38 datasets found
  1. Rates of COVID-19 Cases or Deaths by Age Group and Vaccination Status

    • data.virginia.gov
    • healthdata.gov
    • +1more
    csv, json, rdf, xsl
    Updated Jul 20, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Centers for Disease Control and Prevention (2023). Rates of COVID-19 Cases or Deaths by Age Group and Vaccination Status [Dataset]. https://data.virginia.gov/dataset/rates-of-covid-19-cases-or-deaths-by-age-group-and-vaccination-status
    Explore at:
    xsl, csv, rdf, jsonAvailable download formats
    Dataset updated
    Jul 20, 2023
    Dataset provided by
    Centers for Disease Control and Preventionhttp://www.cdc.gov/
    Description

    Data for CDC’s COVID Data Tracker site on Rates of COVID-19 Cases and Deaths by Vaccination Status. Click 'More' for important dataset description and footnotes

    Dataset and data visualization details: These data were posted on October 21, 2022, archived on November 18, 2022, and revised on February 22, 2023. These data reflect cases among persons with a positive specimen collection date through September 24, 2022, and deaths among persons with a positive specimen collection date through September 3, 2022.

    Vaccination status: A person vaccinated with a primary series had SARS-CoV-2 RNA or antigen detected on a respiratory specimen collected ≥14 days after verifiably completing the primary series of an FDA-authorized or approved COVID-19 vaccine. An unvaccinated person had SARS-CoV-2 RNA or antigen detected on a respiratory specimen and has not been verified to have received COVID-19 vaccine. Excluded were partially vaccinated people who received at least one FDA-authorized vaccine dose but did not complete a primary series ≥14 days before collection of a specimen where SARS-CoV-2 RNA or antigen was detected. Additional or booster dose: A person vaccinated with a primary series and an additional or booster dose had SARS-CoV-2 RNA or antigen detected on a respiratory specimen collected ≥14 days after receipt of an additional or booster dose of any COVID-19 vaccine on or after August 13, 2021. For people ages 18 years and older, data are graphed starting the week including September 24, 2021, when a COVID-19 booster dose was first recommended by CDC for adults 65+ years old and people in certain populations and high risk occupational and institutional settings. For people ages 12-17 years, data are graphed starting the week of December 26, 2021, 2 weeks after the first recommendation for a booster dose for adolescents ages 16-17 years. For people ages 5-11 years, data are included starting the week of June 5, 2022, 2 weeks after the first recommendation for a booster dose for children aged 5-11 years. For people ages 50 years and older, data on second booster doses are graphed starting the week including March 29, 2022, when the recommendation was made for second boosters. Vertical lines represent dates when changes occurred in U.S. policy for COVID-19 vaccination (details provided above). Reporting is by primary series vaccine type rather than additional or booster dose vaccine type. The booster dose vaccine type may be different than the primary series vaccine type. ** Because data on the immune status of cases and associated deaths are unavailable, an additional dose in an immunocompromised person cannot be distinguished from a booster dose. This is a relevant consideration because vaccines can be less effective in this group. Deaths: A COVID-19–associated death occurred in a person with a documented COVID-19 diagnosis who died; health department staff reviewed to make a determination using vital records, public health investigation, or other data sources. Rates of COVID-19 deaths by vaccination status are reported based on when the patient was tested for COVID-19, not the date they died. Deaths usually occur up to 30 days after COVID-19 diagnosis. Participating jurisdictions: Currently, these 31 health departments that regularly link their case surveillance to immunization information system data are included in these incidence rate estimates: Alabama, Arizona, Arkansas, California, Colorado, Connecticut, District of Columbia, Florida, Georgia, Idaho, Indiana, Kansas, Kentucky, Louisiana, Massachusetts, Michigan, Minnesota, Nebraska, New Jersey, New Mexico, New York, New York City (New York), North Carolina, Philadelphia (Pennsylvania), Rhode Island, South Dakota, Tennessee, Texas, Utah, Washington, and West Virginia; 30 jurisdictions also report deaths among vaccinated and unvaccinated people. These jurisdictions represent 72% of the total U.S. population and all ten of the Health and Human Services Regions. Data on cases

  2. d

    COVID-19 Outcomes by Vaccination Status - Historical

    • catalog.data.gov
    • data.cityofchicago.org
    • +2more
    Updated May 24, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    data.cityofchicago.org (2024). COVID-19 Outcomes by Vaccination Status - Historical [Dataset]. https://catalog.data.gov/dataset/covid-19-outcomes-by-vaccination-status
    Explore at:
    Dataset updated
    May 24, 2024
    Dataset provided by
    data.cityofchicago.org
    Description

    NOTE: This dataset has been retired and marked as historical-only. Weekly rates of COVID-19 cases, hospitalizations, and deaths among people living in Chicago by vaccination status and age. Rates for fully vaccinated and unvaccinated begin the week ending April 3, 2021 when COVID-19 vaccines became widely available in Chicago. Rates for boosted begin the week ending October 23, 2021 after booster shots were recommended by the Centers for Disease Control and Prevention (CDC) for adults 65+ years old and adults in certain populations and high risk occupational and institutional settings who received Pfizer or Moderna for their primary series or anyone who received the Johnson & Johnson vaccine. Chicago residency is based on home address, as reported in the Illinois Comprehensive Automated Immunization Registry Exchange (I-CARE) and Illinois National Electronic Disease Surveillance System (I-NEDSS). Outcomes: • Cases: People with a positive molecular (PCR) or antigen COVID-19 test result from an FDA-authorized COVID-19 test that was reported into I-NEDSS. A person can become re-infected with SARS-CoV-2 over time and so may be counted more than once in this dataset. Cases are counted by week the test specimen was collected. • Hospitalizations: COVID-19 cases who are hospitalized due to a documented COVID-19 related illness or who are admitted for any reason within 14 days of a positive SARS-CoV-2 test. Hospitalizations are counted by week of hospital admission. • Deaths: COVID-19 cases who died from COVID-19-related health complications as determined by vital records or a public health investigation. Deaths are counted by week of death. Vaccination status: • Fully vaccinated: Completion of primary series of a U.S. Food and Drug Administration (FDA)-authorized or approved COVID-19 vaccine at least 14 days prior to a positive test (with no other positive tests in the previous 45 days). • Boosted: Fully vaccinated with an additional or booster dose of any FDA-authorized or approved COVID-19 vaccine received at least 14 days prior to a positive test (with no other positive tests in the previous 45 days). • Unvaccinated: No evidence of having received a dose of an FDA-authorized or approved vaccine prior to a positive test. CLARIFYING NOTE: Those who started but did not complete all recommended doses of an FDA-authorized or approved vaccine prior to a positive test (i.e., partially vaccinated) are excluded from this dataset. Incidence rates for fully vaccinated but not boosted people (Vaccinated columns) are calculated as total fully vaccinated but not boosted with outcome divided by cumulative fully vaccinated but not boosted at the end of each week. Incidence rates for boosted (Boosted columns) are calculated as total boosted with outcome divided by cumulative boosted at the end of each week. Incidence rates for unvaccinated (Unvaccinated columns) are calculated as total unvaccinated with outcome divided by total population minus cumulative boosted, fully, and partially vaccinated at the end of each week. All rates are multiplied by 100,000. Incidence rate ratios (IRRs) are calculated by dividing the weekly incidence rates among unvaccinated people by those among fully vaccinated but not boosted and boosted people. Overall age-adjusted incidence rates and IRRs are standardized using the 2000 U.S. Census standard population. Population totals are from U.S. Census Bureau American Community Survey 1-year estimates for 2019. All data are provisional and subject to change. Information is updated as additional details are received and it is, in fact, very common for recent dates to be incomplete and to be updated as time goes on. This dataset reflects data known to CDPH at the time when the dataset is updated each week. Numbers in this dataset may differ from other public sources due to when data are reported and how City of Chicago boundaries are defined. For all datasets related to COVID-19, see https://data.cityofchic

  3. COVID-19 Post-Vaccination Infection Data (ARCHIVED)

    • catalog.data.gov
    • healthdata.gov
    • +4more
    Updated Nov 23, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    California Department of Public Health (2025). COVID-19 Post-Vaccination Infection Data (ARCHIVED) [Dataset]. https://catalog.data.gov/dataset/covid-19-post-vaccination-infection-data-archived-a6744
    Explore at:
    Dataset updated
    Nov 23, 2025
    Dataset provided by
    California Department of Public Healthhttps://www.cdph.ca.gov/
    Description

    Note: This dataset is no longer being updated due to the end of the COVID-19 Public Health Emergency. The California Department of Public Health (CDPH) is identifying vaccination status of COVID-19 cases, hospitalizations, and deaths by analyzing the state immunization registry and registry of confirmed COVID-19 cases. Post-vaccination cases are individuals who have a positive SARS-Cov-2 molecular test (e.g. PCR) at least 14 days after they have completed their primary vaccination series. Tracking cases of COVID-19 that occur after vaccination is important for monitoring the impact of immunization campaigns. While COVID-19 vaccines are safe and effective, some cases are still expected in persons who have been vaccinated, as no vaccine is 100% effective. For more information, please see https://www.cdph.ca.gov/Programs/CID/DCDC/Pages/COVID-19/Post-Vaccine-COVID19-Cases.aspx Post-vaccination infection data is updated monthly and includes data on cases, hospitalizations, and deaths among the unvaccinated and the vaccinated. Partially vaccinated individuals are excluded. To account for reporting and processing delays, there is at least a one-month lag in provided data (for example data published on 9/9/22 will include data through 7/31/22). Notes: On September 9, 2022, the post-vaccination data has been changed to compare unvaccinated with those with at least a primary series completed for persons age 5+. These data will be updated monthly (first Thursday of the month) and include at least a one month lag. On February 2, 2022, the post-vaccination data has been changed to distinguish between vaccination with a primary series only versus vaccinated and boosted. The previous dataset has been uploaded as an archived table. Additionally, the lag on this data has been extended to 14 days. On November 29, 2021, the denominator for calculating vaccine coverage has been changed from age 16+ to age 12+ to reflect new vaccine eligibility criteria. The previous dataset based on age 16+ denominators has been uploaded as an archived table.

  4. Deaths Involving COVID-19 by Vaccination Status

    • open.canada.ca
    • gimi9.com
    • +1more
    csv, docx, html, xlsx
    Updated Nov 12, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Government of Ontario (2025). Deaths Involving COVID-19 by Vaccination Status [Dataset]. https://open.canada.ca/data/dataset/1375bb00-6454-4d3e-a723-4ae9e849d655
    Explore at:
    docx, csv, html, xlsxAvailable download formats
    Dataset updated
    Nov 12, 2025
    Dataset provided by
    Government of Ontariohttps://www.ontario.ca/
    License

    Open Government Licence - Canada 2.0https://open.canada.ca/en/open-government-licence-canada
    License information was derived automatically

    Time period covered
    Mar 1, 2021 - Nov 12, 2024
    Description

    This dataset reports the daily reported number of the 7-day moving average rates of Deaths involving COVID-19 by vaccination status and by age group. Learn how the Government of Ontario is helping to keep Ontarians safe during the 2019 Novel Coronavirus outbreak. Effective November 14, 2024 this page will no longer be updated. Information about COVID-19 and other respiratory viruses is available on Public Health Ontario’s interactive respiratory virus tool: https://www.publichealthontario.ca/en/Data-and-Analysis/Infectious-Disease/Respiratory-Virus-Tool Data includes: * Date on which the death occurred * Age group * 7-day moving average of the last seven days of the death rate per 100,000 for those not fully vaccinated * 7-day moving average of the last seven days of the death rate per 100,000 for those fully vaccinated * 7-day moving average of the last seven days of the death rate per 100,000 for those vaccinated with at least one booster ##Additional notes As of June 16, all COVID-19 datasets will be updated weekly on Thursdays by 2pm. As of January 12, 2024, data from the date of January 1, 2024 onwards reflect updated population estimates. This update specifically impacts data for the 'not fully vaccinated' category. On November 30, 2023 the count of COVID-19 deaths was updated to include missing historical deaths from January 15, 2020 to March 31, 2023. CCM is a dynamic disease reporting system which allows ongoing update to data previously entered. As a result, data extracted from CCM represents a snapshot at the time of extraction and may differ from previous or subsequent results. Public Health Units continually clean up COVID-19 data, correcting for missing or overcounted cases and deaths. These corrections can result in data spikes and current totals being different from previously reported cases and deaths. Observed trends over time should be interpreted with caution for the most recent period due to reporting and/or data entry lags. The data does not include vaccination data for people who did not provide consent for vaccination records to be entered into the provincial COVaxON system. This includes individual records as well as records from some Indigenous communities where those communities have not consented to including vaccination information in COVaxON. “Not fully vaccinated” category includes people with no vaccine and one dose of double-dose vaccine. “People with one dose of double-dose vaccine” category has a small and constantly changing number. The combination will stabilize the results. Spikes, negative numbers and other data anomalies: Due to ongoing data entry and data quality assurance activities in Case and Contact Management system (CCM) file, Public Health Units continually clean up COVID-19, correcting for missing or overcounted cases and deaths. These corrections can result in data spikes, negative numbers and current totals being different from previously reported case and death counts. Public Health Units report cause of death in the CCM based on information available to them at the time of reporting and in accordance with definitions provided by Public Health Ontario. The medical certificate of death is the official record and the cause of death could be different. Deaths are defined per the outcome field in CCM marked as “Fatal”. Deaths in COVID-19 cases identified as unrelated to COVID-19 are not included in the Deaths involving COVID-19 reported. Rates for the most recent days are subject to reporting lags All data reflects totals from 8 p.m. the previous day. This dataset is subject to change.

  5. Rates of COVID-19 Cases or Deaths by Age Group and Vaccination Status and...

    • healthdata.gov
    • odgavaprod.ogopendata.com
    • +1more
    csv, xlsx, xml
    Updated Jun 16, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    data.cdc.gov (2023). Rates of COVID-19 Cases or Deaths by Age Group and Vaccination Status and Second Booster Dose [Dataset]. https://healthdata.gov/CDC/Rates-of-COVID-19-Cases-or-Deaths-by-Age-Group-and/4tut-jeki
    Explore at:
    xlsx, csv, xmlAvailable download formats
    Dataset updated
    Jun 16, 2023
    Dataset provided by
    data.cdc.gov
    Description

    Data for CDC’s COVID Data Tracker site on Rates of COVID-19 Cases and Deaths by Vaccination Status. Click 'More' for important dataset description and footnotes

    Dataset and data visualization details: These data were posted on October 21, 2022, archived on November 18, 2022, and revised on February 22, 2023. These data reflect cases among persons with a positive specimen collection date through September 24, 2022, and deaths among persons with a positive specimen collection date through September 3, 2022.

    Vaccination status: A person vaccinated with a primary series had SARS-CoV-2 RNA or antigen detected on a respiratory specimen collected ≥14 days after verifiably completing the primary series of an FDA-authorized or approved COVID-19 vaccine. An unvaccinated person had SARS-CoV-2 RNA or antigen detected on a respiratory specimen and has not been verified to have received COVID-19 vaccine. Excluded were partially vaccinated people who received at least one FDA-authorized vaccine dose but did not complete a primary series ≥14 days before collection of a specimen where SARS-CoV-2 RNA or antigen was detected. Additional or booster dose: A person vaccinated with a primary series and an additional or booster dose had SARS-CoV-2 RNA or antigen detected on a respiratory specimen collected ≥14 days after receipt of an additional or booster dose of any COVID-19 vaccine on or after August 13, 2021. For people ages 18 years and older, data are graphed starting the week including September 24, 2021, when a COVID-19 booster dose was first recommended by CDC for adults 65+ years old and people in certain populations and high risk occupational and institutional settings. For people ages 12-17 years, data are graphed starting the week of December 26, 2021, 2 weeks after the first recommendation for a booster dose for adolescents ages 16-17 years. For people ages 5-11 years, data are included starting the week of June 5, 2022, 2 weeks after the first recommendation for a booster dose for children aged 5-11 years. For people ages 50 years and older, data on second booster doses are graphed starting the week including March 29, 2022, when the recommendation was made for second boosters. Vertical lines represent dates when changes occurred in U.S. policy for COVID-19 vaccination (details provided above). Reporting is by primary series vaccine type rather than additional or booster dose vaccine type. The booster dose vaccine type may be different than the primary series vaccine type. ** Because data on the immune status of cases and associated deaths are unavailable, an additional dose in an immunocompromised person cannot be distinguished from a booster dose. This is a relevant consideration because vaccines can be less effective in this group. Deaths: A COVID-19–associated death occurred in a person with a documented COVID-19 diagnosis who died; health department staff reviewed to make a determination using vital records, public health investigation, or other data sources. Rates of COVID-19 deaths by vaccination status are reported based on when the patient was tested for COVID-19, not the date they died. Deaths usually occur up to 30 days after COVID-19 diagnosis. Participating jurisdictions: Currently, these 31 health departments that regularly link their case surveillance to immunization information system data are included in these incidence rate estimates: Alabama, Arizona, Arkansas, California, Colorado, Connecticut, District of Columbia, Florida, Georgia, Idaho, Indiana, Kansas, Kentucky, Louisiana, Massachusetts, Michigan, Minnesota, Nebraska, New Jersey, New Mexico, New York, New York City (New York), North Carolina, Philadelphia (Pennsylvania), Rhode Island, South Dakota, Tennessee, Texas, Utah, Washington, and West Virginia; 30 jurisdictions also report deaths among vaccinated and unvaccinated people. These jurisdictions represent 72% of the total U.S. population and all ten of the Health and Human Services Regions. Data on cases

  6. Deaths by vaccination status, England

    • ons.gov.uk
    • cy.ons.gov.uk
    xlsx
    Updated Aug 25, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Office for National Statistics (2023). Deaths by vaccination status, England [Dataset]. https://www.ons.gov.uk/peoplepopulationandcommunity/birthsdeathsandmarriages/deaths/datasets/deathsbyvaccinationstatusengland
    Explore at:
    xlsxAvailable download formats
    Dataset updated
    Aug 25, 2023
    Dataset provided by
    Office for National Statisticshttp://www.ons.gov.uk/
    License

    Open Government Licence 3.0http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
    License information was derived automatically

    Description

    Age-standardised mortality rates for deaths involving coronavirus (COVID-19), non-COVID-19 deaths and all deaths by vaccination status, broken down by age group.

  7. COVID-19 Vaccine Progress Dashboard Data

    • data.chhs.ca.gov
    • data.ca.gov
    • +4more
    csv, xlsx, zip
    Updated Dec 2, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    California Department of Public Health (2025). COVID-19 Vaccine Progress Dashboard Data [Dataset]. https://data.chhs.ca.gov/dataset/vaccine-progress-dashboard
    Explore at:
    csv(2641927), xlsx(11249), csv(638738), csv(675610), csv(83128924), zip, csv(8356597), csv(399683276), csv(724860), csv(12877811), csv(111682), csv(148732), csv(7777694), csv(82754), csv(26828), csv(503270), csv(54906), xlsx(7708), csv(6772350), csv(303068812), xlsx(11870), csv(110928434), csv(18403068), csv(2447143), xlsx(11731), xlsx(11534), csv(188895), csv(4031189), csv(1050523)Available download formats
    Dataset updated
    Dec 2, 2025
    Dataset authored and provided by
    California Department of Public Healthhttps://www.cdph.ca.gov/
    Description

    Note: In these datasets, a person is defined as up to date if they have received at least one dose of an updated COVID-19 vaccine. The Centers for Disease Control and Prevention (CDC) recommends that certain groups, including adults ages 65 years and older, receive additional doses.

    On 6/16/2023 CDPH replaced the booster measures with a new “Up to Date” measure based on CDC’s new recommendations, replacing the primary series, boosted, and bivalent booster metrics The definition of “primary series complete” has not changed and is based on previous recommendations that CDC has since simplified. A person cannot complete their primary series with a single dose of an updated vaccine. Whereas the booster measures were calculated using the eligible population as the denominator, the new up to date measure uses the total estimated population. Please note that the rates for some groups may change since the up to date measure is calculated differently than the previous booster and bivalent measures.

    This data is from the same source as the Vaccine Progress Dashboard at https://covid19.ca.gov/vaccination-progress-data/ which summarizes vaccination data at the county level by county of residence. Where county of residence was not reported in a vaccination record, the county of provider that vaccinated the resident is included. This applies to less than 1% of vaccination records. The sum of county-level vaccinations does not equal statewide total vaccinations due to out-of-state residents vaccinated in California.

    These data do not include doses administered by the following federal agencies who received vaccine allocated directly from CDC: Indian Health Service, Veterans Health Administration, Department of Defense, and the Federal Bureau of Prisons.

    Totals for the Vaccine Progress Dashboard and this dataset may not match, as the Dashboard totals doses by Report Date and this dataset totals doses by Administration Date. Dose numbers may also change for a particular Administration Date as data is updated.

    Previous updates:

    • On March 3, 2023, with the release of HPI 3.0 in 2022, the previous equity scores have been updated to reflect more recent community survey information. This change represents an improvement to the way CDPH monitors health equity by using the latest and most accurate community data available. The HPI uses a collection of data sources and indicators to calculate a measure of community conditions ranging from the most to the least healthy based on economic, housing, and environmental measures.

    • Starting on July 13, 2022, the denominator for calculating vaccine coverage has been changed from age 5+ to all ages to reflect new vaccine eligibility criteria. Previously the denominator was changed from age 16+ to age 12+ on May 18, 2021, then changed from age 12+ to age 5+ on November 10, 2021, to reflect previous changes in vaccine eligibility criteria. The previous datasets based on age 16+ and age 5+ denominators have been uploaded as archived tables.

    • Starting on May 29, 2021 the methodology for calculating on-hand inventory in the shipped/delivered/on-hand dataset has changed. Please see the accompanying data dictionary for details. In addition, this dataset is now down to the ZIP code level.

  8. COVID-19 World Vaccination Progress Data

    • kaggle.com
    zip
    Updated Jun 29, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    fedesoriano (2021). COVID-19 World Vaccination Progress Data [Dataset]. https://www.kaggle.com/datasets/fedesoriano/coronavirus-covid19-vaccinations-data/data
    Explore at:
    zip(4832380 bytes)Available download formats
    Dataset updated
    Jun 29, 2021
    Authors
    fedesoriano
    Area covered
    World
    Description

    How many people have received a coronavirus vaccine?

    Tracking COVID-19 vaccination rates is crucial to understand the scale of protection against the virus, and how this is distributed across the global population.

    A global, aggregated database on COVID-19 vaccination rates is essential to monitor progress, but it is unfortunately not yet available. This dataset provides the last weekly update of vaccination rates.

    Last update

    June 2021

    Content

    Colums description: 1. iso_code: ISO 3166-1 alpha-3 – three-letter country codes 2. continent: Continent of the geographical location 3. location: Geographical location 4. date: Date of observation 5. total_cases: Total confirmed cases of COVID-19 6. new_cases: New confirmed cases of COVID-19 7. new_cases_smoothed: New confirmed cases of COVID-19 (7-day smoothed) 8. total_deaths: Total deaths attributed to COVID-19 9. new_deaths: New deaths attributed to COVID-19 10. new_deaths_smoothed: New deaths attributed to COVID-19 (7-day smoothed) 11. total_cases_per_million: Total confirmed cases of COVID-19 per 1,000,000 people 12. new_cases_per_million: New confirmed cases of COVID-19 per 1,000,000 people 13. new_cases_smoothed_per_million: New confirmed cases of COVID-19 (7-day smoothed) per 1,000,000 people 14. total_deaths_per_million: Total deaths attributed to COVID-19 per 1,000,000 people 15. new_deaths_per_million: New deaths attributed to COVID-19 per 1,000,000 people 16. new_deaths_smoothed_per_million: New deaths attributed to COVID-19 (7-day smoothed) per 1,000,000 people 17. reproduction_rate: Real-time estimate of the effective reproduction rate (R) of COVID-19. See http://trackingr-env.eba-9muars8y.us-east-2.elasticbeanstalk.com/FAQ 18. icu_patients: Number of COVID-19 patients in intensive care units (ICUs) on a given day 19. icu_patients_per_million: Number of COVID-19 patients in intensive care units (ICUs) on a given day per 1,000,000 people 20. hosp_patients: Number of COVID-19 patients in hospital on a given day 21. hosp_patients_per_million: Number of COVID-19 patients in hospital on a given day per 1,000,000 people 22. weekly_icu_admissions: Number of COVID-19 patients newly admitted to intensive care units (ICUs) in a given week 23. weekly_icu_admissions_per_million: Number of COVID-19 patients newly admitted to intensive care units (ICUs) in a given week per 1,000,000 people 24. weekly_hosp_admissions: Number of COVID-19 patients newly admitted to hospitals in a given week 25. weekly_hosp_admissions_per_million: Number of COVID-19 patients newly admitted to hospitals in a given week per 1,000,000 people 26. total_tests: Total tests for COVID-19 27. new_tests: New tests for COVID-19 28. new_tests_smoothed: New tests for COVID-19 (7-day smoothed). For countries that don't report testing data on a daily basis, we assume that testing changed equally on a daily basis over any periods in which no data was reported. This produces a complete series of daily figures, which is then averaged over a rolling 7-day window 29. total_tests_per_thousand: Total tests for COVID-19 per 1,000 people 30. new_tests_per_thousand: New tests for COVID-19 per 1,000 people 31. new_tests_smoothed_per_thousand: New tests for COVID-19 (7-day smoothed) per 1,000 people 32. tests_per_case: Tests conducted per new confirmed case of COVID-19, given as a rolling 7-day average (this is the inverse of positive_rate) 33. positive_rate: The share of COVID-19 tests that are positive, given as a rolling 7-day average (this is the inverse of tests_per_case) 34. tests_units: Units used by the location to report its testing data 35. total_vaccinations: Number of COVID-19 vaccination doses administered 36. total_vaccinations_per_hundred: Number of COVID-19 vaccination doses administered per 100 people 37. stringency_index: Government Response Stringency Index: composite measure based on 9 response indicators including school closures, workplace closures, and travel bans, rescaled to a value from 0 to 100 (100 = strictest response) 38. population: Population in 2020 39. population_density: Number of people divided by land area, measured in square kilometers, most recent year available 40. median_age: Median age of the population, UN projection for 2020 41. aged_65_older: Share of the population that is 65 years and older, most recent year available 42. aged_70_older: Share of the population that is 70 years and older in 2015 43. gdp_per_capita: Gross domestic product at purchasing power parity (constant 2011 international dollars), most recent year available 44. extreme_poverty: Share of the population living in extreme poverty, most recent year available since 2010 45. cardiovasc_death_rate: Death rate from cardiovascular disease in 2017 (annual number of deaths per 100,000 people) 46. diabetes_prevalence: Diabetes prevalence (% of population aged 20 to 79) in 2017 47. female...

  9. I

    Estimated preventable COVID-19-associated deaths due to non-vaccination in...

    • data.niaid.nih.gov
    • immport.org
    • +1more
    url
    Updated Jan 25, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2024). Estimated preventable COVID-19-associated deaths due to non-vaccination in the United States [Dataset]. http://doi.org/10.21430/M3MTSYRBG6
    Explore at:
    urlAvailable download formats
    Dataset updated
    Jan 25, 2024
    License

    https://www.immport.org/agreementhttps://www.immport.org/agreement

    Area covered
    United States
    Description

    While some studies have previously estimated lives saved by COVID-19 vaccination, we estimate how many deaths could have been averted by vaccination in the US but were not because of a failure to vaccinate. We used a simple method based on a nationally representative dataset to estimate the preventable deaths among unvaccinated individuals in the US from May 30, 2021 to September 3, 2022 adjusted for the effects of age and time. We estimated that at least 232,000 deaths could have been prevented among unvaccinated adults during the 15 months had they been vaccinated with at least a primary series. While uncertainties exist regarding the exact number of preventable deaths and more granular data are needed on other factors causing differences in death rates between the vaccinated and unvaccinated groups to inform these estimates, this method is a rapid assessment on vaccine-preventable deaths due to SARS-CoV-2 that has crucial public health implications. The same rapid method can be used for future public health emergencies.

  10. COVID vaccination vs. mortality

    • kaggle.com
    zip
    Updated Jul 1, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Sina Karaji (2022). COVID vaccination vs. mortality [Dataset]. https://www.kaggle.com/sinakaraji/covid-vaccination-vs-death
    Explore at:
    zip(981021 bytes)Available download formats
    Dataset updated
    Jul 1, 2022
    Authors
    Sina Karaji
    License

    https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/

    Description

    Context

    The COVID-19 outbreak has brought the whole planet to its knees.More over 4.5 million people have died since the writing of this notebook, and the only acceptable way out of the disaster is to vaccinate all parts of society. Despite the fact that the benefits of vaccination have been proved to the world many times, anti-vaccine groups are springing up all over the world. This data set was generated to investigate the impact of coronavirus vaccinations on coronavirus mortality.

    Content

    countryiso_codedatetotal_vaccinationspeople_vaccinatedpeople_fully_vaccinatedNew_deathspopulationratio
    country nameiso code for each countrydate that this data belongnumber of all doses of COVID vaccine usage in that countrynumber of people who got at least one shot of COVID vaccinenumber of people who got full vaccine shotsnumber of daily new deaths2021 country population% of vaccinations in that country at that date = people_vaccinated/population * 100

    Data Collection

    This dataset is a combination of the following three datasets:

    1.https://www.kaggle.com/gpreda/covid-world-vaccination-progress

    2.https://covid19.who.int/WHO-COVID-19-global-data.csv

    3.https://www.kaggle.com/rsrishav/world-population

    you can find more detail about this dataset by reading this notebook:

    https://www.kaggle.com/sinakaraji/simple-linear-regression-covid-vaccination

    Countries in this dataset:

    AfghanistanAlbaniaAlgeriaAndorraAngola
    AnguillaAntigua and BarbudaArgentinaArmeniaAruba
    AustraliaAustriaAzerbaijanBahamasBahrain
    BangladeshBarbadosBelarusBelgiumBelize
    BeninBermudaBhutanBolivia (Plurinational State of)Brazil
    Bosnia and HerzegovinaBotswanaBrunei DarussalamBulgariaBurkina Faso
    CambodiaCameroonCanadaCabo VerdeCayman Islands
    Central African RepublicChadChileChinaColombia
    ComorosCook IslandsCosta RicaCroatiaCuba
    CuraçaoCyprusDenmarkDjiboutiDominica
    Dominican RepublicEcuadorEgyptEl SalvadorEquatorial Guinea
    EstoniaEthiopiaFalkland Islands (Malvinas)FijiFinland
    FranceFrench PolynesiaGabonGambiaGeorgia
    GermanyGhanaGibraltarGreeceGreenland
    GrenadaGuatemalaGuineaGuinea-BissauGuyana
    HaitiHondurasHungaryIcelandIndia
    IndonesiaIran (Islamic Republic of)IraqIrelandIsle of Man
    IsraelItalyJamaicaJapanJordan
    KazakhstanKenyaKiribatiKuwaitKyrgyzstan
    Lao People's Democratic RepublicLatviaLebanonLesothoLiberia
    LibyaLiechtensteinLithuaniaLuxembourgMadagascar
    MalawiMalaysiaMaldivesMaliMalta
    MauritaniaMauritiusMexicoRepublic of MoldovaMonaco
    MongoliaMontenegroMontserratMoroccoMozambique
    MyanmarNamibiaNauruNepalNetherlands
    New CaledoniaNew ZealandNicaraguaNigerNigeria
    NiueNorth MacedoniaNorwayOmanPakistan
    occupied Palestinian territory, including east Jerusalem
    PanamaPapua New GuineaParaguayPeruPhilippines
    PolandPortugalQatarRomaniaRussian Federation
    RwandaSaint Kitts and NevisSaint Lucia
    Saint Vincent and the GrenadinesSamoaSan MarinoSao Tome and PrincipeSaudi Arabia
    SenegalSerbiaSeychellesSierra LeoneSingapore
    SlovakiaSloveniaSolomon IslandsSomaliaSouth Africa
    Republic of KoreaSouth SudanSpainSri LankaSudan
    SurinameSwedenSwitzerlandSyrian Arab RepublicTajikistan
    United Republic of TanzaniaThailandTogoTongaTrinidad and Tobago
    TunisiaTurkeyTurkmenistanTurks and Caicos IslandsTuvalu
    UgandaUkraineUnited Arab EmiratesThe United KingdomUnited States of America
    UruguayUzbekistanVanuatuVenezuela (Bolivarian Republic of)Viet Nam
    Wallis and FutunaYemenZambiaZimbabwe
  11. Rates of COVID-19 Cases or Deaths by Age Group and Updated (Bivalent)...

    • data.cdc.gov
    • data.virginia.gov
    • +1more
    csv, xlsx, xml
    Updated May 30, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    CDC COVID-19 Response, Epidemiology Task Force (2023). Rates of COVID-19 Cases or Deaths by Age Group and Updated (Bivalent) Booster Status [Dataset]. https://data.cdc.gov/w/54ys-qyzm/tdwk-ruhb?cur=oWvCjIyWD6z&from=tPCKf1wdL06
    Explore at:
    xlsx, csv, xmlAvailable download formats
    Dataset updated
    May 30, 2023
    Dataset provided by
    Centers for Disease Control and Preventionhttp://www.cdc.gov/
    Authors
    CDC COVID-19 Response, Epidemiology Task Force
    Description

    Data for CDC’s COVID Data Tracker site on Rates of COVID-19 Cases and Deaths by Updated (Bivalent) Booster Status. Click 'More' for important dataset description and footnotes

    Webpage: https://covid.cdc.gov/covid-data-tracker/#rates-by-vaccine-status

    Dataset and data visualization details:

    These data were posted and archived on May 30, 2023 and reflect cases among persons with a positive specimen collection date through April 22, 2023, and deaths among persons with a positive specimen collection date through April 1, 2023. These data will no longer be updated after May 2023.

    Vaccination status: A person vaccinated with at least a primary series had SARS-CoV-2 RNA or antigen detected on a respiratory specimen collected ≥14 days after verifiably completing the primary series of an FDA-authorized or approved COVID-19 vaccine. An unvaccinated person had SARS-CoV-2 RNA or antigen detected on a respiratory specimen and has not been verified to have received COVID-19 vaccine. Excluded were partially vaccinated people who received at least one FDA-authorized vaccine dose but did not complete a primary series ≥14 days before collection of a specimen where SARS-CoV-2 RNA or antigen was detected. A person vaccinated with a primary series and a monovalent booster dose had SARS-CoV-2 RNA or antigen detected on a respiratory specimen collected ≥14 days after verifiably receiving a primary series of an FDA-authorized or approved vaccine and at least one additional dose of any monovalent FDA-authorized or approved COVID-19 vaccine on or after August 13, 2021. (Note: this definition does not distinguish between vaccine recipients who are immunocompromised and are receiving an additional dose versus those who are not immunocompromised and receiving a booster dose.) A person vaccinated with a primary series and an updated (bivalent) booster dose had SARS-CoV-2 RNA or antigen detected in a respiratory specimen collected ≥14 days after verifiably receiving a primary series of an FDA-authorized or approved vaccine and an additional dose of any bivalent FDA-authorized or approved vaccine COVID-19 vaccine on or after September 1, 2022. (Note: Doses with bivalent doses reported as first or second doses are classified as vaccinated with a bivalent booster dose.) People with primary series or a monovalent booster dose were combined in the “vaccinated without an updated booster” category.

    Deaths: A COVID-19–associated death occurred in a person with a documented COVID-19 diagnosis who died; health department staff reviewed to make a determination using vital records, public health investigation, or other data sources. Per the interim guidance of the Council of State and Territorial Epidemiologists (CSTE), this should include persons whose death certificate lists COVID-19 disease or SARS-CoV-2 as the underlying cause of death or as a significant condition contributing to death. Rates of COVID-19 deaths by vaccination status are primarily reported based on when the patient was tested for COVID-19. In select jurisdictions, deaths are included that are not laboratory confirmed and are reported based on alternative dates (i.e., onset date for most; or date of death or report date, where onset date is unavailable). Deaths usually occur up to 30 days after COVID-19 diagnosis.

    Participating jurisdictions: Currently, these 24 health departments that regularly link their case surveillance to immunization information system data are included in these incidence rate estimates: Alabama, Arizona, Colorado, District of Columbia, Georgia, Idaho, Indiana, Kansas, Kentucky, Louisiana, Massachusetts, Michigan, Minnesota, Nebraska, New Jersey, New Mexico, New York, New York City (NY), North Carolina, Rhode Island, Tennessee, Texas, Utah, and West Virginia; 23 jurisdictions also report deaths among vaccinated and unvaccinated people. These jurisdictions represent 48% of the total U.S. population and all ten of the Health and Human Services Regions. This list will be updated as more jurisdictions participate.

    Incidence rate estimates: Weekly age-specific incidence rates by vaccination status were calculated as the number of cases or deaths divided by the number of people vaccinated with a primary series, overall or with/without a booster dose (cumulative) or unvaccinated (obtained by subtracting the cumulative number of people vaccinated with at least a primary series and partially vaccinated people from the 2019 U.S. intercensal population estimates) and multiplied by 100,000. Overall incidence rates were age-standardized using the 2000 U.S. Census standard population. To estimate population counts for ages 6-12 months, half of the single-year population counts for ages <12 months were used. All rates are plotted by positive specimen collection date to reflect when incident infections occurred.

    Continuity correction: A continuity correction has been applied to the denominators by capping the percent population coverage at 95%. To do this, we assumed that at least 5% of each age group would always be unvaccinated in each jurisdiction. Adding this correction ensures that there is always a reasonable denominator for the unvaccinated population that would prevent incidence and death rates from growing unrealistically large due to potential overestimates of vaccination coverage.

    Incidence rate ratios (IRRs): IRRs for the past one month were calculated by dividing the average weekly incidence rates among unvaccinated people by that among people vaccinated without an updated (bivalent) booster dose) or vaccinated with an updated (bivalent) booster dose.

    Archive: An archive of historic data, including April 3, 2021-September 24, 2022 and posted on October 21, 2022 is available on data.cdc.gov. The analysis by vaccination status (unvaccinated and at least a primary series) for 31 jurisdictions is posted here: https://data.cdc.gov/Public-Health-Surveillance/Rates-of-COVID-19-Cases-or-Deaths-by-Age-Group-and/3rge-nu2a. The analysis for one booster dose (unvaccinated, primary series only, and at least one booster dose) in 31 jurisdictions is posted here: https://data.cdc.gov/Public-Health-Surveillance/Rates-of-COVID-19-Cases-or-Deaths-by-Age-Group-and/d6p8-wqjm. The analysis for two booster doses (unvaccinated, primary series only, one booster dose, and at least two booster doses) in 28 jurisdictions is posted here: https://data.cdc.gov/Public-Health-Surveillance/Rates-of-COVID-19-Cases-or-Deaths-by-Age-Group-and/ukww-au2k.

    References

    Scobie HM, Johnson AG, Suthar AB, et al. Monitoring Incidence of COVID-19 Cases, Hospitalizations, and Deaths, by Vaccination Status — 13 U.S. Jurisdictions, April 4–July 17, 2021. MMWR Morb Mortal Wkly Rep 2021;70:1284–1290.

    Johnson AG, Amin AB, Ali AR, et al. COVID-19 Incidence and Death Rates Among Unvaccinated and Fully Vaccinated Adults with and Without Booster Doses During Periods of Delta and Omicron Variant Emergence — 25 U.S. Jurisdictions, April 4–December 25, 2021. MMWR Morb Mortal Wkly Rep 2022;71:132–138

    Johnson AG, Linde L, Ali AR, et al. COVID-19 Incidence and Mortality Among Unvaccinated and Vaccinated Persons Aged ≥12 Years by Receipt of Bivalent Booster Doses and Time Since Vaccination — 24 U.S. Jurisdictions, October 3, 2021–December 24, 2022. MMWR Morb Mortal Wkly Rep 2023;72:145–152

  12. u

    Deaths Involving COVID-19 by Vaccination Status - Catalogue - Canadian Urban...

    • data.urbandatacentre.ca
    Updated Oct 19, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2025). Deaths Involving COVID-19 by Vaccination Status - Catalogue - Canadian Urban Data Catalogue (CUDC) [Dataset]. https://data.urbandatacentre.ca/dataset/gov-canada-1375bb00-6454-4d3e-a723-4ae9e849d655
    Explore at:
    Dataset updated
    Oct 19, 2025
    Description

    This dataset reports the daily reported number of the 7-day moving average rates of Deaths involving COVID-19 by vaccination status and by age group. Learn how the Government of Ontario is helping to keep Ontarians safe during the 2019 Novel Coronavirus outbreak. Effective November 14, 2024 this page will no longer be updated. Information about COVID-19 and other respiratory viruses is available on Public Health Ontario’s interactive respiratory virus tool: https://www.publichealthontario.ca/en/Data-and-Analysis/Infectious-Disease/Respiratory-Virus-Tool Data includes: * Date on which the death occurred * Age group * 7-day moving average of the last seven days of the death rate per 100,000 for those not fully vaccinated * 7-day moving average of the last seven days of the death rate per 100,000 for those fully vaccinated * 7-day moving average of the last seven days of the death rate per 100,000 for those vaccinated with at least one booster ##Additional notes As of June 16, all COVID-19 datasets will be updated weekly on Thursdays by 2pm. As of January 12, 2024, data from the date of January 1, 2024 onwards reflect updated population estimates. This update specifically impacts data for the 'not fully vaccinated' category. On November 30, 2023 the count of COVID-19 deaths was updated to include missing historical deaths from January 15, 2020 to March 31, 2023. CCM is a dynamic disease reporting system which allows ongoing update to data previously entered. As a result, data extracted from CCM represents a snapshot at the time of extraction and may differ from previous or subsequent results. Public Health Units continually clean up COVID-19 data, correcting for missing or overcounted cases and deaths. These corrections can result in data spikes and current totals being different from previously reported cases and deaths. Observed trends over time should be interpreted with caution for the most recent period due to reporting and/or data entry lags. The data does not include vaccination data for people who did not provide consent for vaccination records to be entered into the provincial COVaxON system. This includes individual records as well as records from some Indigenous communities where those communities have not consented to including vaccination information in COVaxON. “Not fully vaccinated” category includes people with no vaccine and one dose of double-dose vaccine. “People with one dose of double-dose vaccine” category has a small and constantly changing number. The combination will stabilize the results. Spikes, negative numbers and other data anomalies: Due to ongoing data entry and data quality assurance activities in Case and Contact Management system (CCM) file, Public Health Units continually clean up COVID-19, correcting for missing or overcounted cases and deaths. These corrections can result in data spikes, negative numbers and current totals being different from previously reported case and death counts. Public Health Units report cause of death in the CCM based on information available to them at the time of reporting and in accordance with definitions provided by Public Health Ontario. The medical certificate of death is the official record and the cause of death could be different. Deaths are defined per the outcome field in CCM marked as “Fatal”. Deaths in COVID-19 cases identified as unrelated to COVID-19 are not included in the Deaths involving COVID-19 reported. Rates for the most recent days are subject to reporting lags All data reflects totals from 8 p.m. the previous day. This dataset is subject to change.

  13. COVID-19 Tracking Germany

    • kaggle.com
    zip
    Updated Feb 7, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Heads or Tails (2023). COVID-19 Tracking Germany [Dataset]. https://www.kaggle.com/datasets/headsortails/covid19-tracking-germany
    Explore at:
    zip(14492010 bytes)Available download formats
    Dataset updated
    Feb 7, 2023
    Authors
    Heads or Tails
    Area covered
    Germany
    Description

    Read the associated blogpost for a detailed description of how this dataset was prepared; plus extra code for producing animated maps.

    Context

    The 2019 Novel Coronavirus (COVID-19) continues to spread in countries around the world. This dataset provides daily updated number of reported cases & deaths in Germany on the federal state (Bundesland) and county (Landkreis/Stadtkreis) level. In April 2021 I added a dataset on vaccination progress. In addition, I provide geospatial shape files and general state-level population demographics to aid the analysis.

    Content

    The dataset consists of thre main csv files: covid_de.csv, demgraphics_de.csv, and covid_de_vaccines.csv. The geospatial shapes are included in the de_state.* files. See the column descriptions below for more detailed information.

    • covid_de.csv: COVID-19 cases and deaths which will be updated daily. The original data are being collected by Germany's Robert Koch Institute and can be download through the National Platform for Geographic Data (the latter site also hosts an interactive dashboard). I reshaped and translated the data (using R tidyverse tools) to make it better accessible. This blogpost explains how I prepared the data, and describes how to produces animated maps.

    • demographics_de.csv: General Demographic Data about Germany on the federal state level. Those have been downloaded from Germany's Federal Office for Statistics (Statistisches Bundesamt) through their Open Data platform GENESIS. The data reflect the (most recent available) estimates on 2018-12-31. You can find the corresponding table here.

    • covid_de_vaccines.csv: In April 2021 I added this file that contains the Covid-19 vaccination progress for Germany as a whole. It details daily doses, broken down cumulatively by manufacturer, as well as the cumulative number of people having received their first and full vaccination. The earliest data are from 2020-12-27.

    • de_state.*: Geospatial shape files for Germany's 16 federal states. Downloaded via Germany's Federal Agency for Cartography and Geodesy . Specifically, the shape file was obtained from this link.

    Column Description

    COVID-19 dataset covid_de.csv:

    • state: Name of the German federal state. Germany has 16 federal states. I removed converted special characters from the original data.

    • county: The name of the German Landkreis (LK) or Stadtkreis (SK), which correspond roughly to US counties.

    • age_group: The COVID-19 data is being reported for 6 age groups: 0-4, 5-14, 15-34, 35-59, 60-79, and above 80 years old. As a shortcut the last category I'm using "80-99", but there might well be persons above 99 years old in this dataset. This column has a few NA entries.

    • gender: Reported as male (M) or female (F). This column has a few NA entries.

    • date: The calendar date of when a case or death were reported. There might be delays that will be corrected by retroactively assigning cases to earlier dates.

    • cases: COVID-19 cases that have been confirmed through laboratory work. This and the following 2 columns are counts per day, not cumulative counts.

    • deaths: COVID-19 related deaths.

    • recovered: Recovered cases.

    Demographic dataset demographics_de.csv:

    • state, gender, age_group: same as above. The demographic data is available in higher age resolution, but I have binned it here to match the corresponding age groups in the covid_de.csv file.

    • population: Population counts for the respective categories. These numbers reflect the (most recent available) estimates on 2018-12-31.

    Vaccination progress dataset covid_de_vaccines.csv:

    • date: calendar date of vaccination

    • doses, doses_first, doses_second: Daily count of administered doses: total, 1st shot, 2nd shot.

    • pfizer_cumul, moderna_cumul, astrazeneca_cumul: Daily cumulative number of administered vaccinations by manufacturer.

    • persons_first_cumul, persons_full_cumul: Daily cumulative number of people having received their 1st shot and full vaccination, respectively.

    Acknowledgements

    All the data have been extracted from open data sources which are being gratefully acknowledged:

    • The [Robert ...
  14. e

    Coronavirus (COVID-19) Vaccine Roll Out

    • data.europa.eu
    • ckan.publishing.service.gov.uk
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Greater London Authority, Coronavirus (COVID-19) Vaccine Roll Out [Dataset]. https://data.europa.eu/data/datasets/coronavirus-covid-19-vaccine-roll-out~~1?locale=en
    Explore at:
    Dataset authored and provided by
    Greater London Authority
    Description

    Vaccinations in London Between 8 December 2020 and 15 September 2021 5,838,305 1st doses and 5,232,885 2nd doses have been administered to London residents.

    Differences in vaccine roll out between London and the Rest of England London Rest of England Priority Group Vaccinations given Percentage vaccinated Vaccinations given Percentage vaccinated Group 1 Older Adult Care Home Residents 21,883 95% 275,964 96% Older Adult Care Home Staff 29,405 85% 381,637 88% Group 2 80+ years 251,021 83% 2,368,284 93% Health Care Worker 174,944 99% 1,139,243 100%* Group 3 75 - 79 years 177,665 90% 1,796,408 99% Group 4 70 - 74 years 252,609 90% 2,454,381 97% Clinically Extremely Vulnerable 278,967 88% 1,850,485 95% Group 5 65 - 69 years 285,768 90% 2,381,250 97% Group 6 At Risk or Carer (Under 65) 983,379 78% 6,093,082 88% Younger Adult Care Home Residents 3,822 92% 30,321 93% Group 7 60 - 64 years 373,327 92% 2,748,412 98% Group 8 55 - 59 years 465,276 91% 3,152,412 97% Group 9 50 - 54 years 510,132 90% 3,141,219 95% Data as at 15 September 2021 for age based groups and as at 12 September 2021 for non-age based groups * The number who have received their first dose exceeds the latest official estimate of the population for this group There is considerable uncertainty in the population denominators used to calculate the percentage vaccinated. Comparing implied vaccination rates for multiple sources of denominators provides some indication of uncertainty in the true values. Confidence is higher where the results from multiple sources agree more closely. Because the denominator sources are not fully independent of one another, users should interpret the range of values across sources as indicating the minimum range of uncertainty in the true value. The following datasets can be used to estimate vaccine uptake by age group for London:

    ONS 2020 mid-year estimates (MYE). This is the population estimate used for age groups throughout the rest of the analysis.
    
    
    Number of people ages 18 and over on the National Immunisation Management Service (NIMS)
    
    
    ONS Public Health Data Asset (PHDA) dataset. This is a linked dataset combining the 2011 Census, the General Practice Extraction Service (GPES) data for pandemic planning and research and the Hospital Episode Statistics (HES). This data covers a subset of the population.
    

    Vaccine roll out in London by Ethnic Group Understanding how vaccine uptake varies across different ethnic groups in London is complicated by two issues:

    Ethnicity information for recipients is unavailable for a very large number of the vaccinations that have been delivered. As a result, estimates of vaccine uptake by ethnic group are highly sensitive to the assumptions about and treatment of the Unknown group in calculations of rates.

    For vaccinations given to people aged 50 and over in London nearly 10% do not have ethnicity information available,

    The accuracy of available population denominators by ethnic group is limited. Because ethnicity information is not captured in official estimates of births, deaths, and migration, the available population denominators typically rely on projecting forward patterns captured in the 2011 Census. Subsequent changes to these patterns, particularly with respect to international migration, leads to increasing uncertainty in the accuracy of denominators sources as we move further away from 2011.

    Comparing estimated population sizes and implied vaccination rates for multiple sources of denominators provides some indication of uncertainty in the true values. Confidence is higher where the results from multiple sources agree more closely. Because the denominator sources are not fully independent of one another, users should interpret the range of values across sources as indicating the minimum range of uncertainty in the true value. The following population estimates are available by Ethnic group for London:

    GLA Ethnic group population projections - 2016 as at 2021
    
    
    ONS Population Denominators produced for Race Disparity Audit as at 2018
    
    
    ETHPOP population projections produced by the University of Leeds as at 2020
    

    Antibody prevalence estimates As part of the ONS Coronavirus (COVID-19) Infection Survey ONS publish a modelled estimate of the percent of the adult population testing positive for antibodies to Coronavirus by region. Antibodies can be generated by vaccination or previous infection.

    Vaccine effects on cases, hospitalisations and deaths When the vaccine roll out began in December 2020 coronavirus cases, hospital admissions and deaths were rising steeply. The peak of infections came in London in early January 2021, before reducing during the national lockdown and as the vaccine roll out progressed. As the vaccine roll out began in older age groups the effect of vaccinations can be separated from the effect of national lockdown by comparing changes in cases, admissions and deaths

  15. Coronavirus (COVID-19) In-depth Dataset

    • kaggle.com
    zip
    Updated May 29, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Pranjal Verma (2021). Coronavirus (COVID-19) In-depth Dataset [Dataset]. https://www.kaggle.com/pranjalverma08/coronavirus-covid19-indepth-dataset
    Explore at:
    zip(9882078 bytes)Available download formats
    Dataset updated
    May 29, 2021
    Authors
    Pranjal Verma
    License

    http://opendatacommons.org/licenses/dbcl/1.0/http://opendatacommons.org/licenses/dbcl/1.0/

    Description

    Context

    Covid-19 Data collected from various sources on the internet. This dataset has daily level information on the number of affected cases, deaths, and recovery from the 2019 novel coronavirus. Please note that this is time-series data and so the number of cases on any given day is the cumulative number.

    Content

    The dataset includes 28 files scrapped from various data sources mainly the John Hopkins GitHub repository, the ministry of health affairs India, worldometer, and Our World in Data website. The details of the files are as follows

    • countries-aggregated.csv A simple and cleaned data with 5 columns with self-explanatory names. -covid-19-daily-tests-vs-daily-new-confirmed-cases-per-million.csv A time-series data of daily test conducted v/s daily new confirmed case per million. Entity column represents Country name while code represents ISO code of the country. -covid-contact-tracing.csv Data depicting government policies adopted in case of contact tracing. 0 -> No tracing, 1-> limited tracing, 2-> Comprehensive tracing. -covid-stringency-index.csv The nine metrics used to calculate the Stringency Index are school closures; workplace closures; cancellation of public events; restrictions on public gatherings; closures of public transport; stay-at-home requirements; public information campaigns; restrictions on internal movements; and international travel controls. The index on any given day is calculated as the mean score of the nine metrics, each taking a value between 0 and 100. A higher score indicates a stricter response (i.e. 100 = strictest response). -covid-vaccination-doses-per-capita.csv A total number of vaccination doses administered per 100 people in the total population. This is counted as a single dose, and may not equal the total number of people vaccinated, depending on the specific dose regime (e.g. people receive multiple doses). -covid-vaccine-willingness-and-people-vaccinated-by-country.csv Survey who have not received a COVID vaccine and who are willing vs. unwilling vs. uncertain if they would get a vaccine this week if it was available to them. -covid_india.csv India specific data containing the total number of active cases, recovered and deaths statewide. -cumulative-deaths-and-cases-covid-19.csv A cumulative data containing death and daily confirmed cases in the world. -current-covid-patients-hospital.csv Time series data containing a count of covid patients hospitalized in a country -daily-tests-per-thousand-people-smoothed-7-day.csv Daily test conducted per 1000 people in a running week average. -face-covering-policies-covid.csv Countries are grouped into five categories: 1->No policy 2->Recommended 3->Required in some specified shared/public spaces outside the home with other people present, or some situations when social distancing not possible 4->Required in all shared/public spaces outside the home with other people present or all situations when social distancing not possible 5->Required outside the home at all times regardless of location or presence of other people -full-list-cumulative-total-tests-per-thousand-map.csv Full list of total tests conducted per 1000 people. -income-support-covid.csv Income support captures if the government is covering the salaries or providing direct cash payments, universal basic income, or similar, of people who lose their jobs or cannot work. 0->No income support, 1->covers less than 50% of lost salary, 2-> covers more than 50% of the lost salary. -internal-movement-covid.csv Showing government policies in restricting internal movements. Ranges from 0 to 2 where 2 represents the strictest. -international-travel-covid.csv Showing government policies in restricting international movements. Ranges from 0 to 2 where 2 represents the strictest. -people-fully-vaccinated-covid.csv Contains the count of fully vaccinated people in different countries. -people-vaccinated-covid.csv Contains the total count of vaccinated people in different countries. -positive-rate-daily-smoothed.csv Contains the positivity rate of various countries in a week running average. -public-gathering-rules-covid.csv Restrictions are given based on the size of public gatherings as follows: 0->No restrictions 1 ->Restrictions on very large gatherings (the limit is above 1000 people) 2 -> gatherings between 100-1000 people 3 -> gatherings between 10-100 people 4 -> gatherings of less than 10 people -school-closures-covid.csv School closure during Covid. -share-people-fully-vaccinated-covid.csv Share of people that are fully vaccinated. -stay-at-home-covid.csv Countries are grouped into four categories: 0->No measures 1->Recommended not to leave the house 2->Required to not leave the house with exceptions for daily exercise, grocery shopping, and ‘essent...
  16. COVID Breakthrough Infections

    • kaggle.com
    zip
    Updated Aug 21, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Marília Prata (2021). COVID Breakthrough Infections [Dataset]. https://www.kaggle.com/mpwolke/cusersmarildownloadsvaccincsv
    Explore at:
    zip(333 bytes)Available download formats
    Dataset updated
    Aug 21, 2021
    Authors
    Marília Prata
    Description

    Context

    .COVID-19: Illness After Vaccination

    "The COVID-19 vaccines are extremely effective at preventing serious illness, hospitalization, and death. Fully vaccinated people who test positive for COVID-19 more than 2 weeks after their completed vaccine dose series are called "breakthrough infections." No vaccine is 100 percent effective, and as such we expect to see some fully vaccinated people test positive for COVID-19. Breakthrough cases typically report mild illness or no symptoms."

    https://www.dhs.wisconsin.gov/covid-19/vaccine-status.htm#summary

    Content

    "Your likelihood of being infected with the virus that causes COVID-19 is determined by many factors, which include vaccinations, but also include the level of transmission and vaccine coverage in your community, whether you or others wear masks as recommended, the number of people you have close contact with, and more. On average, fully vaccinated individuals are less likely to be infected, hospitalized, and die from COVID-19 compared to unvaccinated individuals."

    https://www.dhs.wisconsin.gov/covid-19/vaccine-status.htm#summary

    Acknowledgements

    https://www.dhs.wisconsin.gov/covid-19/vaccine-status.htm#summary

    Photo by Joshua Hoehne on Unsplash

    Inspiration

    COVID-19: Illness After Vaccination

  17. d

    Flash Eurobarometer 494 (Attitudes on Vaccination against Covid-19) -...

    • demo-b2find.dkrz.de
    Updated Sep 20, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2025). Flash Eurobarometer 494 (Attitudes on Vaccination against Covid-19) - Dataset - B2FIND [Dataset]. http://demo-b2find.dkrz.de/dataset/7bb778f5-328f-5635-baa0-1d108f8cbc80
    Explore at:
    Dataset updated
    Sep 20, 2025
    Description

    Einstellungen zur Impfung gegen Covid-19. Themen: präferierter Impfzeitpunkt; Wichtigkeit der folgenden Gründe im Hinblick auf die Entscheidung, sich impfen zu lassen: Impfstoff wird bei der Beendigung der Pandemie helfen, Impfstoff wird den/die Befragte/n vor Covid-19 schützen, Impfstoff wird Verwandte und andere vor COVID-19 schützen, Impfstoff wird wieder ein normaleres Berufsleben ermöglichen, Impfstoff wird das Reisen ermöglichen, Impfstoff wird Treffen mit Familie und Freunden ermöglichen, Impfstoff wird Restaurantbesuche und andere Aktivitäten wieder ermöglichen; Wichtigkeit der folgenden Gründe im Hinblick auf die Entscheidung, sich nicht impfen zu lassen: Pandemie wird bald vorbei sein, persönliches Infektionsrisiko ist sehr gering, Risiko durch COVID-19 ist allgemein übertrieben, Sorgen über die Nebenwirkungen von COVID-19-Impfstoffen, Impfstoffe sind noch nicht ausreichend getestet, Impfstoffe sind unwirksam, generelle Ablehnung von Impfungen; Faktoren, die die persönliche Impfbereitschaft erhöhen würden: mehr geimpfte Menschen im Umfeld, viele erfolgreich geimpfte Menschen ohne gravierende Nebenwirkungen, Menschen, die die Impfung empfehlen, sind selbst geimpft, Empfehlung des eigenen Arztes, Entwicklung der Impfstoffe in der Europäischen Union, vollständige Klarheit über Entwicklung, Testung und Zulassung der Impfstoffe, starker Wunsch nach einer Impfung bzw. Befragte/r ist bereits geimpft, keine Impfung geplant; Einstellung zu den folgenden Aussagen zu den Impfstoffen: Vorteile überwiegen mögliche Risiken, in der EU zugelassene Impfstoffe sind sicher, zu schnelle Entwicklung, Testung und Zulassung der Impfstoffe, um sicher zu sein, noch unbekannte potentielle Langzeit-Nebenwirkungen, Impfung ist die einzige Möglichkeit zur Beendigung der Pandemie, kein Verständnis für Impfgegner, Ausrottung ernsthafter Krankheiten durch Impfung; Einstellung zu den folgenden Aussagen: Ansteckung kann auch ohne Impfung vermieden werden, mangelnde Transparenz öffentlicher Behörden in Bezug auf die Corona-Impfstoffe, Impfung gegen COVID-19 ist Bürgerpflicht, Impfung sollte verpflichtend sein, Europäische Union spielt wesentliche Rolle bei der Versorgung des eigenen Landes mit Impfstoff; vertrauenswürdigste Institutionen oder Personen im Hinblick auf die Bereitstellung von Informationen über Corona-Impfstoffe; Interesse an zusätzlichen Informationen über die folgenden Aspekte: Entwicklung, Testung und Zulassung von COVID-19-Impfstoffen, Sicherheit von COVID-19- Impfstoffen, Effektivität von COVID-19-Impfstoffen; Zufriedenheit mit der Handhabung der Impfstrategie durch: nationale Regierung, EU; Anwendbarkeit der folgenden Aussagen: Befragter kennt Menschen mit positivem Corona-Testergebnis, Befragter kennt Menschen mit Corona-Erkrankung, Befragter hatte positives Corona-Testergebnis, Befragter Corona-Erkrankung, Befragter fürchtet Ansteckung in der Zukunft; Impfung des Befragten als: Kind, Erwachsener; Einstellung zu Impfstoffen im allgemeinen: sind sicher, sind wirksam. Demographie: Alter; Geschlecht; Nationalität; Alter bei Beendigung der Ausbildung; Beruf; berufliche Stellung; Urbanisierungsgrad; Haushaltszusammensetzung und Haushaltsgröße; Region. Zusätzlich verkodet wurde: Befragten-ID; Land; für das Interview genutztes Gerät; Nationengruppe; Gewichtungsfaktor. Attitudes on vaccination against Covid-19. Topics: preferred time for getting vaccinated; importance of each of the following issues with regard to getting vaccinated: vaccine will help to end the pandemic, vaccine will protect respondent from getting Covid-19, vaccine will protect relatives and others from getting Covid-19, vaccine will make it possible to resume a more normal professional life, vaccine will make it possible to travel, vaccine will make it possible to meet family and friends, vaccine will make it possible to go to restaurants, cinemas etc.; importance of each of the following issues with regard to not getting vaccinated: pandemic will be over soon, personal risk of being infected is very low, risk posed by Covid-19 in general is exaggerated, worries about side effects of Covid-19 vaccines, vaccines have not been sufficiently tested yet, vaccines are ineffective, against vaccines in general; factors to increase personal willingness of getting vaccinated: more people around doing it, more people have already been vaccinated and we see that there are no major side-effects, people that recommend the vaccines are vaccinated themselves, doctor recommends respondent to do so, vaccines are developed in the European Union, full clarity on how vaccines are being developed, tested and authorized, respondent is very eager to get vaccinated or is already vaccinated, won’t get vaccinated anyway; attitude towards the following statements on the vaccines: benefits outweigh possible risks, vaccines authorised in the European Union are safe, vaccines are being developed, tested and authorised too quickly to be safe, vaccines could have long term side-effects that we do not know yet, a vaccine is the only way to end the pandemic, no understanding why people are reluctant to get vaccinated, serious diseases have disappeared thanks to vaccines; attitude towards the following statements: one can avoid being infected without being vaccinated, public authorities are not sufficiently transparent about COVID-19 vaccines, getting vaccinated against COVID-19 is a civic duty, vaccination should be compulsory, European Union is playing a key role in ensuring access to COVID-19 vaccines in the own country; most trustworthy institutions or persons regarding the provision of information about COVID-19 vaccines; interest in additional information about the following aspects: development, testing, and authorization of COVID-19 vaccines, safety of COVID-19 vaccines, effectiveness of COVID-19 vaccines; satisfaction with the handling of the vaccination strategy by: national government, EU; applicability of the following statements: respondent knows people who have tested positive to COVID-19, respondent knows people who have been ill because of COVID-19, respondent has tested positive to COVID-19, respondent has been ill because of COVID-19, respondent fears to be infected in the future; vaccination of respondent: as a child, as an adult; attitude towards vaccines in general: are safe, are effective. Demography: age; sex; nationality; age at end of education; occupation; professional position; type of community; household composition and household size; region. Additionally coded was: respondent ID; country; device used for interview; nation group; weighting factor.

  18. COVID-19 Tweets, Vaccination, and Deaths Data

    • kaggle.com
    zip
    Updated May 29, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Arya Gavande (2025). COVID-19 Tweets, Vaccination, and Deaths Data [Dataset]. https://www.kaggle.com/datasets/aryagavande/covid-19-tweets-vaccination-and-deaths-data/code
    Explore at:
    zip(357725 bytes)Available download formats
    Dataset updated
    May 29, 2025
    Authors
    Arya Gavande
    License

    Attribution-ShareAlike 4.0 (CC BY-SA 4.0)https://creativecommons.org/licenses/by-sa/4.0/
    License information was derived automatically

    Description

    This dataset merges three distinct data sources to explore the relationship between COVID-19 death rates, vaccination efforts, and public sentiment on Twitter from December 25, 2020 to March 29, 2022. It includes 2,000 cleaned rows with 16 variables, created by combining global health statistics and social media sentiment data.

    Sources & Variables:

    1. COVID-19 Deaths Data (scraped from Worldometer - COVID-19 Deaths via BeautifulSoup):

      • Date: Date of record
      • daily_increase_percent: % change in deaths from previous day
      • Season: Derived from date (Winter, Spring, Summer, Fall)
    2. Tweet Sentiment Data : COVID Vaccine Tweets Dataset

      • Date: Tweet timestamp
      • text_sentiment: Sentiment label (positive, neutral, negative) from NLTK’s SentimentIntensityAnalyzer
      • user_verified: Whether the user is verified
      • user_since_days: Age of the Twitter account (in days)
      • country: Cleaned user location
    3. Vaccination Data : Vaccination Dataset

      • Date: Date of record
      • total_vaccinations_per_hundred: Doses per 100 people
      • daily_vaccinations: Daily dose count
      • vaccine_group: Grouped vaccine type (e.g., mRNA, Viral Vector)
      • country: Country name

    Preprocessing Summary:

    • Merged by Date and country
    • Cleaned invalid country names (e.g., “moon”, “nowhere”)
    • Standardized all datetime formats
    • Removed entries with missing or unreliable values
    • Created derived variables: Season, user_since_days, vaccine_group

    This dataset was used in a final data science project to:

    • Classify public sentiment toward vaccines using health indicators
    • Predict daily COVID-19 death counts using sentiment and vaccination data
  19. m

    MD COVID19 TotalVaccinationsAge65PlusAtleast1DoseAndFullyVaccinated DataMart...

    • data.imap.maryland.gov
    • arc-gis-hub-home-arcgishub.hub.arcgis.com
    • +2more
    Updated Mar 30, 2022
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    ArcGIS Online for Maryland (2022). MD COVID19 TotalVaccinationsAge65PlusAtleast1DoseAndFullyVaccinated DataMart [Dataset]. https://data.imap.maryland.gov/datasets/md-covid19-totalvaccinationsage65plusatleast1doseandfullyvaccinated-datamart/about
    Explore at:
    Dataset updated
    Mar 30, 2022
    Dataset authored and provided by
    ArcGIS Online for Maryland
    Description

    Deprecated as of 4/21/2023On 4/27/2023 several COVID-19 datasets were retired and no longer included in public COVID-19 data dissemination. For more information, visit https://imap.maryland.gov/pages/covid-dataSummaryThe cumulative number of COVID-19 vaccinations for persons aged 65+ within a single Maryland jurisdiction: Persons fully vaccinated and those who have received at least one dose.DescriptionThe MD COVID-19—Persons 65+ Fully Vaccinated layer represents the number of people in each Maryland jurisdiction aged 65 and older who have either received at least one dose of COVID-19 vaccine in a two-dose regimen or are fully vaccinated (have either received a single shot regimen or have completed the second dose in a two-dose regimen), reported each day into ImmuNet.CDC COVID10 Vaccinations in the United States,CountyCOVID-19 is a disease caused by a respiratory virus first identified in Wuhan, Hubei Province, China in December 2019. COVID-19 is a new virus that hasn't caused illness in humans before. Worldwide, COVID-19 has resulted in thousands of infections, causing illness and in some cases death. Cases have spread to countries throughout the world, with more cases reported daily. The Maryland Department of Health reports daily on COVID-19 cases by county.

  20. f

    Table_1_Allergic Reactions After the Administration of COVID-19...

    • datasetcatalog.nlm.nih.gov
    • frontiersin.figshare.com
    Updated May 17, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Li, Lisha; Xu, Yingyang; Zhao, Bin; Bian, Sainan; Cui, Le; Wang, Zixi; Guan, Kai (2022). Table_1_Allergic Reactions After the Administration of COVID-19 Vaccines.DOCX [Dataset]. https://datasetcatalog.nlm.nih.gov/dataset?q=0000365305
    Explore at:
    Dataset updated
    May 17, 2022
    Authors
    Li, Lisha; Xu, Yingyang; Zhao, Bin; Bian, Sainan; Cui, Le; Wang, Zixi; Guan, Kai
    Description

    BackgroundData on allergic reactions after the administration of coronavirus disease (COVID-19) vaccines are limited. Our aim is to analyze reports of allergic reactions after COVID-19 vaccine administration.MethodsThe Vaccine Adverse Event Reporting System database was searched for reported allergic reactions after the administration of any of the COVID-19 vaccines from December 2020 to June 2021. After data mapping, the demographic and clinical characteristics of the reported cases were analyzed. Potential factors associated with anaphylaxis were evaluated using multivariable logistic regression models.ResultsIn total, 14,611 cases were reported. Most cases of allergic reactions comprised women (84.6%) and occurred after the first dose of the vaccine (63.6%). Patients who experienced anaphylaxis were younger (mean age 45.11 ± 5.6 vs. 47.01 ± 6.3 years, P < 0.001) and had a higher prevalence of a history of allergies, allergic rhinitis, asthma, and anaphylaxis than those who did not (P < 0.05). A history of allergies (odds ratio (OR) 1.632, 95% confidence interval (CI) 1.467–1.816, P < 0.001), asthma (OR 1.908, 95%CI 1.677–2.172, P < 0.001), and anaphylaxis (OR 7.164, 95%CI 3.504–14.646, P < 0.001) were potential risk factors for anaphylaxis. Among the 8,232 patients with reported outcomes, 16 died.ConclusionsFemale predominance in allergic reaction cases after the receipt of COVID-19 vaccines was observed. Previous histories of allergies, asthma, or anaphylaxis were risk factors for anaphylaxis post-vaccination. People with these risk factors should be monitored more strictly after COVID-19 vaccination.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Centers for Disease Control and Prevention (2023). Rates of COVID-19 Cases or Deaths by Age Group and Vaccination Status [Dataset]. https://data.virginia.gov/dataset/rates-of-covid-19-cases-or-deaths-by-age-group-and-vaccination-status
Organization logo

Rates of COVID-19 Cases or Deaths by Age Group and Vaccination Status

Explore at:
xsl, csv, rdf, jsonAvailable download formats
Dataset updated
Jul 20, 2023
Dataset provided by
Centers for Disease Control and Preventionhttp://www.cdc.gov/
Description

Data for CDC’s COVID Data Tracker site on Rates of COVID-19 Cases and Deaths by Vaccination Status. Click 'More' for important dataset description and footnotes

Dataset and data visualization details: These data were posted on October 21, 2022, archived on November 18, 2022, and revised on February 22, 2023. These data reflect cases among persons with a positive specimen collection date through September 24, 2022, and deaths among persons with a positive specimen collection date through September 3, 2022.

Vaccination status: A person vaccinated with a primary series had SARS-CoV-2 RNA or antigen detected on a respiratory specimen collected ≥14 days after verifiably completing the primary series of an FDA-authorized or approved COVID-19 vaccine. An unvaccinated person had SARS-CoV-2 RNA or antigen detected on a respiratory specimen and has not been verified to have received COVID-19 vaccine. Excluded were partially vaccinated people who received at least one FDA-authorized vaccine dose but did not complete a primary series ≥14 days before collection of a specimen where SARS-CoV-2 RNA or antigen was detected. Additional or booster dose: A person vaccinated with a primary series and an additional or booster dose had SARS-CoV-2 RNA or antigen detected on a respiratory specimen collected ≥14 days after receipt of an additional or booster dose of any COVID-19 vaccine on or after August 13, 2021. For people ages 18 years and older, data are graphed starting the week including September 24, 2021, when a COVID-19 booster dose was first recommended by CDC for adults 65+ years old and people in certain populations and high risk occupational and institutional settings. For people ages 12-17 years, data are graphed starting the week of December 26, 2021, 2 weeks after the first recommendation for a booster dose for adolescents ages 16-17 years. For people ages 5-11 years, data are included starting the week of June 5, 2022, 2 weeks after the first recommendation for a booster dose for children aged 5-11 years. For people ages 50 years and older, data on second booster doses are graphed starting the week including March 29, 2022, when the recommendation was made for second boosters. Vertical lines represent dates when changes occurred in U.S. policy for COVID-19 vaccination (details provided above). Reporting is by primary series vaccine type rather than additional or booster dose vaccine type. The booster dose vaccine type may be different than the primary series vaccine type. ** Because data on the immune status of cases and associated deaths are unavailable, an additional dose in an immunocompromised person cannot be distinguished from a booster dose. This is a relevant consideration because vaccines can be less effective in this group. Deaths: A COVID-19–associated death occurred in a person with a documented COVID-19 diagnosis who died; health department staff reviewed to make a determination using vital records, public health investigation, or other data sources. Rates of COVID-19 deaths by vaccination status are reported based on when the patient was tested for COVID-19, not the date they died. Deaths usually occur up to 30 days after COVID-19 diagnosis. Participating jurisdictions: Currently, these 31 health departments that regularly link their case surveillance to immunization information system data are included in these incidence rate estimates: Alabama, Arizona, Arkansas, California, Colorado, Connecticut, District of Columbia, Florida, Georgia, Idaho, Indiana, Kansas, Kentucky, Louisiana, Massachusetts, Michigan, Minnesota, Nebraska, New Jersey, New Mexico, New York, New York City (New York), North Carolina, Philadelphia (Pennsylvania), Rhode Island, South Dakota, Tennessee, Texas, Utah, Washington, and West Virginia; 30 jurisdictions also report deaths among vaccinated and unvaccinated people. These jurisdictions represent 72% of the total U.S. population and all ten of the Health and Human Services Regions. Data on cases

Search
Clear search
Close search
Google apps
Main menu