Facebook
TwitterData on drug overdose death rates, by drug type and selected population characteristics. Please refer to the PDF or Excel version of this table in the HUS 2019 Data Finder (https://www.cdc.gov/nchs/hus/contents2019.htm) for critical information about measures, definitions, and changes over time. SOURCE: NCHS, National Vital Statistics System, numerator data from annual public-use Mortality Files; denominator data from U.S. Census Bureau national population estimates; and Murphy SL, Xu JQ, Kochanek KD, Arias E, Tejada-Vera B. Deaths: Final data for 2018. National Vital Statistics Reports; vol 69 no 13. Hyattsville, MD: National Center for Health Statistics.2021. Available from: https://www.cdc.gov/nchs/products/nvsr.htm. For more information on the National Vital Statistics System, see the corresponding Appendix entry at https://www.cdc.gov/nchs/data/hus/hus19-appendix-508.pdf.
Facebook
TwitterThis data presents provisional counts for drug overdose deaths based on a current flow of mortality data in the National Vital Statistics System. Counts for the most recent final annual data are provided for comparison. National provisional counts include deaths occurring within the 50 states and the District of Columbia as of the date specified and may not include all deaths that occurred during a given time period. Provisional counts are often incomplete and causes of death may be pending investigation resulting in an underestimate relative to final counts. To address this, methods were developed to adjust provisional counts for reporting delays by generating a set of predicted provisional counts. Several data quality metrics, including the percent completeness in overall death reporting, percentage of deaths with cause of death pending further investigation, and the percentage of drug overdose deaths with specific drugs or drug classes reported are included to aid in interpretation of provisional data as these measures are related to the accuracy of provisional counts. Reporting of the specific drugs and drug classes involved in drug overdose deaths varies by jurisdiction, and comparisons of death rates involving specific drugs across selected jurisdictions should not be made. Provisional data presented will be updated on a monthly basis as additional records are received. For more information please visit: https://www.cdc.gov/nchs/nvss/vsrr/drug-overdose-data.htm
Facebook
TwitterOpen Government Licence 3.0http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
License information was derived automatically
Annual number of deaths registered related to drug poisoning, by local authority, England and Wales.
Facebook
TwitterSource: Office of State Medical Examiners (OSME), Rhode Island Department of Health (RIDOH)Note: Rates are calculated using CDC WONDER single-race population estimates for each year (Obtained September 9, 2022) . 2021 rates are applied to 2022. The rate is the number of deaths, divided by the total population for each category, multiplied by 100,000. Hispanic or Latino includes people who identify as any race. All other racial and ethnic groups include people who identify as non-Hispanic ethnicity or have unknown ethnicity. People whose race was "Unknown" or "Asian" have been excluded. Data are limited to accidental drug overdose deaths pronounced in Rhode Island among Rhode Island residents. Some data have been suppressed due to unstable rates.
Facebook
TwitterTotal number of accidental overdose deaths in Pierce County
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This dashboard provides in-depth analysis surrounding events and characteristics of individuals who experienced non-fatal and/or fatal opioid overdoses in the District of Columbia. It includes data on ambulance transports for overdoses, fatalities, naloxone distribution, harm reduction efforts and the results of our used syringe testing. Data is aggregated at the neighborhood and ward levels. Data on fatal opioid overdoses will include deaths from 2021-2024. Data on non-fatal opioid overdoses will include incidents from 2021-2024. Note: Fatal opioid overdose data are delayed by approximately 90 days due to toxicological testing.
Facebook
TwitterMIT Licensehttps://opensource.org/licenses/MIT
License information was derived automatically
Age adjusted rate of deaths from heroin overdoses among residents of Santa Clara County by total population and sex; trends if available. Source: California Department of Public Health. California Opioid Overdose Surveillance Dashboard. California Department of Public Health. https://discovery.cdph.ca.gov/CDIC/ODdash/METADATA:Notes (String): Lists table title, note and sourceYear (Numeric): Year of dataRate per 100,000 people (Numeric): Age adjusted rate of deaths from heroin overdoses among residents of Santa Clara County (rate per 100,000 people)
Facebook
TwitterTo: State, territorial, tribal, and local policymakers and administrators of agencies and programs focused on child, youth, and family health and well-being Dear Colleagues, Thank you for your work to support children, youth, and families. Populations served by Administration for Children and Families (ACF)-funded programs — including victims of trafficking or violence, those who are unhoused, and young people and families involved in the child welfare system — are often at particularly high risk for substance use and overdose. A variety of efforts are underway at the federal, state, and local levels to reduce overdose deaths. These efforts focus on stopping drugs from entering communities, providing life-saving resources, and preventing drug use before it starts. Initiatives across the country are already saving lives: the overdose death rate has declined over the past year but remains too high at 32.6 per 100,000 individuals. Fentanyl, a powerful synthetic opioid, raises the risk of overdose deaths because even a tiny amount can be deadly. Young people are particularly at risk for fentanyl exposure, driven in part by widespread availability of counterfeit pills containing fentanyl that are marketed to youth through social media. While overdose deaths among teens have recently begun to decline, there were 6,696 deaths among adolescents and young adults in 2022 (the latest year with data available)[1], making unintentional drug overdose the second leading cause of death for youth ages 15—19 and the first leading cause of death among young adults ages 20-24.[2] Often these deaths happen with others nearby and can be prevented when opioid overdose reversal medications, like naloxone, are administered in time. CDC’s State Unintentional Drug Overdose Reporting System dashboard shows that in all 30 jurisdictions with available data, 64.7% of drug overdose deaths had at least one potential opportunity for intervention.[3] Naloxone rapidly reverses an overdose and should be given to any person who shows signs of an opioid overdose or when an overdose is suspected. It can be given as a nasal spray. Studies show that naloxone administration reduces death rates and does not cause harm if used on a person who is not overdosing on opioids. States have different policies and regulations regarding naloxone distribution and administration. Forty-nine states and the District of Columbia have Good Samaritan laws protecting bystanders who aid at the scene of an overdose.[4] ACF grant recipients and partners can play a critical role in reducing overdose deaths by taking the following actions: Stop Overdose Now (U.S. Centers for Disease Control and Prevention) Integrating Harm Reduction Strategies into Services and Supports for Young Adults Experiencing Homelessness (PDF) (ACF) Thank you for your dedication and partnership. If you have any questions, please contact your local public health department or state behavioral health agency. Together, we can meaningfully reduce overdose deaths in every community. /s/ Meg Sullivan Principal Deputy Assistant Secretary [1] Products - Data Briefs - Number 491 - March 2024 [2] WISQARS Leading Causes of Death Visualization Tool [3] SUDORS Dashboard: Fatal Drug Overdose Data | Overdose Prevention | CDC [4] Based on 2024 report from the Legislative Analysis and Public Policy Association (PDF). Note that the state of Kansas adopted protections as well following the publication of this report. Metadata-only record linking to the original dataset. Open original dataset below.
Facebook
Twitterhttp://data.europa.eu/eli/dec/2011/833/ojhttp://data.europa.eu/eli/dec/2011/833/oj
Drug-related mortality is a complex phenomenon, which accounts for a considerable percentage of deaths among young people in many European countries. The EMCDDA, in collaboration with national experts, has defined an epidemiological indicator with two components at present: deaths directly caused by illegal drugs (drug-induced deaths) and mortality rates among problem drug users. These two components can fulfil several public health objectives, notably as an indicator of the overall health impact of drug use and the components of this impact, identify particularly risky patterns of use, and potentially identify new risks.
There are around 50 statistical tables in this dataset. Each data table may be viewed as an HTML table or downloaded in spreadsheet (Excel format).
Facebook
Twitterhttp://www.kff.org/cite-and-reprint-kff/http://www.kff.org/cite-and-reprint-kff/
The National Vital Statistics System multiple cause-of-death mortality files were used to identify drug overdose deaths. Drug overdose deaths were classified using the International Classification of Disease, Tenth Revision (ICD-10), based on the ICD-10 underlying cause-of-death codes X40–44 (unintentional), X60–64 (suicide), X85 (homicide), or Y10–Y14 (undetermined intent). Among the deaths with drug overdose as the underlying cause, prescription opioid deaths are indicated by the following ICD-10 multiple cause-of-death codes: natural and semisynthetic opioids (T40.2); methadone (T40.3); and synthetic opioids, other than methadone (T40.4).
Deaths from illegally-made fentanyl cannot be distinguished from pharmaceutical fentanyl in the data source. For this reason, deaths from both legally prescribed and illegally produced fentanyl are included in these data.
Rates displayed in this table represent age-adjusted rates per 100,000 population.
Kaiser Family Foundation analysis of Centers for Disease Control and Prevention (CDC), National Center for Health Statistics. Multiple Cause of Death 1999-2015 on CDC WONDER Online Database, released 2016. Data are from the Multiple Cause of Death Files, 1999-2015, as compiled from data provided by the 57 vital statistics jurisdictions through the Vital Statistics Cooperative Program. Accessed at http://wonder.cdc.gov/mcd-icd10.html on March 2, 2017.
Prescription Opioids include the following categories of opioids:
Natural and Semisynthetic Opioids: A category of prescription opioids that includes natural opioid analgesics (e.g. morphine and codeine) and semi-synthetic opioid analgesics (e.g. drugs such as oxycodone, hydrocodone, hydromorphone, and oxymorphone).
Synthetic Opioids, other than Methadone: A category of opioids including drugs such as tramadol and fentanyl. Synthetic opioids are commonly available by prescription. Fentanyl is legally made as a pharmaceutical drug to treat pain, or illegally made as a non-prescription drug and is increasingly used to intensify the effects (or "high") of other drugs, such as heroin.
Methadone: a synthetic opioid prescribed to treat moderate to severe pain or to reduce withdrawl symptoms in people addicted to heroin or other narcotic drugs.
NSD: Not sufficient data. Data supressed to ensure confidentiality.
NR: Data not reported. Data unreliable.
Facebook
TwitterA. SUMMARY This dataset includes data on a variety of substance use services funded by the San Francisco Department of Public Health (SFDPH). This dataset only includes Drug MediCal-certified residential treatment, withdrawal management, and methadone treatment. Other private non-Drug Medi-Cal treatment providers may operate in the city. Withdrawal management discharges are inclusive of anyone who left withdrawal management after admission and may include someone who left before completing withdrawal management. This dataset also includes naloxone distribution from the SFDPH Behavioral Health Services Naloxone Clearinghouse and the SFDPH-funded Drug Overdose Prevention and Education program. Both programs distribute naloxone to various community-based organizations who then distribute naloxone to their program participants. Programs may also receive naloxone from other sources. Data from these other sources is not included in this dataset. Finally, this dataset includes the number of clients on medications for opioid use disorder (MOUD). The number of people who were treated with methadone at a Drug Medi-Cal certified Opioid Treatment Program (OTP) by year is populated by the San Francisco Department of Public Health (SFDPH) Behavioral Health Services Quality Management (BHSQM) program. OTPs in San Francisco are required to submit patient billing data in an electronic medical record system called Avatar. BHSQM calculates the number of people who received methadone annually based on Avatar data. Data only from Drug MediCal certified OTPs were included in this dataset. The number of people who receive buprenorphine by year is populated from the Controlled Substance Utilization Review and Evaluation System (CURES), administered by the California Department of Justice. All licensed prescribers in California are required to document controlled substance prescriptions in CURES. The Center on Substance Use and Health calculates the total number of people who received a buprenorphine prescription annually based on CURES data. Formulations of buprenorphine that are prescribed only for pain management are excluded. People may receive buprenorphine and methadone in the same year, so you cannot add the Buprenorphine Clients by Year, and Methadone Clients by Year data together to get the total number of unique people receiving medications for opioid use disorder. For more information on where to find treatment in San Francisco, visit findtreatment-sf.org. B. HOW THE DATASET IS CREATED This dataset is created by copying the data into this dataset from the SFDPH Behavioral Health Services Quality Management Program, the California Controlled Substance Utilization Review and Evaluation System (CURES), and the Office of Overdose Prevention. C. UPDATE PROCESS Residential Substance Use Treatment, Withdrawal Management, Methadone, and Naloxone data are updated quarterly with a 45-day delay. Buprenorphine data are updated quarterly and when the state makes this data available, usually at a 5-month delay. D. HOW TO USE THIS DATASET Throughout the year this dataset may include partial year data for methadone and buprenorphine treatment. As both methadone and buprenorphine are used as long-term treatments for opioid use disorder, many people on treatment at the end of one calendar year will continue into the next. For this reason, doubling (methadone), or quadrupling (buprenorphine) partial year data will not accurately project year-end totals. E. RELATED DATASETS Overdose-Related 911 Responses by Emergency Medical Services Unintentional Overdose Death Rates by Race/Ethnicity Preliminary Unintentional Drug Overdose Deaths
Facebook
TwitterOpioid Data Description
Land Area of County: factfinder.census.gov 2010 Census Summary 1890 counties are taken under consideration
Year: 2011- 2017
Population: https://www.census.gov/data/datasets/time-series/demo/popest/2010s-counties-total.html#par_textimage_70769902 Annual Estimates of the Resident Population for Counties: April 1, 2010 to July 1, 2018
Death by Opioid Type: https://wonder.cdc.gov/ The mortality data are based on information from all death certificates filed in the fifty states all sub-national data representing zero to nine (0-9) deaths are suppressed.
601 counties had the minimum mortality rate to be represented for analysis and were pulled from the WONDER database. These were the recommended codes to use when relating to Opioid deaths provided by the CDC.
Type of death: T40.0 (Opium) – No county reached the number of deaths above 9 per year to not be suppressed when finding specific cause T40.1 (Heroin) T40.2 (Other opioids) T40.3 (Methadone) T40.4 (Other synthetic narcotics) From the CDC Wonder Database. Type of death by county will not add up to total mortality due to the fact that low death rate of a county was withheld from data to protect privacy of individuals.
Non-US Born: factfinder.census.gov American Community Survey 5-Year Estimates The total number of Non-Us born citizens that reside in each county
Education: factfinder.census.gov American Community Survey 5-Year Estimates Categories Consist of: Less Than High School Degree Some College or Associate’s Degree Bachelor’s Degree Graduate or Professional Degree
Income by Household: factfinder.census.gov American Community Survey 5-Year Estimates Incomes given by the mean household income in that county
Transportation: Percentage of County that uses these means of transportation to get to work. American Community Survey 5-Year Estimates Categories Consist of: Commute Alone to work by driving Carpool Walk Public Transit Bike
Unemployment Rate by county collected from: https://catalog.data.gov/dataset?tags=unemployment-rate
GDP by county in regards to funds spent on healthcare, education, and social assistance as well as overall GDP collected from: https://www.bea.gov/data/gdp/gdp-county-metro-and-other-areas
Facebook
TwitterThis data set depicts unintentional overdose deaths by county for Tennessee from 1999-2017.Data
was compiled from the CDC Wonder database for each year and combined
into a single spreadsheet. Each year has both a death field and a rate
of fatalities per 100,000 people. The CDC does not publish the number of
fatalities by county if the total is less than 10 in a given year. The
CDC does not post a rate of fatalities if the total number of deaths per
county is less than 20. The population field contains estimates from 2018 and is NOT the data used to generate the rates over time.The
following details are copied directly from the CDC Wonder database text
file. Note that the year is different for each data download from the
original database."Dataset: Underlying Cause of Death, 1999-2017""Query Parameters:""Drug/Alcohol Induced Causes: Drug poisonings (overdose) Unintentional (X40-X44)""States: Tennessee (47)""Year/Month: 1999""Group By: County""Show Totals: True""Show Zero Values: False""Show Suppressed: False""Calculate Rates Per: 100,000""Rate Options: Default intercensal populations for years 2001-2009 (except Infant Age Groups)""---""Help: See http://wonder.cdc.gov/wonder/help/ucd.html for more information.""---""Query Date: Aug 19, 2019 10:22:15 PM""1. Rows with suppressed Deaths are hidden, but the Deaths and Population values in those rows are included in the totals. Use""Quick Options above to show suppressed rows.""---"Caveats:"1. Data are Suppressed when the data meet the criteria for confidentiality constraints. More information:""http://wonder.cdc.gov/wonder/help/ucd.html#Assurance of Confidentiality.""2. Death rates are flagged as Unreliable when the rate is calculated with a numerator of 20 or less. More information:""http://wonder.cdc.gov/wonder/help/ucd.html#Unreliable.""3. The population figures for year 2017 are bridged-race estimates of the July 1 resident population, from the Vintage 2017""postcensal
series released by NCHS on June 27, 2018. The population figures for
year 2016 are bridged-race estimates of the July""1 resident population, from the Vintage 2016 postcensal series released by NCHS on June 26, 2017. The population figures for""year
2015 are bridged-race estimates of the July 1 resident population, from
the Vintage 2015 postcensal series released by NCHS""on June 28, 2016. The population figures for year 2014 are bridged-race estimates of the July 1 resident population, from the""Vintage 2014 postcensal series released by NCHS on June 30, 2015. The population figures for year 2013 are bridged-race""estimates of the July 1 resident population, from the Vintage 2013 postcensal series released by NCHS on June 26, 2014. The""population
figures for year 2012 are bridged-race estimates of the July 1 resident
population, from the Vintage 2012 postcensal""series released by
NCHS on June 13, 2013. The population figures for year 2011 are
bridged-race estimates of the July 1 resident""population, from the Vintage 2011 postcensal series released by NCHS on July 18, 2012. Population figures for 2010 are April 1""Census counts. The population figures for years 2001 - 2009 are bridged-race estimates of the July 1 resident population, from""the revised intercensal county-level 2000 - 2009 series released by NCHS on October 26, 2012. Population figures for 2000 are""April 1 Census counts. Population figures for 1999 are from the 1990-1999 intercensal series of July 1 estimates. Population""figures
for the infant age groups are the number of live births.
Note: Rates and population figures for
years 2001 -""2009 differ slightly from previously published
reports, due to use of the population estimates which were available at
the time""of release.""4. The population figures used in the calculation of death rates for the age group 'under 1 year' are the estimates of the""resident population that is under one year of age. More information: http://wonder.cdc.gov/wonder/help/ucd.html#Age Group."
Facebook
TwitterODC Public Domain Dedication and Licence (PDDL) v1.0http://www.opendatacommons.org/licenses/pddl/1.0/
License information was derived automatically
A. SUMMARY This dataset includes data on a variety of substance use services funded by the San Francisco Department of Public Health (SFDPH). This dataset only includes Drug MediCal-certified residential treatment, withdrawal management, and methadone treatment. Other private non-Drug Medi-Cal treatment providers may operate in the city. Withdrawal management discharges are inclusive of anyone who left withdrawal management after admission and may include someone who left before completing withdrawal management. This dataset also includes naloxone distribution from the SFDPH Behavioral Health Services Naloxone Clearinghouse and the SFDPH-funded Drug Overdose Prevention and Education program. Both programs distribute naloxone to various community-based organizations who then distribute naloxone to their program participants. Programs may also receive naloxone from other sources. Data from these other sources is not included in this dataset. Finally, this dataset includes the number of clients on medications for opioid use disorder (MOUD). The number of people who were treated with methadone at a Drug Medi-Cal certified Opioid Treatment Program (OTP) by year is populated by the San Francisco Department of Public Health (SFDPH) Behavioral Health Services Quality Management (BHSQM) program. OTPs in San Francisco are required to submit patient billing data in an electronic medical record system called Avatar. BHSQM calculates the number of people who received methadone annually based on Avatar data. Data only from Drug MediCal certified OTPs were included in this dataset. The number of people who receive buprenorphine by year is populated from the Controlled Substance Utilization Review and Evaluation System (CURES), administered by the California Department of Justice. All licensed prescribers in California are required to document controlled substance prescriptions in CURES. The Center on Substance Use and Health calculates the total number of people who received a buprenorphine prescription annually based on CURES data. Formulations of buprenorphine that are prescribed only for pain management are excluded. People may receive buprenorphine and methadone in the same year, so you cannot add the Buprenorphine Clients by Year, and Methadone Clients by Year data together to get the total number of unique people receiving medications for opioid use disorder. For more information on where to find treatment in San Francisco, visit findtreatment-sf.org. B. HOW THE DATASET IS CREATED This dataset is created by copying the data into this dataset from the SFDPH Behavioral Health Services Quality Management Program, the California Controlled Substance Utilization Review and Evaluation System (CURES), and the Office of Overdose Prevention. C. UPDATE PROCESS Residential Substance Use Treatment, Withdrawal Management, Methadone, and Naloxone data are updated quarterly with a 45-day delay. Buprenorphine data are updated quarterly and when the state makes this data available, usually at a 5-month delay. D. HOW TO USE THIS DATASET Throughout the year this dataset may include partial year data for methadone and buprenorphine treatment. As both methadone and buprenorphine are used as long-term treatments for opioid use disorder, many people on treatment at the end of one calendar year will continue into the next. For this reason, doubling (methadone), or quadrupling (buprenorphine) partial year data will not accurately project year-end totals. E. RELATED DATASETS Overdose-Related 911 Responses by Emergency Medical Services Unintentional Overdose Death Rates by Race/Ethnicity Preliminary Unintentional Drug Overdose Deaths
Facebook
TwitterData
was compiled from the CDC Wonder database for each year and combined
into a single spreadsheet. Each year has both a death field and a rate
of fatalities per 100,000 people. The CDC does not publish the number of
fatalities by county if the total is less than 10 in a given year. The
CDC does not post a rate of fatalities if the total number of deaths per
county is less than 20. The population field contains estimates from 2018 and is NOT the data used to generate the rates over time.The
following details are copied directly from the CDC Wonder database text
file. Note that the year is different for each data download from the
original database."Dataset: Underlying Cause of Death, 1999-2017""Query Parameters:""Drug/Alcohol Induced Causes: Drug poisonings (overdose) Unintentional (X40-X44)""States: Tennessee (47)""Year/Month: 1999""Group By: County""Show Totals: True""Show Zero Values: False""Show Suppressed: False""Calculate Rates Per: 100,000""Rate Options: Default intercensal populations for years 2001-2009 (except Infant Age Groups)""---""Help: See http://wonder.cdc.gov/wonder/help/ucd.html for more information.""---""Query Date: Aug 19, 2019 10:22:15 PM""1. Rows with suppressed Deaths are hidden, but the Deaths and Population values in those rows are included in the totals. Use""Quick Options above to show suppressed rows.""---"Caveats:"1. Data are Suppressed when the data meet the criteria for confidentiality constraints. More information:""http://wonder.cdc.gov/wonder/help/ucd.html#Assurance of Confidentiality.""2. Death rates are flagged as Unreliable when the rate is calculated with a numerator of 20 or less. More information:""http://wonder.cdc.gov/wonder/help/ucd.html#Unreliable.""3. The population figures for year 2017 are bridged-race estimates of the July 1 resident population, from the Vintage 2017""postcensal
series released by NCHS on June 27, 2018. The population figures for
year 2016 are bridged-race estimates of the July""1 resident population, from the Vintage 2016 postcensal series released by NCHS on June 26, 2017. The population figures for""year
2015 are bridged-race estimates of the July 1 resident population, from
the Vintage 2015 postcensal series released by NCHS""on June 28, 2016. The population figures for year 2014 are bridged-race estimates of the July 1 resident population, from the""Vintage 2014 postcensal series released by NCHS on June 30, 2015. The population figures for year 2013 are bridged-race""estimates of the July 1 resident population, from the Vintage 2013 postcensal series released by NCHS on June 26, 2014. The""population
figures for year 2012 are bridged-race estimates of the July 1 resident
population, from the Vintage 2012 postcensal""series released by
NCHS on June 13, 2013. The population figures for year 2011 are
bridged-race estimates of the July 1 resident""population, from the Vintage 2011 postcensal series released by NCHS on July 18, 2012. Population figures for 2010 are April 1""Census counts. The population figures for years 2001 - 2009 are bridged-race estimates of the July 1 resident population, from""the revised intercensal county-level 2000 - 2009 series released by NCHS on October 26, 2012. Population figures for 2000 are""April 1 Census counts. Population figures for 1999 are from the 1990-1999 intercensal series of July 1 estimates. Population""figures
for the infant age groups are the number of live births.
Note: Rates and population figures for
years 2001 -""2009 differ slightly from previously published
reports, due to use of the population estimates which were available at
the time""of release.""4. The population figures used in the calculation of death rates for the age group 'under 1 year' are the estimates of the""resident population that is under one year of age. More information: http://wonder.cdc.gov/wonder/help/ucd.html#Age Group."
Facebook
TwitterInjury from poisoning exists under several Injury Intents: unintentional (accidental), intentional self-harm, assault, undetermined and adverse effect and underdosing. Only injuries in the first four categories are reported here combined. The data show rates per 100,000 people in order to standardize between areas with different population levels. Except for age specific rates, we use age-adjusted rates because they take into account where one age group dominates a population and thus are more representative. We use diagnosis by hospital records for non-fatal injury and cause of death from death certificates for fatal injury information.
Facebook
TwitterRank, number of deaths, percentage of deaths, and age-specific mortality rates for the leading causes of death, by age group and sex, 2000 to most recent year.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This dashboard provides in-depth analysis surrounding events and characteristics of individuals who experienced non-fatal and/or fatal opioid overdoses in the District of Columbia. It includes data on ambulance transports for overdoses, fatalities, naloxone distribution, harm reduction efforts and the results of our used syringe testing. Data is aggregated at the neighborhood and ward levels. Data on fatal opioid overdoses will include deaths from 2021-2024. Data on non-fatal opioid overdoses will include incidents from 2021-2024. Note: Fatal opioid overdose data are delayed by approximately 90 days due to toxicological testing.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
BackgroundDrug overdose causes approximately 183,000 deaths worldwide annually and 50,000 deaths in Canada and the United States combined. Drug-related deaths are concentrated among young people, leading to a substantial burden of disease and loss of potential life years. Understanding the epidemiology, patterns of care, and prognosis of drug-related prehospital emergencies may lead to improved outcomes.MethodsWe conducted a retrospective cohort study of out-of-hospital cardiac arrests with drug-related and presumed cardiac causes between 2007 and 2013 using the Toronto Regional RescuNet Epistry database. The primary outcome was survival to hospital discharge. We computed standardized case fatality rates, and odds ratios of survival to hospital discharge for cardiac arrests with drug-related versus presumed cardiac causes, adjusting for confounders using logistic regression.ResultsThe analysis involved 21,497 cardiac arrests, including 378 (1.8%) drug-related and 21,119 (98.2%) presumed cardiac. Compared with the presumed cardiac group, drug-related arrest patients were younger and less likely to receive bystander resuscitation, have initial shockable cardiac rhythms, or be transported to hospital. There were no significant differences in emergency medical service response times, return of spontaneous circulation, or survival to discharge. Standardized case fatality rates confirmed that these effects were not due to age or sex differences. Adjusting for known predictors of survival, drug-related cardiac arrest was associated with increased odds of survival to hospital discharge (OR1.44, 95%CI 1.15–1.81).InterpretationIn out-of-hospital cardiac arrest, patients with drug-related causes are less likely than those with presumed cardiac causes to receive bystander resuscitation or have an initial shockable rhythm, but are more likely to survive after accounting for predictors of survival. The demographics and outcomes among drug-related cardiac arrest patients offers unique opportunities for prehospital intervention.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Baseline characteristics of individuals who died of an opioid overdose (cases) and matched controls.
Facebook
TwitterData on drug overdose death rates, by drug type and selected population characteristics. Please refer to the PDF or Excel version of this table in the HUS 2019 Data Finder (https://www.cdc.gov/nchs/hus/contents2019.htm) for critical information about measures, definitions, and changes over time. SOURCE: NCHS, National Vital Statistics System, numerator data from annual public-use Mortality Files; denominator data from U.S. Census Bureau national population estimates; and Murphy SL, Xu JQ, Kochanek KD, Arias E, Tejada-Vera B. Deaths: Final data for 2018. National Vital Statistics Reports; vol 69 no 13. Hyattsville, MD: National Center for Health Statistics.2021. Available from: https://www.cdc.gov/nchs/products/nvsr.htm. For more information on the National Vital Statistics System, see the corresponding Appendix entry at https://www.cdc.gov/nchs/data/hus/hus19-appendix-508.pdf.