The number of new cases, age-standardized rates and average age at diagnosis of cancers diagnosed annually from 1992 to the most recent diagnosis year available. Included are all invasive cancers and in situ bladder cancer with cases defined using the Surveillance, Epidemiology and End Results (SEER) Groups for Primary Site based on the World Health Organization International Classification of Diseases for Oncology, Third Edition (ICD-O-3). Cancer incidence rates are age-standardized using the direct method and the final 2011 Canadian postcensal population structure. Random rounding of case counts to the nearest multiple of 5 is used to prevent inappropriate disclosure of health-related information.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Analysis of ‘🎗️ Cancer Rates by U.S. State’ provided by Analyst-2 (analyst-2.ai), based on source dataset retrieved from https://www.kaggle.com/yamqwe/cancer-rates-by-u-s-statee on 13 February 2022.
--- Dataset description provided by original source is as follows ---
In the following maps, the U.S. states are divided into groups based on the rates at which people developed or died from cancer in 2013, the most recent year for which incidence data are available.
The rates are the numbers out of 100,000 people who developed or died from cancer each year.
Incidence Rates by State
The number of people who get cancer is called cancer incidence. In the United States, the rate of getting cancer varies from state to state.
*Rates are per 100,000 and are age-adjusted to the 2000 U.S. standard population.
‡Rates are not shown if the state did not meet USCS publication criteria or if the state did not submit data to CDC.
†Source: U.S. Cancer Statistics Working Group. United States Cancer Statistics: 1999–2013 Incidence and Mortality Web-based Report. Atlanta (GA): Department of Health and Human Services, Centers for Disease Control and Prevention, and National Cancer Institute; 2016. Available at: http://www.cdc.gov/uscs.
Death Rates by State
Rates of dying from cancer also vary from state to state.
*Rates are per 100,000 and are age-adjusted to the 2000 U.S. standard population.
†Source: U.S. Cancer Statistics Working Group. United States Cancer Statistics: 1999–2013 Incidence and Mortality Web-based Report. Atlanta (GA): Department of Health and Human Services, Centers for Disease Control and Prevention, and National Cancer Institute; 2016. Available at: http://www.cdc.gov/uscs.
Source: https://www.cdc.gov/cancer/dcpc/data/state.htm
This dataset was created by Adam Helsinger and contains around 100 samples along with Range, Rate, technical information and other features such as: - Range - Rate - and more.
- Analyze Range in relation to Rate
- Study the influence of Range on Rate
- More datasets
If you use this dataset in your research, please credit Adam Helsinger
--- Original source retains full ownership of the source dataset ---
CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
The Synthetic Colorectal Cancer Global Dataset is a fully anonymised, high-dimensional synthetic dataset designed for global cancer research, predictive modelling, and educational use. It encompasses demographic, clinical, lifestyle, genetic, and healthcare access factors relevant to colorectal cancer incidence, outcomes, and survivability.
https://storage.googleapis.com/opendatabay_public/ae2aba99-491d-45a1-a99e-7be14927f4af/299af3fa2502_patient_analysis_plots.png" alt="Synthetic Colorectal Cancer Global Data Distribution.png">
This dataset can be used for:
The dataset includes 100% synthetic yet clinically plausible records from diverse countries and demographic groups. It is anonymized and modeled to reflect real-world variability in risk factors, diagnosis stages, treatment, and survival without compromising patient privacy.
CC0 (Public Domain)
https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
About Dataset 📌 Overview This dataset has been carefully synthesized to support research in lung cancer survival prediction, enabling the development of models that estimate:
Whether a patient is likely to survive at least one year post-diagnosis (Binary Classification). The probability of survival based on clinical and lifestyle factors (Regression Analysis). The dataset is designed for machine learning and deep learning applications in medical AI, oncology research, and predictive healthcare.
📜 Dataset Generation Process The dataset was generated using a combination of real-world epidemiological insights, medical literature, and statistical modeling. The feature distributions and relationships have been carefully modeled to reflect real-world clinical scenarios, ensuring biomedical validity.
📖 Medical References & Sources The dataset structure is based on well-established lung cancer risk factors and survival indicators documented in leading medical research and clinical guidelines:
World Health Organization (WHO) Reports on lung cancer epidemiology. National Cancer Institute (NCI) & American Cancer Society (ACS) guidelines on lung cancer risk factors and treatment outcomes. The IASLC Lung Cancer Staging Project (8th Edition): Standard reference for lung cancer staging. Harrison’s Principles of Internal Medicine (20th Edition): Provides an in-depth review of lung cancer diagnosis and treatment. Lung Cancer: Principles and Practice (2022, Oxford University Press): Clinical insights into lung cancer detection, treatment, and survival factors. 🔬 Features of the Dataset Each record in the dataset represents an individual’s clinical condition, lifestyle risk factors, and survival outcome. The dataset includes the following features:
1️⃣ Patient Demographics Age → A key risk factor for lung cancer progression and survival. Gender → Male and female lung cancer survival rates can differ. Residence → Urban vs. Rural (impact of environmental factors). 2️⃣ Risk Factors & Lifestyle Indicators These factors have been linked to lung cancer risk in epidemiological studies:
Smoking Status → (Current Smoker, Former Smoker, Never Smoked). Air Pollution Exposure → (Low, Moderate, High). Biomass Fuel Use → (Yes/No) – Associated with household air pollution. Factory Exposure → (Yes/No) – Industrial exposure increases lung cancer risk. Family History → (Yes/No) – Genetic predisposition to lung cancer. Diet Habit → (Vegetarian, Non-Vegetarian, Mixed) – Nutritional impact on cancer progression. 3️⃣ Symptoms (Primary Predictors) These are key clinical indicators associated with lung cancer detection and severity:
Hemoptysis (Coughing Blood) Chest Pain Fatigue & Weakness Chronic Cough Unexplained Weight Loss 4️⃣ Tumor Characteristics & Clinical Features Tumor Size (mm) → The size of the detected tumor. Histology Type → (Adenocarcinoma, Squamous Cell Carcinoma, Small Cell Carcinoma). Cancer Stage → (Stage I to Stage IV). 5️⃣ Treatment & Healthcare Facility Treatment Received → (Surgery, Chemotherapy, Radiation, Targeted Therapy). Hospital Type → (Private, Government, Medical College). 6️⃣ Target Variables (Predicted Outcomes) Survival (Binary) → 1 (Yes) if the patient survives at least 1 year, 0 (No) otherwise. Survival Probability (%) (Can be derived) → Estimated probability of survival within one year. ⚡ Why This Dataset is Valuable? ✅ Balanced Data Distribution Designed to ensure a representative distribution of lung cancer survival cases. Prevents model bias and improves generalization in predictive models. ✅ Medically-Inspired Feature Engineering Features are derived from real-world lung cancer risk factors, validated through medical literature. Incorporates both lifestyle and clinical indicators to enhance predictive accuracy.(no real person data is used,just have made an biomedical environment) ✅ Diverse Risk Factors Considered Smoking, air pollution, and genetic history as primary lung cancer contributors. Symptom severity and tumor histology influence survival rates. ✅ Scalability & ML Suitability Ideal for classification and regression tasks in machine learning. Can be used with deep learning (TensorFlow, PyTorch), ML models (XGBoost, Random Forest, SVM), and explainable AI techniques like SHAP and LIME. 📂 Dataset Usage & Applications This dataset is highly useful for multiple healthcare AI applications, including:
🩺 Predictive Analytics → Early detection of high-risk lung cancer patients. 🤖 Healthcare Chatbots → AI-powered risk assessment tools.
Open Government Licence - Canada 2.0https://open.canada.ca/en/open-government-licence-canada
License information was derived automatically
Annual percent change and average annual percent change in age-standardized cancer incidence rates since 1984 to the most recent diagnosis year. The table includes a selection of commonly diagnosed invasive cancers, as well as in situ bladder cancer. Cases are defined using the Surveillance, Epidemiology and End Results (SEER) Groups for Primary Site based on the World Health Organization International Classification of Diseases for Oncology, Third Edition (ICD-O-3) from 1992 to the most recent data year and on the International Classification of Diseases, ninth revision (ICD-9) from 1984 to 1991.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
India IN: Mortality from CVD, Cancer, Diabetes or CRD between Exact Ages 30 and 70: Female data was reported at 19.800 NA in 2016. This records a decrease from the previous number of 20.000 NA for 2015. India IN: Mortality from CVD, Cancer, Diabetes or CRD between Exact Ages 30 and 70: Female data is updated yearly, averaging 21.200 NA from Dec 2000 (Median) to 2016, with 5 observations. The data reached an all-time high of 23.400 NA in 2000 and a record low of 19.800 NA in 2016. India IN: Mortality from CVD, Cancer, Diabetes or CRD between Exact Ages 30 and 70: Female data remains active status in CEIC and is reported by World Bank. The data is categorized under Global Database’s India – Table IN.World Bank.WDI: Health Statistics. Mortality from CVD, cancer, diabetes or CRD is the percent of 30-year-old-people who would die before their 70th birthday from any of cardiovascular disease, cancer, diabetes, or chronic respiratory disease, assuming that s/he would experience current mortality rates at every age and s/he would not die from any other cause of death (e.g., injuries or HIV/AIDS).; ; World Health Organization, Global Health Observatory Data Repository (http://apps.who.int/ghodata/).; Weighted average;
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Analysis of ‘Breast Cancer Dataset’ provided by Analyst-2 (analyst-2.ai), based on source dataset retrieved from https://www.kaggle.com/yasserh/breast-cancer-dataset on 28 January 2022.
--- Dataset description provided by original source is as follows ---
Breast cancer is the most common cancer amongst women in the world. It accounts for 25% of all cancer cases, and affected over 2.1 Million people in 2015 alone. It starts when cells in the breast begin to grow out of control. These cells usually form tumors that can be seen via X-ray or felt as lumps in the breast area.
The key challenges against it’s detection is how to classify tumors into malignant (cancerous) or benign(non cancerous). We ask you to complete the analysis of classifying these tumors using machine learning (with SVMs) and the Breast Cancer Wisconsin (Diagnostic) Dataset.
This dataset has been referred from Kaggle.
--- Original source retains full ownership of the source dataset ---
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Among many types of cancers, to date, lung cancer remains one of the deadliest cancers around the world. Many researchers, scientists, doctors, and people from other fields continuously contribute to this subject regarding early prediction and diagnosis. One of the significant problems in prediction is the black-box nature of machine learning models. Though the detection rate is comparatively satisfactory, people have yet to learn how a model came to that decision, causing trust issues among patients and healthcare workers. This work uses multiple machine learning models on a numerical dataset of lung cancer-relevant parameters and compares performance and accuracy. After comparison, each model has been explained using different methods. The main contribution of this research is to give logical explanations of why the model reached a particular decision to achieve trust. This research has also been compared with a previous study that worked with a similar dataset and took expert opinions regarding their proposed model. We also showed that our research achieved better results than their proposed model and specialist opinion using hyperparameter tuning, having an improved accuracy of almost 100% in all four models.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
BY: Mortality from CVD, Cancer, Diabetes or CRD between Exact Ages 30 and 70 data was reported at 23.800 % in 2021. This records a decrease from the previous number of 24.600 % for 2020. BY: Mortality from CVD, Cancer, Diabetes or CRD between Exact Ages 30 and 70 data is updated yearly, averaging 31.100 % from Dec 2000 (Median) to 2021, with 22 observations. The data reached an all-time high of 36.100 % in 2002 and a record low of 23.800 % in 2021. BY: Mortality from CVD, Cancer, Diabetes or CRD between Exact Ages 30 and 70 data remains active status in CEIC and is reported by World Bank. The data is categorized under Global Database’s Belarus – Table BY.World Bank.WDI: Social: Health Statistics. Mortality from CVD, cancer, diabetes or CRD is the percent of 30-year-old-people who would die before their 70th birthday from any of cardiovascular disease, cancer, diabetes, or chronic respiratory disease, assuming that s/he would experience current mortality rates at every age and s/he would not die from any other cause of death (e.g., injuries or HIV/AIDS).;World Health Organization, Global Health Observatory Data Repository (http://apps.who.int/ghodata/).;Weighted average;This is the Sustainable Development Goal indicator 3.4.1 [https://unstats.un.org/sdgs/metadata/].
Apache License, v2.0https://www.apache.org/licenses/LICENSE-2.0
License information was derived automatically
Cervical cancer is one of the leading causes of cancer-related deaths among women worldwide. Early detection and accurate prediction of cervical cancer can significantly improve the chances of successful treatment and save lives. This dataset help to develop a predictive model using machine learning techniques to identify individuals at high risk of cervical cancer, allowing for timely intervention and medical care.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
LT: Mortality from CVD, Cancer, Diabetes or CRD between Exact Ages 30 and 70: Female data was reported at 12.400 NA in 2016. This records a decrease from the previous number of 13.300 NA for 2015. LT: Mortality from CVD, Cancer, Diabetes or CRD between Exact Ages 30 and 70: Female data is updated yearly, averaging 14.100 NA from Dec 2000 (Median) to 2016, with 5 observations. The data reached an all-time high of 15.500 NA in 2005 and a record low of 12.400 NA in 2016. LT: Mortality from CVD, Cancer, Diabetes or CRD between Exact Ages 30 and 70: Female data remains active status in CEIC and is reported by World Bank. The data is categorized under Global Database’s Lithuania – Table LT.World Bank.WDI: Health Statistics. Mortality from CVD, cancer, diabetes or CRD is the percent of 30-year-old-people who would die before their 70th birthday from any of cardiovascular disease, cancer, diabetes, or chronic respiratory disease, assuming that s/he would experience current mortality rates at every age and s/he would not die from any other cause of death (e.g., injuries or HIV/AIDS).; ; World Health Organization, Global Health Observatory Data Repository (http://apps.who.int/ghodata/).; Weighted average;
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Nigeria NG: Mortality from CVD, Cancer, Diabetes or CRD between Exact Ages 30 and 70: Male data was reported at 20.900 NA in 2016. This records an increase from the previous number of 20.800 NA for 2015. Nigeria NG: Mortality from CVD, Cancer, Diabetes or CRD between Exact Ages 30 and 70: Male data is updated yearly, averaging 21.000 NA from Dec 2000 (Median) to 2016, with 5 observations. The data reached an all-time high of 22.600 NA in 2000 and a record low of 20.800 NA in 2015. Nigeria NG: Mortality from CVD, Cancer, Diabetes or CRD between Exact Ages 30 and 70: Male data remains active status in CEIC and is reported by World Bank. The data is categorized under Global Database’s Nigeria – Table NG.World Bank.WDI: Health Statistics. Mortality from CVD, cancer, diabetes or CRD is the percent of 30-year-old-people who would die before their 70th birthday from any of cardiovascular disease, cancer, diabetes, or chronic respiratory disease, assuming that s/he would experience current mortality rates at every age and s/he would not die from any other cause of death (e.g., injuries or HIV/AIDS).; ; World Health Organization, Global Health Observatory Data Repository (http://apps.who.int/ghodata/).; Weighted average;
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Kenya KE: Mortality from CVD, Cancer, Diabetes or CRD between Exact Ages 30 and 70 data was reported at 13.400 % in 2016. This records an increase from the previous number of 13.300 % for 2015. Kenya KE: Mortality from CVD, Cancer, Diabetes or CRD between Exact Ages 30 and 70 data is updated yearly, averaging 13.400 % from Dec 2000 (Median) to 2016, with 5 observations. The data reached an all-time high of 17.300 % in 2000 and a record low of 13.300 % in 2015. Kenya KE: Mortality from CVD, Cancer, Diabetes or CRD between Exact Ages 30 and 70 data remains active status in CEIC and is reported by World Bank. The data is categorized under Global Database’s Kenya – Table KE.World Bank: Health Statistics. Mortality from CVD, cancer, diabetes or CRD is the percent of 30-year-old-people who would die before their 70th birthday from any of cardiovascular disease, cancer, diabetes, or chronic respiratory disease, assuming that s/he would experience current mortality rates at every age and s/he would not die from any other cause of death (e.g., injuries or HIV/AIDS).; ; World Health Organization, Global Health Observatory Data Repository (http://apps.who.int/ghodata/).; Weighted Average;
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Saudi Arabia SA: Mortality from CVD, Cancer, Diabetes or CRD between Exact Ages 30 and 70 data was reported at 16.400 % in 2016. This records a decrease from the previous number of 16.500 % for 2015. Saudi Arabia SA: Mortality from CVD, Cancer, Diabetes or CRD between Exact Ages 30 and 70 data is updated yearly, averaging 17.900 % from Dec 2000 (Median) to 2016, with 5 observations. The data reached an all-time high of 18.900 % in 2000 and a record low of 16.400 % in 2016. Saudi Arabia SA: Mortality from CVD, Cancer, Diabetes or CRD between Exact Ages 30 and 70 data remains active status in CEIC and is reported by World Bank. The data is categorized under Global Database’s Saudi Arabia – Table SA.World Bank: Health Statistics. Mortality from CVD, cancer, diabetes or CRD is the percent of 30-year-old-people who would die before their 70th birthday from any of cardiovascular disease, cancer, diabetes, or chronic respiratory disease, assuming that s/he would experience current mortality rates at every age and s/he would not die from any other cause of death (e.g., injuries or HIV/AIDS).; ; World Health Organization, Global Health Observatory Data Repository (http://apps.who.int/ghodata/).; Weighted Average;
https://choosealicense.com/licenses/cc/https://choosealicense.com/licenses/cc/
breastcanc-ultrasound-class
Background
Cancer is the second leading cause of death worldwide, according to IHME - Global Burden of Disease, with 10.7 mln casualties in 2019.
Amongst the various types of cancer, a huge role is played by breast cancer, which stands in 4th position among the deadliest tumors, with more than 700.000 deaths during 2019 (IHME - Global Burden of Disease).
Moreover, breast cancer has the highest share of number of cases/100 people worldwide… See the full description on the dataset page: https://huggingface.co/datasets/as-cle-bert/breastcancer-auto-segmentation.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
BackgroundWe aim to evaluate the global, regional, and national burden of Uterine Cancer (UC) from 1990 to 2019.MethodsWe gathered UC data across 204 countries and regions for the period 1990-2019, utilizing the Global Burden of Disease Database (GBD) 2019 public dataset. Joinpoint regression analysis was employed to pinpoint the year of the most significant changes in global trends. To project the UC trajectory from 2020 to 2044, we applied the Nordpred analysis, extrapolating based on the average trend observed in the data. Furthermore, the Bayesian Age-Period-Cohort (BAPC) model with integrated nested Laplace approximations was implemented to confirm the stability of the Nordpred analysis predictions.ResultsGlobally, the age-standardized rate (ASR) of incidence for UC has increased from 1990 to 2019 with an Average Annual Percentage Change (AAPC) of 0.50%. The ASR for death has declined within the same period (AAPC: -0.8%). An increase in the ASR of incidence was observed across all Socio-demographic Index (SDI) regions, particularly in High SDI regions (AAPC: 1.12%), while the ASR for death decreased in all but the Low SDI regions. Over the past 30 years, the highest incidence rate was observed in individuals aged 55-59 (AAPC: 0.76%). Among 204 countries and regions, there was an increase in the ASR of incidence in 165 countries and an increase in the ASR of deaths in 77 countries. Our projections suggest that both the incidence and death rates for UC are likely to continue their decline from 2020 to 2044.ConclusionsUC has significantly impacted global health negatively, with its influence stemming from a range of factors including geographical location, age-related and racial disparities, and SDI.
This dataset contains counts of deaths for California residents by ZIP Code based on information entered on death certificates. Final counts are derived from static data and include out-of-state deaths of California residents. The data tables include deaths of residents of California by ZIP Code of residence (by residence). The data are reported as totals, as well as stratified by age and gender. Deaths due to all causes (ALL) and selected underlying cause of death categories are provided. See temporal coverage for more information on which combinations are available for which years.
The cause of death categories are based solely on the underlying cause of death as coded by the International Classification of Diseases. The underlying cause of death is defined by the World Health Organization (WHO) as "the disease or injury which initiated the train of events leading directly to death, or the circumstances of the accident or violence which produced the fatal injury." It is a single value assigned to each death based on the details as entered on the death certificate. When more than one cause is listed, the order in which they are listed can affect which cause is coded as the underlying cause. This means that similar events could be coded with different underlying causes of death depending on variations in how they were entered. Consequently, while underlying cause of death provides a convenient comparison between cause of death categories, it may not capture the full impact of each cause of death as it does not always take into account all conditions contributing to the death.
https://choosealicense.com/licenses/cc/https://choosealicense.com/licenses/cc/
breastcanc-ultrasound-class
Background
Cancer is the second leading cause of death worldwide, according to IHME - Global Burden of Disease, with 10.7 mln casualties in 2019.
Amongst the various types of cancer, a huge role is played by breast cancer, which stands in 4th position among the deadliest tumors, with more than 700.000 deaths during 2019 (IHME - Global Burden of Disease).
Moreover, breast cancer has the highest share of number of cases/100 people worldwide… See the full description on the dataset page: https://huggingface.co/datasets/as-cle-bert/breastcanc-ultrasound-class.
https://choosealicense.com/licenses/cc/https://choosealicense.com/licenses/cc/
breastcanc-ultrasound-class
Background
Cancer is the second leading cause of death worldwide, according to IHME - Global Burden of Disease, with 10.7 mln casualties in 2019.
Amongst the various types of cancer, a huge role is played by breast cancer, which stands in 4th position among the deadliest tumors, with more than 700.000 deaths during 2019 (IHME - Global Burden of Disease).
Moreover, breast cancer has the highest share of number of cases/100 people worldwide… See the full description on the dataset page: https://huggingface.co/datasets/as-cle-bert/breastcancer-auto-objdetect.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Ivory Coast CI: Mortality from CVD, Cancer, Diabetes or CRD between Exact Ages 30 and 70: Male data was reported at 28.200 NA in 2016. This records a decrease from the previous number of 28.500 NA for 2015. Ivory Coast CI: Mortality from CVD, Cancer, Diabetes or CRD between Exact Ages 30 and 70: Male data is updated yearly, averaging 27.700 NA from Dec 2000 (Median) to 2016, with 5 observations. The data reached an all-time high of 28.500 NA in 2015 and a record low of 25.200 NA in 2000. Ivory Coast CI: Mortality from CVD, Cancer, Diabetes or CRD between Exact Ages 30 and 70: Male data remains active status in CEIC and is reported by World Bank. The data is categorized under Global Database’s Ivory Coast – Table CI.World Bank.WDI: Health Statistics. Mortality from CVD, cancer, diabetes or CRD is the percent of 30-year-old-people who would die before their 70th birthday from any of cardiovascular disease, cancer, diabetes, or chronic respiratory disease, assuming that s/he would experience current mortality rates at every age and s/he would not die from any other cause of death (e.g., injuries or HIV/AIDS).; ; World Health Organization, Global Health Observatory Data Repository (http://apps.who.int/ghodata/).; Weighted average;
The number of new cases, age-standardized rates and average age at diagnosis of cancers diagnosed annually from 1992 to the most recent diagnosis year available. Included are all invasive cancers and in situ bladder cancer with cases defined using the Surveillance, Epidemiology and End Results (SEER) Groups for Primary Site based on the World Health Organization International Classification of Diseases for Oncology, Third Edition (ICD-O-3). Cancer incidence rates are age-standardized using the direct method and the final 2011 Canadian postcensal population structure. Random rounding of case counts to the nearest multiple of 5 is used to prevent inappropriate disclosure of health-related information.