Facebook
TwitterAttribution-ShareAlike 4.0 (CC BY-SA 4.0)https://creativecommons.org/licenses/by-sa/4.0/
License information was derived automatically
The dataset provides a comprehensive look at HIV/AIDS adult prevalence rates, the number of people living with HIV, and annual deaths across different countries. It is based on publicly available data sources such as the CIA World Factbook, UNAIDS AIDS Info, and other global health organizations. The dataset primarily focuses on adult HIV prevalence (ages 15–49) and includes estimates from recent years (e.g., 2023–2024).
This dataset can be used for: - Epidemiological Analysis: Understanding the regional distribution of HIV/AIDS and identifying high-prevalence areas. - Predictive Modeling: Developing machine learning models to predict HIV prevalence trends or identify risk factors. - Resource Allocation: Informing policymakers about regions requiring urgent intervention or resource allocation. - Health Outcome Monitoring: Tracking progress in combating HIV/AIDS over time. - Social Determinants Research: Analyzing the relationship between socio-economic factors and HIV prevalence.
The dataset is ethically sourced from publicly available and credible platforms such as the CIA World Factbook, UNAIDS, and WHO. These organizations ensure transparency and ethical standards in data collection, protecting individual privacy while providing aggregate statistics for research purposes.
This dataset serves as a valuable tool for researchers, policymakers, and public health professionals in addressing the global challenge of HIV/AIDS.
Facebook
TwitterIn the time of epidemics, what is the status of HIV AIDS across the world, where does each country stands, is it getting any better. The data set should be helpful to explore much more about above mentioned factors.
The data set contains data on
- No. of people living with HIV AIDS
- No. of deaths due to HIV AIDS
- No. of cases among adults (19-45)
- Prevention of mother-to-child transmission estimates
- ART (Anti Retro-viral Therapy) coverage among people living with HIV estimates
- ART (Anti Retro-viral Therapy) coverage among children estimates
https://github.com/imdevskp/hiv_aids_who_unesco_data_cleaning
Photo by Anna Shvets from Pexels https://www.pexels.com/photo/red-ribbon-on-white-surface-3900425/
- COVID-19 - https://www.kaggle.com/imdevskp/corona-virus-report
- MERS - https://www.kaggle.com/imdevskp/mers-outbreak-dataset-20122019
- Ebola Western Africa 2014 Outbreak - https://www.kaggle.com/imdevskp/ebola-outbreak-20142016-complete-dataset
- H1N1 | Swine Flu 2009 Pandemic Dataset - https://www.kaggle.com/imdevskp/h1n1-swine-flu-2009-pandemic-dataset
- SARS 2003 Pandemic - https://www.kaggle.com/imdevskp/sars-outbreak-2003-complete-dataset
- HIV AIDS - https://www.kaggle.com/imdevskp/hiv-aids-dataset
Facebook
TwitterThe following slide set is available to download for presentational use:
Data on all HIV diagnoses, AIDS and deaths among people diagnosed with HIV are collected from HIV outpatient clinics, laboratories and other healthcare settings. Data relating to people living with HIV is collected from HIV outpatient clinics. Data relates to England, Wales, Northern Ireland and Scotland, unless stated.
HIV testing, pre-exposure prophylaxis, and post-exposure prophylaxis data relates to activity at sexual health services in England only.
View the pre-release access lists for these statistics.
Previous reports, data tables and slide sets are also available for:
Our statistical practice is regulated by the Office for Statistics Regulation (OSR). The OSR sets the standards of trustworthiness, quality and value in the https://code.statisticsauthority.gov.uk/">Code of Practice for Statistics that all producers of Official Statistics should adhere to.
Additional information on HIV surveillance can be found in the HIV Action Plan for England monitoring and evaluation framework reports. Other HIV in the UK reports published by Public Health England (PHE) are available online.
Facebook
TwitterThis data set includes tables on persons living with HIV/AIDS, newly diagnosed HIV cases and all cause deaths in HIV/AIDS cases by gender, age, race/ethnicity and transmission category. In all tables, cases are reported as of December 31 of the given year, as reported by December 31, 2024, to allow a minimum of 12 months reporting delay. Gender is determined by both current gender and sex at birth variables; transgender values are assigned when current gender is identified as "Transgender" or when a discrepancy is identified between a person's sex at birth and their current gender (e.g., cases where sex at birth is "Male" and current gender is "Female" will become Transgender: Male to Female.) Prior to 2003, Asian and Native Hawaiian/Pacific Islanders were classified as one combined group. In order to present these race/ethnicities separately, living cases recorded under this combined classification were split and redistributed according to their expected proportional population representation estimated from post-2003 data.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Statistics relating to HIV infection
Facebook
TwitterAttribution-ShareAlike 4.0 (CC BY-SA 4.0)https://creativecommons.org/licenses/by-sa/4.0/
License information was derived automatically
Dataset refers to the Statistics Relating to Notification of HIV Aids Cases and Deaths in Mauritius for the year 2000 to 2023
Facebook
TwitterThis dataset contains death counts, crude rates and adjusted rates for selected causes of death by county and region. For more information, check out: http://www.health.ny.gov/statistics/vital_statistics/, or go to the "About" tab.
Facebook
TwitterHIV/AIDS yearly statistics in Hong Kong 1984 - 2023
Facebook
TwitterThis dataset contains death counts and crude rates by region, age group, and selected cause of death. For more information, check out: http://www.health.ny.gov/statistics/vital_statistics/, or go to the "About" tab.
Facebook
Twitterhttp://opendatacommons.org/licenses/dbcl/1.0/http://opendatacommons.org/licenses/dbcl/1.0/
https://data.gov.hk/en-data/dataset/hk-dh-dh_spp-dh-spp-hiv-aids-1984-to-2022-yearly-figures This dataset can be sourced from the data.gov.hk website, which was provided to them by the department of health. The category of the dataset is Health and it is in a csv file format. It was last updated on 09/01/2024. Desciption: HIV/AIDS yearly statistics in Hong Kong 1984 - 2022.
Facebook
TwitterThis shapefile provides HIV statistics by state that can be used in conjunction with the co-morbidities risk profile to provide more nuance on levels of risk by state. Note that values of 0 mean there is no data for that particular state.The source of data for HIV prevalence rates is the Nigeria Institute for Health Metrics and Evaluation (IHME), HIV Prevalence Geospatial Estimates 2000-2017.
Facebook
TwitterAttribution-NonCommercial-ShareAlike 3.0 (CC BY-NC-SA 3.0)https://creativecommons.org/licenses/by-nc-sa/3.0/
License information was derived automatically
Effect of suicide rates on life expectancy dataset
Abstract
In 2015, approximately 55 million people died worldwide, of which 8 million committed suicide. In the USA, one of the main causes of death is the aforementioned suicide, therefore, this experiment is dealing with the question of how much suicide rates affects the statistics of average life expectancy.
The experiment takes two datasets, one with the number of suicides and life expectancy in the second one and combine data into one dataset. Subsequently, I try to find any patterns and correlations among the variables and perform statistical test using simple regression to confirm my assumptions.
Data
The experiment uses two datasets - WHO Suicide Statistics[1] and WHO Life Expectancy[2], which were firstly appropriately preprocessed. The final merged dataset to the experiment has 13 variables, where country and year are used as index: Country, Year, Suicides number, Life expectancy, Adult Mortality, which is probability of dying between 15 and 60 years per 1000 population, Infant deaths, which is number of Infant Deaths per 1000 population, Alcohol, which is alcohol, recorded per capita (15+) consumption, Under-five deaths, which is number of under-five deaths per 1000 population, HIV/AIDS, which is deaths per 1 000 live births HIV/AIDS, GDP, which is Gross Domestic Product per capita, Population, Income composition of resources, which is Human Development Index in terms of income composition of resources, and Schooling, which is number of years of schooling.
LICENSE
THE EXPERIMENT USES TWO DATASET - WHO SUICIDE STATISTICS AND WHO LIFE EXPECTANCY, WHICH WERE COLLEECTED FROM WHO AND UNITED NATIONS WEBSITE. THEREFORE, ALL DATASETS ARE UNDER THE LICENSE ATTRIBUTION-NONCOMMERCIAL-SHAREALIKE 3.0 IGO (https://creativecommons.org/licenses/by-nc-sa/3.0/igo/).
[1] https://www.kaggle.com/szamil/who-suicide-statistics
[2] https://www.kaggle.com/kumarajarshi/life-expectancy-who
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
United States US: Prevalence of HIV: Total: % of Population Aged 15-49 data was reported at 0.500 % in 2014. This stayed constant from the previous number of 0.500 % for 2013. United States US: Prevalence of HIV: Total: % of Population Aged 15-49 data is updated yearly, averaging 0.500 % from Dec 2008 (Median) to 2014, with 7 observations. The data reached an all-time high of 0.500 % in 2014 and a record low of 0.500 % in 2014. United States US: Prevalence of HIV: Total: % of Population Aged 15-49 data remains active status in CEIC and is reported by World Bank. The data is categorized under Global Database’s USA – Table US.World Bank: Health Statistics. Prevalence of HIV refers to the percentage of people ages 15-49 who are infected with HIV.; ; UNAIDS estimates.; Weighted Average;
Facebook
Twitterhttps://www.worldbank.org/en/about/legal/terms-of-use-for-datasetshttps://www.worldbank.org/en/about/legal/terms-of-use-for-datasets
Source: The World Bank Last Updated: 10/26/2023 Database: World Development Indicators Series: Prevalence of HIV, total (% of population ages 15-49) Adults (ages 15+) and children (ages 0-14) newly infected with HIV Adults (ages 15-49) newly infected with HIV Antiretroviral therapy coverage (% of people living with HIV) Antiretroviral therapy coverage for PMTCT (% of pregnant women living with HIV) Children (0-14) living with HIV Children (ages 0-14) newly infected with HIV Incidence of HIV, ages 15-24 (per 1,000 uninfected population ages 15-24) Incidence of HIV, ages 15-49 (per 1,000 uninfected population ages 15-49) Incidence of HIV, all (per 1,000 uninfected population) Prevalence of HIV, female (% ages 15-24) Prevalence of HIV, male (% ages 15-24) Women's share of population ages 15+ living with HIV (%) Young people (ages 15-24) newly infected with HIV
Facebook
Twitterhttps://data.gov.sg/open-data-licencehttps://data.gov.sg/open-data-licence
Dataset from Singapore Department of Statistics. For more information, visit https://data.gov.sg/datasets/d_6f9349bb503b5790e380d03f59dd0e34/view
Facebook
Twitterhttps://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
This dataset provides detailed insights into the prevalence of HIV/AIDS among adults (ages 15–49) across various countries and regions. The data is primarily sourced from the CIA World Factbook and the UNAIDS AIDSinfo platform and reflects the most recent available estimates as of 2022–2024.
What’s Included:
Country/Region – The name of each nation or area.
Adult Prevalence of HIV/AIDS (%) – The percentage of adults estimated to be living with HIV.
Number of People with HIV/AIDS – Estimated count of people infected in each country.
Annual Deaths from HIV/AIDS – Estimated number of HIV/AIDS-related deaths per year.
Year of Estimate – The year the data was reported or estimated.
Key Highlights:
Global Prevalence: Around 0.7% of the global population was living with HIV in 2022, affecting nearly 39 million people.
Hotspots: The epidemic is most severe in Southern Africa, with countries like Eswatini, Botswana, Lesotho, and Zimbabwe reporting adult prevalence rates above 20%.
High Burden Countries:
South Africa: 17.3% prevalence, approximately 9.2 million infected
Tanzania: approximately 7.49 million
Mozambique: approximately 2.48 million
Nigeria: approximately 2.45 million (1.3% prevalence)
Notes:
Data may vary in accuracy and is subject to ongoing updates and verification.
Some entries include a dash ("-") where data was not published or available.
Countries with over 1% adult prevalence are categorized under Generalized HIV Epidemics (GHEs) by UNAIDS.
Facebook
Twitterhttps://data.gov.sg/open-data-licencehttps://data.gov.sg/open-data-licence
Dataset from Singapore Department of Statistics. For more information, visit https://data.gov.sg/datasets/d_6d8bcb5f8e9cf2616b758c53095768fb/view
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
No. of Deaths: Caused by: HIV Disease (Aids) data was reported at 547.000 Person in Sep 2024. This records a decrease from the previous number of 557.000 Person for Jun 2024. No. of Deaths: Caused by: HIV Disease (Aids) data is updated quarterly, averaging 558.000 Person from Mar 2017 (Median) to Sep 2024, with 30 observations. The data reached an all-time high of 659.000 Person in Mar 2018 and a record low of 461.000 Person in Sep 2020. No. of Deaths: Caused by: HIV Disease (Aids) data remains active status in CEIC and is reported by National Administrative Department of Statistics. The data is categorized under Global Database’s Colombia – Table CO.G012: Number of Deaths: Cause of Death.
Facebook
TwitterSeries Name: Number of new HIV infections per 1 000 uninfected population by sex and age (per 1 000 uninfected population)Series Code: SH_HIV_INCDRelease Version: 2021.Q2.G.03 This dataset is the part of the Global SDG Indicator Database compiled through the UN System in preparation for the Secretary-General's annual report on Progress towards the Sustainable Development Goals.Indicator 3.3.1: Number of new HIV infections per 1,000 uninfected population, by sex, age and key populationsTarget 3.3: By 2030, end the epidemics of AIDS, tuberculosis, malaria and neglected tropical diseases and combat hepatitis, water-borne diseases and other communicable diseasesGoal 3: Ensure healthy lives and promote well-being for all at all agesFor more information on the compilation methodology of this dataset, see https://unstats.un.org/sdgs/metadata/
Facebook
TwitterData Series: Number of new HIV infections per 1,000 uninfected population, by sex and age Indicator: III.8 - Number of new HIV infections per 1,000 uninfected population, by sex, age and key populations Source year: 2023 This dataset is part of the Minimum Gender Dataset compiled by the United Nations Statistics Division. Domain: Health and related services
Facebook
TwitterAttribution-ShareAlike 4.0 (CC BY-SA 4.0)https://creativecommons.org/licenses/by-sa/4.0/
License information was derived automatically
The dataset provides a comprehensive look at HIV/AIDS adult prevalence rates, the number of people living with HIV, and annual deaths across different countries. It is based on publicly available data sources such as the CIA World Factbook, UNAIDS AIDS Info, and other global health organizations. The dataset primarily focuses on adult HIV prevalence (ages 15–49) and includes estimates from recent years (e.g., 2023–2024).
This dataset can be used for: - Epidemiological Analysis: Understanding the regional distribution of HIV/AIDS and identifying high-prevalence areas. - Predictive Modeling: Developing machine learning models to predict HIV prevalence trends or identify risk factors. - Resource Allocation: Informing policymakers about regions requiring urgent intervention or resource allocation. - Health Outcome Monitoring: Tracking progress in combating HIV/AIDS over time. - Social Determinants Research: Analyzing the relationship between socio-economic factors and HIV prevalence.
The dataset is ethically sourced from publicly available and credible platforms such as the CIA World Factbook, UNAIDS, and WHO. These organizations ensure transparency and ethical standards in data collection, protecting individual privacy while providing aggregate statistics for research purposes.
This dataset serves as a valuable tool for researchers, policymakers, and public health professionals in addressing the global challenge of HIV/AIDS.