age 40 and 44.
    • mother_age_over_45: The number of births by mothers over 45.
    • father_age_avg: The father's average age.
    • father_age_firstborn: The father's average age of the firstborn.
    • father_age_secondborn: The father's average age of the secondborn.
    • father_age_thirdborn: The father's average age of the thirdborn.
    • legitimate_child: The Number of births under married parents.
    • illegitimate_child: The number of births under non-married parents.

    Acknowledgement

    E-Stat Demographic Survey

  4. Statewide Live Birth Profiles

    • data.ca.gov
    • data.chhs.ca.gov
    • +4more
    csv, zip
    Updated Dec 2, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    California Department of Public Health (2025). Statewide Live Birth Profiles [Dataset]. https://data.ca.gov/dataset/statewide-live-birth-profiles
    Explore at:
    csv, zipAvailable download formats
    Dataset updated
    Dec 2, 2025
    Dataset authored and provided by
    California Department of Public Healthhttps://www.cdph.ca.gov/
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    This dataset contains counts of live births for California as a whole based on information entered on birth certificates. Final counts are derived from static data and include out of state births to California residents, whereas provisional counts are derived from incomplete and dynamic data. Provisional counts are based on the records available when the data was retrieved and may not represent all births that occurred during the time period.

    The final data tables include both births that occurred in California regardless of the place of residence (by occurrence) and births to California residents (by residence), whereas the provisional data table only includes births that occurred in California regardless of the place of residence (by occurrence). The data are reported as totals, as well as stratified by parent giving birth's age, parent giving birth's race-ethnicity, and birth place type. See temporal coverage for more information on which strata are available for which years.

  5. Population by Country of Birth

    • ckan.publishing.service.gov.uk
    • data.europa.eu
    Updated Jun 9, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    ckan.publishing.service.gov.uk (2025). Population by Country of Birth [Dataset]. https://ckan.publishing.service.gov.uk/dataset/population-by-country-of-birth
    Explore at:
    Dataset updated
    Jun 9, 2025
    Dataset provided by
    CKANhttps://ckan.org/
    Description

    This dataset shows different breakdowns of London's resident population by their country of birth. Data used comes from ONS' Annual Population Survey (APS). The APS has a sample of around 320,000 people in the UK (around 28,000 in London). As such all figures must be treated with some caution. 95% confidence interval levels are provided. Numbers have been rounded to the nearest thousand and figures for smaller populations have been suppressed. Four files are available for download: Country of Birth - Borough: Shows country of birth estimates in their broad groups such as European Union, South East Asia, North Africa, etc. broken down to borough level. Detailed Country of Birth - London: Shows country of birth estimates for specific countries such as France, Bangladesh, Nigeria, etc. available for London as a whole Demography Update 09-2015: A GLA Demography report that uses APS data to analyse the trends in London for the period 2004 to 2014. A supporting data file is also provided. Country of Birth Borough 2004-2016 Analysis Tool: A tool produced by GLA Demography that allows users to explore different breakdowns of country of birth data. An accompanying Tableau visualisation tool has also been produced which maps data from 2004 to 2015. Nationality data can be found here: https://data.london.gov.uk/dataset/nationality Nationality refers to that stated by the respondent during the interview. Country of birth is the country in which they were born. It is possible that an individual’s nationality may change, but the respondent’s country of birth cannot change. This means that country of birth gives a more robust estimate of change over time. Data and Resources Country of Birth - Borough Shows estimates of the population by their country/region of birth by Borough

  6. i

    Mlomp HDSS INDEPTH Core Dataset 1985 - 2014 (Release 2017) - Senegal

    • catalog.ihsn.org
    Updated Sep 19, 2018
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Valérie Delaunay (2018). Mlomp HDSS INDEPTH Core Dataset 1985 - 2014 (Release 2017) - Senegal [Dataset]. https://catalog.ihsn.org/catalog/study/SEN_1985-2014_INDEPTH-MHDSS_v01_M
    Explore at:
    Dataset updated
    Sep 19, 2018
    Dataset provided by
    El-Hadji Ciré Konko Bâ
    Gilles Pison
    Valérie Delaunay
    Laurence Fleury
    Cheikh Sokhna
    Time period covered
    1985 - 2014
    Area covered
    Senegal
    Description

    Abstract

    In 1985 the population and health observatory was established at Mlomp, in the region of Ziguinchor, in southern Senegal (see map). The objective was to complement the two rural population observatories then existing in the country, Bandafassi, in the south-east, and Niakhar, in the centre-west, with a third observatory in a region - the south-west of the country (Casamance) - whose history, ethnic composition and economic situation were quite different from those of the regions where the first two observatories were located. It was expected that measuring the demographic levels and trends on those three sites would provide better coverage of the demographic and epidemiological diversity of the country.

    Following a population census in 1984-1985, demographic events and causes of death have been monitored yearly. During the initial census, all women were interviewed concerning the birth and survival of their children. Since 1985, yearly censuses, usually conducted in January-February, have been recording demographic data, including all births, deaths, and migrations. The completeness and accuracy of dates of birth and death are cross-checked against those of registers of the local maternity ward (_95% of all births) and dispensary (all deaths are recorded, including those occurring outside the area), respectively. The study area comprises 11 villages with approximately 8000 inhabitants, mostly Diola. Mlomp is located in the Department of Oussouye, Region of Ziguinchor (Casamance), 500 km south of Dakar.

    On 1 January 2000 the Mlomp area included a population of 7,591 residents living in 11 villages. The population density was 108 people per square kilometre. The population belongs to the Diola ethnic group, and the religion is predominantly animist, with a large minority of Christians and a few Muslims. Though low, the educational level - in 2000, 55% of women aged 15-49 had been to school (for at least one year) - is definitely higher than at Bandafassi. The population also benefits from much better health infrastructure and programmes. Since 1961, the area under study has been equipped with a private health centre run by French Catholic nurses and, since 1968, a village maternity centre where most women give birth. The vast majority of the children are totally immunized and involved in a growth-monitoring programme (Pison et al.,1993; Pison et al., 2001).

    Geographic coverage

    The Mlomp DSS site, about 500 km from the capital, Dakar, in Senegal, lies between latitudes 12°36' and 12°32'N and longitudes 16°33' and 16°37'E, at an altitude ranging from 0 to 20 m above sea level. It is in the region of Ziguinchor, Département of Oussouye (Casamance), in southwest Senegal. It is locates 50 km west of the city of Ziguinchor and 25 kms north of the border with Guinea Bissau. It covers about half the Arrondissement of Loudia-Ouolof. The Mlomp DSS site is about 11 km × 7 km and has an area of 70 km2. Villages are households grouped in a circle with a 3-km diameter and surrounded by lands that are flooded during the rainy season and cultivated for rice. There is still no electricity.

    Analysis unit

    Individual

    Universe

    At the census, a person was considered a member of the compound if the head of the compound declared it to be so. This definition was broad and resulted in a de jure population under study. Thereafter, a criterion was used to decide whether and when a person was to be excluded or included in the population.

    A person was considered to exit from the study population through either death or emigration. Part of the population of Mlomp engages in seasonal migration, with seasonal migrants sometimes remaining 1 or 2 years outside the area before returning. A person who is absent for two successive yearly rounds, without returning in between, is regarded as having emigrated and no longer resident in the study population at the date of the second round. This definition results in the inclusion of some vital events that occur outside the study area. Some births, for example, occur to women classified in the study population but physically absent at the time of delivery, and these births are registered and included in the calculation of rates, although information on them is less accurate. Special exit criteria apply to babies born outside the study area: they are considered emigrants on the same date as their mother.

    A new person enters the study population either through birth to a woman of the study population or through immigration. Information on immigrants is collected when the list of compounds of a village is checked ("Are there new compounds or new families who settled since the last visit?") or when the list of members of a compound is checked ("Are there new persons in the compound since the last visit?"). Some immigrants are villagers who left the area several years before and were excluded from the study population. Information is collected to determine in which compound they were previously registered, to match the new and old information.

    Information is routinely collected on movements from one compound to another within the study area. Some categories of the population, such as older widows or orphans, frequently move for short periods of time and live in between several compounds, and they may be considered members of these compounds or of none. As a consequence, their movements are not always declared.

    Kind of data

    Event history data

    Frequency of data collection

    One round of data collection took place annually, except in 1987 and 2008.

    Sampling procedure

    No samplaing is done

    Sampling deviation

    None

    Mode of data collection

    Proxy Respondent [proxy]

    Research instrument

    List of questionnaires: - Household book (used to register informations needed to define outmigrations) - Delivery questionnaire (used to register information of dispensaire ol mlomp) - New household questionnaire - New member questionnaire - Marriage and divorce questionnaire - Birth and marital histories questionnaire (for a new member) - Death questionnaire (used to register the date of death)

    Cleaning operations

    On data entry data consistency and plausibility were checked by 455 data validation rules at database level. If data validaton failure was due to a data collection error, the questionnaire was referred back to the field for revisit and correction. If the error was due to data inconsistencies that could not be directly traced to a data collection error, the record was referred to the data quality team under the supervision of the senior database scientist. This could request further field level investigation by a team of trackers or could correct the inconsistency directly at database level.

    No imputations were done on the resulting micro data set, except for:

    a. If an out-migration (OMG) event is followed by a homestead entry event (ENT) and the gap between OMG event and ENT event is greater than 180 days, the ENT event was changed to an in-migration event (IMG). b. If an out-migration (OMG) event is followed by a homestead entry event (ENT) and the gap between OMG event and ENT event is less than 180 days, the OMG event was changed to an homestead exit event (EXT) and the ENT event date changed to the day following the original OMG event. c. If a homestead exit event (EXT) is followed by an in-migration event (IMG) and the gap between the EXT event and the IMG event is greater than 180 days, the EXT event was changed to an out-migration event (OMG). d. If a homestead exit event (EXT) is followed by an in-migration event (IMG) and the gap between the EXT event and the IMG event is less than 180 days, the IMG event was changed to an homestead entry event (ENT) with a date equal to the day following the EXT event. e. If the last recorded event for an individual is homestead exit (EXT) and this event is more than 180 days prior to the end of the surveillance period, then the EXT event is changed to an out-migration event (OMG)

    In the case of the village that was added (enumerated) in 2006, some individuals may have outmigrated from the original surveillance area and setlled in the the new village prior to the first enumeration. Where the records of such individuals have been linked, and indivdiual can legitmately have and outmigration event (OMG) forllowed by and enumeration event (ENU). In a few cases a homestead exit event (EXT) was followed by an enumeration event in these cases. In these instances the EXT events were changed to an out-migration event (OMG).

    Response rate

    On an average the response rate is about 99% over the years for each round.

    Sampling error estimates

    Not applicable

    Data appraisal

    CenterId Metric Table QMetric Illegal Legal Total Metric Rundate
    SN012 MicroDataCleaned Starts 18756 2017-05-19 00:00
    SN012 MicroDataCleaned Transitions 0 45136 45136 0 2017-05-19 00:00
    SN012 MicroDataCleaned Ends 18756 2017-05-19 00:00
    SN012 MicroDataCleaned SexValues 38 45098 45136 0 2017-05-19 00:00
    SN012 MicroDataCleaned DoBValues 204 44932 45136 0 2017-05-19 00:00

  7. Population by Nationality - Dataset - data.gov.uk

    • ckan.publishing.service.gov.uk
    Updated Jun 9, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    ckan.publishing.service.gov.uk (2025). Population by Nationality - Dataset - data.gov.uk [Dataset]. https://ckan.publishing.service.gov.uk/dataset/population-by-nationality
    Explore at:
    Dataset updated
    Jun 9, 2025
    Dataset provided by
    CKANhttps://ckan.org/
    Description

    This dataset shows different breakdowns of London's resident population by their nationality. Data used comes from ONS' Annual Population Survey (APS). The APS has a sample of around 320,000 people in the UK (around 28,000 in London). As such all figures must be treated with some caution. 95% confidence interval levels are provided. Numbers have been rounded to the nearest thousand and figures for smaller populations have been suppressed. Two files are available to download: Nationality - Borough: Shows nationality estimates in their broad groups such as European Union, South East Asia, North Africa, etc. broken down to borough level. Detailed Nationality - London: Shows nationality estimates for specific countries such as France, Bangladesh, Nigeria, etc. available for London as a whole. A Tableau visualisation tool is also available. Country of Birth data can be found here: https://data.london.gov.uk/dataset/country-of-birth Nationality refers to that stated by the respondent during the interview. Country of birth is the country in which they were born. It is possible that an individual’s nationality may change, but the respondent’s country of birth cannot change. This means that country of birth gives a more robust estimate of change over time.

  8. t

    PLACE OF BIRTH - DP02_DES_T - Dataset - CKAN

    • portal.tad3.org
    Updated Nov 18, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2024). PLACE OF BIRTH - DP02_DES_T - Dataset - CKAN [Dataset]. https://portal.tad3.org/dataset/place-of-birth-dp02_des_t
    Explore at:
    Dataset updated
    Nov 18, 2024
    License

    Attribution-ShareAlike 4.0 (CC BY-SA 4.0)https://creativecommons.org/licenses/by-sa/4.0/
    License information was derived automatically

    Description

    SELECTED SOCIAL CHARACTERISTICS IN THE UNITED STATES PLACE OF BIRTH - DP02 Universe - Total population Survey-Program - American Community Survey 5-year estimates Years - 2020, 2021, 2022 People not reporting a place of birth were assigned the state or country of birth of another family member, or were allocated the response of another individual with similar characteristics. People born outside the United States were asked to report their place of birth according to current international boundaries. Since numerous changes in boundaries of foreign countries have occurred in the last century, some people may have reported their place of birth in terms of boundaries that existed at the time of their birth or emigration, or in accordance with their own national preference.

  9. Live births, by month

    • www150.statcan.gc.ca
    • ouvert.canada.ca
    • +1more
    Updated Sep 24, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Government of Canada, Statistics Canada (2025). Live births, by month [Dataset]. http://doi.org/10.25318/1310041501-eng
    Explore at:
    Dataset updated
    Sep 24, 2025
    Dataset provided by
    Statistics Canadahttps://statcan.gc.ca/en
    Area covered
    Canada
    Description

    Number and percentage of live births, by month of birth, 1991 to most recent year.

  10. Annual births and deaths of humans

    • kaggle.com
    zip
    Updated Oct 27, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Amirhossein Jafarnezhad (2025). Annual births and deaths of humans [Dataset]. https://www.kaggle.com/datasets/amirjdai/annual-births-and-deaths-of-humans
    Explore at:
    zip(242903 bytes)Available download formats
    Dataset updated
    Oct 27, 2025
    Authors
    Amirhossein Jafarnezhad
    License

    https://www.usa.gov/government-works/https://www.usa.gov/government-works/

    Description

    The world population has grown rapidly, particularly over the past century: in 1900, there were fewer than 2 billion people on the planet. The world population is around 8045311488 in 2023.

    Two metrics determine the change in the world population: the number of babies born and the number of people dying. How many babies are born each year?

    There were 133.99 million births in 2022, compared to 92.08 million births in 1950

  11. d

    Maternity Services Monthly Statistics

    • digital.nhs.uk
    Updated Jul 27, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2023). Maternity Services Monthly Statistics [Dataset]. https://digital.nhs.uk/data-and-information/publications/statistical/maternity-services-monthly-statistics
    Explore at:
    Dataset updated
    Jul 27, 2023
    License

    https://digital.nhs.uk/about-nhs-digital/terms-and-conditionshttps://digital.nhs.uk/about-nhs-digital/terms-and-conditions

    Time period covered
    Apr 1, 2023 - May 31, 2023
    Description

    This statistical release makes available the most recent monthly data on NHS-funded maternity services in England, using data submitted to the Maternity Services Data Set (MSDS). This is the latest report from the newest version of the data set, MSDS.v.2, which has been in place since April 2019, and the second to include provisional data - see the above change notice for more information. The new data set was a significant change which added support for key policy initiatives such as continuity of carer, as well as increased flexibility through the introduction of new clinical coding. This was a major change, so data quality and coverage has initially reduced from the levels seen in earlier publications. We expect the completeness to continue to get better over time, and are looking at ways of supporting improvements. This month two new measures have been included in this publication for the first time: Saving Babies Lives Element 2 Outcome Indicators i and ii. These measures are the proportion of babies below the 3rd birthweight centile born after 37 weeks gestation, and the proportion of babies born after 39 weeks gestation below the 10th birthweight centile. This new data can be found in the Measures file available for download and further information on these new measures can be found in the accompanying Metadata file. The data derived from SNOMED codes is being used in some measures such as those for smoking at booking and birth weight, and others will follow in later publications. SNOMED data is also included in some of the published Clinical Quality Improvement Metrics (CQIMs), where rules have been applied to ensure measure rates are calculated only where data quality is high enough. System suppliers are at different stages of developing their new solution and delivering that to trusts. In some cases, this has limited the aspects of data that could be submitted to NHS Digital. To help Trusts understand to what extent they met the Clinical Negligence Scheme for Trusts (CNST) Maternity Incentive Scheme (MIS) Data Quality Criteria for Safety Action 2, we have produced a CNST Scorecard Dashboard showing trust performance against this criteria. This dashboard can be accessed via the link below. These statistics are classified as experimental and should be used with caution. Experimental statistics are new official statistics undergoing evaluation. More information about experimental statistics can be found on the UK Statistics Authority website. Please note that the percentages presented in this report are based on rounded figures and therefore may not total to 100%.

  12. Medi-Cal Birth Statistics, by Select Characteristics and California Resident...

    • catalog.data.gov
    • data.ca.gov
    • +2more
    Updated Nov 23, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    California Department of Health Care Services (2025). Medi-Cal Birth Statistics, by Select Characteristics and California Resident Hospital Births [Dataset]. https://catalog.data.gov/dataset/medi-cal-birth-statistics-by-select-characteristics-and-california-resident-hospital-birth-caf33
    Explore at:
    Dataset updated
    Nov 23, 2025
    Dataset provided by
    California Department of Health Care Serviceshttp://www.dhcs.ca.gov/
    Area covered
    California
    Description

    California Birth Report totals by Birth Characteristics to inform the public, stakeholders, and researchers. The DHCS Medi-Cal Birth Statistics tables present the descriptive statistics for California resident births that occurred in a hospital setting, including data on maternal characteristics, delivery methods, and select birth outcomes such as low birthweight and preterm delivery. Tables also include key comorbidities and health behaviors known to influence birth outcomes, such as hypertension, diabetes, substance use, pre-pregnancy weight, and smoking during pregnancy. DHCS additionally presents birth statistics for women participating in the Medi-Cal Fee-For-Service (FFS) and managed care delivery systems, as well as births financed by private insurance, births financed by other public funding sources, and births among uninsured mothers. Medi-Cal data reflect mothers that were deemed as Medi-Cal certified eligible. Note: Data for maternal comorbidities including hypertension, diabetes, and substance use have been provisionally omitted among calendar years 2020-2022 for the time being.

  13. U

    United Kingdom UK: Birth Rate: Crude: per 1000 People

    • ceicdata.com
    Updated Mar 15, 2018
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    CEICdata.com (2018). United Kingdom UK: Birth Rate: Crude: per 1000 People [Dataset]. https://www.ceicdata.com/en/united-kingdom/population-and-urbanization-statistics/uk-birth-rate-crude-per-1000-people
    Explore at:
    Dataset updated
    Mar 15, 2018
    Dataset provided by
    CEICdata.com
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Dec 1, 2005 - Dec 1, 2016
    Area covered
    United Kingdom
    Variables measured
    Population
    Description

    United Kingdom UK: Birth Rate: Crude: per 1000 People data was reported at 11.800 Ratio in 2016. This records a decrease from the previous number of 11.900 Ratio for 2015. United Kingdom UK: Birth Rate: Crude: per 1000 People data is updated yearly, averaging 12.900 Ratio from Dec 1960 (Median) to 2016, with 57 observations. The data reached an all-time high of 18.800 Ratio in 1964 and a record low of 11.300 Ratio in 2002. United Kingdom UK: Birth Rate: Crude: per 1000 People data remains active status in CEIC and is reported by World Bank. The data is categorized under Global Database’s United Kingdom – Table UK.World Bank.WDI: Population and Urbanization Statistics. Crude birth rate indicates the number of live births occurring during the year, per 1,000 population estimated at midyear. Subtracting the crude death rate from the crude birth rate provides the rate of natural increase, which is equal to the rate of population change in the absence of migration.; ; (1) United Nations Population Division. World Population Prospects: 2017 Revision. (2) Census reports and other statistical publications from national statistical offices, (3) Eurostat: Demographic Statistics, (4) United Nations Statistical Division. Population and Vital Statistics Reprot (various years), (5) U.S. Census Bureau: International Database, and (6) Secretariat of the Pacific Community: Statistics and Demography Programme.; Weighted average;

  14. International Datasets

    • kaggle.com
    zip
    Updated Jun 27, 2017
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    US Census Bureau (2017). International Datasets [Dataset]. https://www.kaggle.com/census/international-data
    Explore at:
    zip(853301245 bytes)Available download formats
    Dataset updated
    Jun 27, 2017
    Dataset provided by
    United States Census Bureauhttp://census.gov/
    Authors
    US Census Bureau
    Description

    Content

    The United States Census Bureau’s International Dataset provides estimates of country populations since 1950 and projections through 2050. Specifically, the data set includes midyear population figures broken down by age and gender assignment at birth. Additionally, they provide time-series data for attributes including fertility rates, birth rates, death rates, and migration rates.

    The full documentation is available here. For basic field details, please see the data dictionary.

    Note: The U.S. Census Bureau provides estimates and projections for countries and areas that are recognized by the U.S. Department of State that have a population of at least 5,000.

    Acknowledgements

    This dataset was created by the United States Census Bureau.

    Inspiration

    Which countries have made the largest improvements in life expectancy? Based on current trends, how long will it take each country to catch up to today’s best performers?

    Use this dataset with BigQuery

    You can use Kernels to analyze, share, and discuss this data on Kaggle, but if you’re looking for real-time updates and bigger data, check out the data on BigQuery, too: https://cloud.google.com/bigquery/public-data/international-census.

  15. Meta data and supporting documentation

    • catalog.data.gov
    • s.cnmilf.com
    Updated Nov 12, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. EPA Office of Research and Development (ORD) (2020). Meta data and supporting documentation [Dataset]. https://catalog.data.gov/dataset/meta-data-and-supporting-documentation
    Explore at:
    Dataset updated
    Nov 12, 2020
    Dataset provided by
    United States Environmental Protection Agencyhttp://www.epa.gov/
    Description

    We include a description of the data sets in the meta-data as well as sample code and results from a simulated data set. This dataset is not publicly accessible because: EPA cannot release personally identifiable information regarding living individuals, according to the Privacy Act and the Freedom of Information Act (FOIA). This dataset contains information about human research subjects. Because there is potential to identify individual participants and disclose personal information, either alone or in combination with other datasets, individual level data are not appropriate to post for public access. Restricted access may be granted to authorized persons by contacting the party listed. It can be accessed through the following means: The R code is available on line here: https://github.com/warrenjl/SpGPCW. Format: Abstract The data used in the application section of the manuscript consist of geocoded birth records from the North Carolina State Center for Health Statistics, 2005-2008. In the simulation study section of the manuscript, we simulate synthetic data that closely match some of the key features of the birth certificate data while maintaining confidentiality of any actual pregnant women. Availability Due to the highly sensitive and identifying information contained in the birth certificate data (including latitude/longitude and address of residence at delivery), we are unable to make the data from the application section publicly available. However, we will make one of the simulated datasets available for any reader interested in applying the method to realistic simulated birth records data. This will also allow the user to become familiar with the required inputs of the model, how the data should be structured, and what type of output is obtained. While we cannot provide the application data here, access to the North Carolina birth records can be requested through the North Carolina State Center for Health Statistics and requires an appropriate data use agreement. Description Permissions: These are simulated data without any identifying information or informative birth-level covariates. We also standardize the pollution exposures on each week by subtracting off the median exposure amount on a given week and dividing by the interquartile range (IQR) (as in the actual application to the true NC birth records data). The dataset that we provide includes weekly average pregnancy exposures that have already been standardized in this way while the medians and IQRs are not given. This further protects identifiability of the spatial locations used in the analysis. File format: R workspace file. Metadata (including data dictionary) • y: Vector of binary responses (1: preterm birth, 0: control) • x: Matrix of covariates; one row for each simulated individual • z: Matrix of standardized pollution exposures • n: Number of simulated individuals • m: Number of exposure time periods (e.g., weeks of pregnancy) • p: Number of columns in the covariate design matrix • alpha_true: Vector of “true” critical window locations/magnitudes (i.e., the ground truth that we want to estimate). This dataset is associated with the following publication: Warren, J., W. Kong, T. Luben, and H. Chang. Critical Window Variable Selection: Estimating the Impact of Air Pollution on Very Preterm Birth. Biostatistics. Oxford University Press, OXFORD, UK, 1-30, (2019).

  16. Birth Defects Metadata 2021

    • catalog.data.gov
    • datasets.ai
    • +1more
    Updated Jan 25, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. EPA Office of Research and Development (ORD) (2024). Birth Defects Metadata 2021 [Dataset]. https://catalog.data.gov/dataset/birth-defects-metadata-2021
    Explore at:
    Dataset updated
    Jan 25, 2024
    Dataset provided by
    United States Environmental Protection Agencyhttp://www.epa.gov/
    Description

    This dataset describes birth outcomes (weight, gestational age, sex assigned at birth, presence of birth defects, etc.) and parental factors (age, address, health status, etc.) for people born in North Carolina between 2003 and 2015. This dataset is not publicly accessible because: EPA cannot release personally identifiable information regarding living individuals, according to the Privacy Act and the Freedom of Information Act (FOIA). This dataset contains information about human research subjects. Because there is potential to identify individual participants and disclose personal information, either alone or in combination with other datasets, individual level data are not appropriate to post for public access. Restricted access may be granted to authorized persons by contacting the party listed. It can be accessed through the following means: Data come from the North Carolina Birth Defects Monitoring Program. These data are not publicly available, but more information can be obtained at https://schs.dph.ncdhhs.gov/units/bdmp/ (accessed 11/9/2021). Format: Data are stored as csv files and contain information on birth records in North Carolina from 2003 to 2015, including addresses of parents and medical information on parents and neonates. This dataset is associated with the following publication: Slawsky, E., A. Weaver, T. Luben, and K. Rappazzo. A Cross-sectional Study of Brownfields and Birth Defects. Birth Defects Research. John Wiley & Sons, Inc., Hoboken, NJ, USA, 114(5-6): 197-207, (2022).

  17. Historic US census - 1930

    • redivis.com
    application/jsonl +7
    Updated Jan 10, 2020
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Stanford Center for Population Health Sciences (2020). Historic US census - 1930 [Dataset]. http://doi.org/10.57761/6e5q-rh85
    Explore at:
    application/jsonl, parquet, spss, csv, arrow, stata, avro, sasAvailable download formats
    Dataset updated
    Jan 10, 2020
    Dataset provided by
    Redivis Inc.
    Authors
    Stanford Center for Population Health Sciences
    Time period covered
    Jan 1, 1930 - Dec 31, 1930
    Area covered
    United States
    Description

    Abstract

    The Integrated Public Use Microdata Series (IPUMS) Complete Count Data include more than 650 million individual-level and 7.5 million household-level records. The microdata are the result of collaboration between IPUMS and the nation’s two largest genealogical organizations—Ancestry.com and FamilySearch—and provides the largest and richest source of individual level and household data.

    Before Manuscript Submission

    All manuscripts (and other items you'd like to publish) must be submitted to

    phsdatacore@stanford.edu for approval prior to journal submission.

    We will check your cell sizes and citations.

    For more information about how to cite PHS and PHS datasets, please visit:

    https:/phsdocs.developerhub.io/need-help/citing-phs-data-core

    Documentation

    This dataset was created on 2020-01-10 22:52:11.461 by merging multiple datasets together. The source datasets for this version were:

    IPUMS 1930 households: This dataset includes all households from the 1930 US census.

    IPUMS 1930 persons: This dataset includes all individuals from the 1930 US census.

    IPUMS 1930 Lookup: This dataset includes variable names, variable labels, variable values, and corresponding variable value labels for the IPUMS 1930 datasets.

    Section 2

    Historic data are scarce and often only exists in aggregate tables. The key advantage of historic US census data is the availability of individual and household level characteristics that researchers can tabulate in ways that benefits their specific research questions. The data contain demographic variables, economic variables, migration variables and family variables. Within households, it is possible to create relational data as all relations between household members are known. For example, having data on the mother and her children in a household enables researchers to calculate the mother’s age at birth. Another advantage of the Complete Count data is the possibility to follow individuals over time using a historical identifier.

    In sum: the historic US census data are a unique source for research on social and economic change and can provide population health researchers with information about social and economic determinants.Historic data are scarce and often only exists in aggregate tables. The key advantage of historic US census data is the availability of individual and household level characteristics that researchers can tabulate in ways that benefits their specific research questions. The data contain demographic variables, economic variables, migration variables and family variables. Within households, it is possible to create relational data as all relations between household members are known. For example, having data on the mother and her children in a household enables researchers to calculate the mother’s age at birth. Another advantage of the Complete Count data is the possibility to follow individuals over time using a historical identifier. In sum: the historic US census data are a unique source for research on social and economic change and can provide population health researchers with information about social and economic determinants.

    The historic US 1930 census data was collected in April 1930. Enumerators collected data traveling to households and counting the residents who regularly slept at the household. Individuals lacking permanent housing were counted as residents of the place where they were when the data was collected. Household members absent on the day of data collected were either listed to the household with the help of other household members or were scheduled for the last census subdivision.

    Notes

    • We provide IPUMS household and person data separately so that it is convenient to explore the descriptive statistics on each level. In order to obtain a full dataset, merge the household and person on the variables SERIAL and SERIALP. In order to create a longitudinal dataset, merge datasets on the variable HISTID.

    • Households with more than 60 people in the original data were broken up for processing purposes. Every person in the large households are considered to be in their own household. The original large households can be identified using the variable SPLIT, reconstructed using the variable SPLITHID, and the original count is found in the variable SPLITNUM.

    • Coded variables derived from string variables are still in progress. These variables include: occupation and industry.

    • Missing observations have been allocated and some inconsistencies have been edited for the following variables: SPEAKENG, YRIMMIG, CITIZEN, AGEMARR, AGE, BPL, MBPL, FBPL, LIT, SCHOOL, OWNERSHP, FARM, EMPSTAT, OCC1950, IND1950, MTONGUE, MARST, RACE, SEX, RELATE, CLASSWKR. The flag variables indicating an allocated observation for the associated variables can be included in your extract by clicking the ‘Select data quality flags’ box on the extract summary page.

    • Most inconsistent information was not edite

  18. Congenital Heart Defects and Air Pollution; Racial Disparities

    • catalog.data.gov
    • s.cnmilf.com
    Updated Mar 10, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. EPA Office of Research and Development (ORD) (2025). Congenital Heart Defects and Air Pollution; Racial Disparities [Dataset]. https://catalog.data.gov/dataset/congenital-heart-defects-and-air-pollution-racial-disparities
    Explore at:
    Dataset updated
    Mar 10, 2025
    Dataset provided by
    United States Environmental Protection Agencyhttp://www.epa.gov/
    Description

    We conducted an unmatched case-control study of 1,225,285 infants from a North Carolina Birth Cohort (2003-2015). Ozone and PM2.5 during critical exposure periods (gestational weeks 3-8) were estimated using residential address and a national spatiotemporal model at census tract centroid. Here we describe data sources for outcome (i.e., congenital heart defects) and exposure (i.e., ozone and PM2.5) data. This dataset is not publicly accessible because: EPA cannot release personally identifiable information regarding living individuals, according to the Privacy Act and the Freedom of Information Act (FOIA). This dataset contains information about human research subjects. Because there is potential to identify individual participants and disclose personal information, either alone or in combination with other datasets, individual level data are not appropriate to post for public access. Restricted access may be granted to authorized persons by contacting the party listed. It can be accessed through the following means: The North Carolina Birth Cohort data are not publicly available as it contains personal identifiable information. Data may be requested through the NCDHHS, Division of Public Health with proper approvals. Air pollutant concentrations for ozone and PM2.5 from the national spatiotemporal model are publicly available from EPA's website. Format: Birth certificate data from the State Center for Health Statistics of the NC Department of Health and Human Services linked with data from the Birth Defects Monitoring Program (NC BDMP) to create a birth cohort of all infants born in NC between 2003-2015. The NC BDMP is an active surveillance system that follows NC births to obtain birth defect diagnoses up to 1 year after the date of birth as well as identify infant deaths during the first year of life and include relevant information from the death certificate. A national spatiotemporal model provided data on predicted ozone PM2.5 concentrations over critical prenatal and time periods. The prediction model used data from research and regulatory monitors as well as a large (>200) array of geographic covariates to create fine scale spatial and temporal predictions. The model has a cross-validated R2 of 0.89 for PM2.5. Concentrations were predicted for daily throughout the study period at the centroid of each 2010 census tract in NC. This dataset is associated with the following publication: Arogbokun, O., T. Luben, J. Stingone, L. Engel, C. Martin, and A. Olshan. Racial disparities in maternal exposure to ambient air pollution during pregnancy and prevalence of congenital heart defects. AMERICAN JOURNAL OF EPIDEMIOLOGY. Johns Hopkins Bloomberg School of Public Health, 194(3): 709-721, (2025).

  19. w

    Dataset of birth rate and individuals using the Internet of countries per...

    • workwithdata.com
    Updated Apr 9, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Work With Data (2025). Dataset of birth rate and individuals using the Internet of countries per year in Trinidad and Tobago (Historical) [Dataset]. https://www.workwithdata.com/datasets/countries-yearly?col=birth_rate%2Ccountry%2Cdate%2Cinternet_pct&f=1&fcol0=country&fop0=%3D&fval0=Trinidad+and+Tobago
    Explore at:
    Dataset updated
    Apr 9, 2025
    Dataset authored and provided by
    Work With Data
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Trinidad and Tobago
    Description

    This dataset is about countries per year in Trinidad and Tobago. It has 64 rows. It features 4 columns: country, birth rate, and individuals using the Internet.

  20. Simulation Data Set

    • catalog.data.gov
    • s.cnmilf.com
    Updated Nov 12, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. EPA Office of Research and Development (ORD) (2020). Simulation Data Set [Dataset]. https://catalog.data.gov/dataset/simulation-data-set
    Explore at:
    Dataset updated
    Nov 12, 2020
    Dataset provided by
    United States Environmental Protection Agencyhttp://www.epa.gov/
    Description

    These are simulated data without any identifying information or informative birth-level covariates. We also standardize the pollution exposures on each week by subtracting off the median exposure amount on a given week and dividing by the interquartile range (IQR) (as in the actual application to the true NC birth records data). The dataset that we provide includes weekly average pregnancy exposures that have already been standardized in this way while the medians and IQRs are not given. This further protects identifiability of the spatial locations used in the analysis. This dataset is not publicly accessible because: EPA cannot release personally identifiable information regarding living individuals, according to the Privacy Act and the Freedom of Information Act (FOIA). This dataset contains information about human research subjects. Because there is potential to identify individual participants and disclose personal information, either alone or in combination with other datasets, individual level data are not appropriate to post for public access. Restricted access may be granted to authorized persons by contacting the party listed. It can be accessed through the following means: File format: R workspace file; “Simulated_Dataset.RData”. Metadata (including data dictionary) • y: Vector of binary responses (1: adverse outcome, 0: control) • x: Matrix of covariates; one row for each simulated individual • z: Matrix of standardized pollution exposures • n: Number of simulated individuals • m: Number of exposure time periods (e.g., weeks of pregnancy) • p: Number of columns in the covariate design matrix • alpha_true: Vector of “true” critical window locations/magnitudes (i.e., the ground truth that we want to estimate) Code Abstract We provide R statistical software code (“CWVS_LMC.txt”) to fit the linear model of coregionalization (LMC) version of the Critical Window Variable Selection (CWVS) method developed in the manuscript. We also provide R code (“Results_Summary.txt”) to summarize/plot the estimated critical windows and posterior marginal inclusion probabilities. Description “CWVS_LMC.txt”: This code is delivered to the user in the form of a .txt file that contains R statistical software code. Once the “Simulated_Dataset.RData” workspace has been loaded into R, the text in the file can be used to identify/estimate critical windows of susceptibility and posterior marginal inclusion probabilities. “Results_Summary.txt”: This code is also delivered to the user in the form of a .txt file that contains R statistical software code. Once the “CWVS_LMC.txt” code is applied to the simulated dataset and the program has completed, this code can be used to summarize and plot the identified/estimated critical windows and posterior marginal inclusion probabilities (similar to the plots shown in the manuscript). Optional Information (complete as necessary) Required R packages: • For running “CWVS_LMC.txt”: • msm: Sampling from the truncated normal distribution • mnormt: Sampling from the multivariate normal distribution • BayesLogit: Sampling from the Polya-Gamma distribution • For running “Results_Summary.txt”: • plotrix: Plotting the posterior means and credible intervals Instructions for Use Reproducibility (Mandatory) What can be reproduced: The data and code can be used to identify/estimate critical windows from one of the actual simulated datasets generated under setting E4 from the presented simulation study. How to use the information: • Load the “Simulated_Dataset.RData” workspace • Run the code contained in “CWVS_LMC.txt” • Once the “CWVS_LMC.txt” code is complete, run “Results_Summary.txt”. Format: Below is the replication procedure for the attached data set for the portion of the analyses using a simulated data set: Data The data used in the application section of the manuscript consist of geocoded birth records from the North Carolina State Center for Health Statistics, 2005-2008. In the simulation study section of the manuscript, we simulate synthetic data that closely match some of the key features of the birth certificate data while maintaining confidentiality of any actual pregnant women. Availability Due to the highly sensitive and identifying information contained in the birth certificate data (including latitude/longitude and address of residence at delivery), we are unable to make the data from the application section publically available. However, we will make one of the simulated datasets available for any reader interested in applying the method to realistic simulated birth records data. This will also allow the user to become familiar with the required inputs of the model, how the data should be structured, and what type of output is obtained. While we cannot provide the application data here, access to the North Carolina birth records can be requested through the North Carolina State Center for Health Statistics, and requires an appropriate data use agreement. Description Permissions: These are simulated data without any identifying information or informative birth-level covariates. We also standardize the pollution exposures on each week by subtracting off the median exposure amount on a given week and dividing by the interquartile range (IQR) (as in the actual application to the true NC birth records data). The dataset that we provide includes weekly average pregnancy exposures that have already been standardized in this way while the medians and IQRs are not given. This further protects identifiability of the spatial locations used in the analysis. This dataset is associated with the following publication: Warren, J., W. Kong, T. Luben, and H. Chang. Critical Window Variable Selection: Estimating the Impact of Air Pollution on Very Preterm Birth. Biostatistics. Oxford University Press, OXFORD, UK, 1-30, (2019).

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
The Devastator (2023). US Births by County and State [Dataset]. https://www.kaggle.com/datasets/thedevastator/us-births-by-county-and-state
Organization logo

US Births by County and State

1985-2015 Aggregated Data

Explore at:
zip(3159011 bytes)Available download formats
Dataset updated
Jan 22, 2023
Authors
The Devastator
Area covered
United States
Description

US Births by County and State

1985-2015 Aggregated Data

By data.world's Admin [source]

About this dataset

This dataset contains an aggregation of birth data from the United Statesbetween 1985 and 2015. It consists of information on mothers' locations by state (including District of Columbia) and county, as well as information such as the month they gave birth, and aggregates giving the sum of births during that month. This data has been provided by both the National Bureau for Economic Research and National Center for Health Statistics, whose shared mission is to understand how life works in order to aid individuals in making decisions about their health and wellbeing. This dataset provides valuable insight into population trends across time and location - for example, which states have higher or lower birthrates than others? Which counties experience dramatic fluctuations over time? Given its scope, this dataset could be used in a number of contexts--from epidemiology research to population forecasting. Be sure to check out our other datasets related to births while you're here!

More Datasets

For more datasets, click here.

Featured Notebooks

  • 🚨 Your notebook can be here! 🚨!

How to use the dataset

This dataset could be used to examine local trends in birth rates over time or analyze births at different geographical locations. In order to maximize your use of this dataset, it is important that you understand what information the various columns contain.

The main columns are: State (including District of Columbia), County (coded using the FIPS county code number), Month (numbering from 1 for January through 12 for December), Year (4-digit year) countyBirths (calculated sum of births that occurred to mothers living in a county for a given month) and stateBirths (calculated sum of births that occurred to mothers living in a state for a given month). These fields should provide enough information for you analyze trends across geographic locations both at monthly and yearly levels. You could also consider combining variables such as Year with State or Year with Month or any other grouping combinations depending on your analysis goal.

In addition, while all data were downloaded on April 5th 2017, it is worth noting that all sources used followed privacy guidelines as laid out by NCHC so individual births occurring after 2005 are not included due to geolocation concerns.
We hope you find this dataset useful and can benefit from its content! With proper understanding of what each field contains, we are confident you will gain valuable insights on birth rates across counties within the United States during this period

Research Ideas

  • Establishing county-level trends in birth rates for the US over time.
  • Analyzing the relationship between month of birth and health outcomes for US babies after they are born (e.g., infant mortality, neurological development, etc.).
  • Comparing state/county-level differences in average numbers of twins born each year

Acknowledgements

If you use this dataset in your research, please credit the original authors. Data Source

License

See the dataset description for more information.

Columns

File: allBirthData.csv | Column name | Description | |:-----------------|:-----------------------------------------------------------------------------------------------------------------| | State | The numerical order of the state where the mother lives. (Integer) | | Month | The month in which the birth took place. (Integer) | | Year | The year of the birth. (Integer) | | countyBirths | The calculated sum of births that occurred to mothers living in that county for that particular month. (Integer) | | stateBirths | The aggregate number at the level of entire states for any given month-year combination. (Integer) | | County | The county where the mother lives, coded using FIPS County Code. (Integer) |

Acknowledgements

If you use this dataset in your research, please credit the original authors. If you use this dataset in your research, please credit data.world's Admin.

Search
Clear search
Close search
Google apps
Main menu