100+ datasets found
  1. w

    Dataset of books series that contain The first people : from the earliest...

    • workwithdata.com
    Updated Nov 25, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Work With Data (2024). Dataset of books series that contain The first people : from the earliest primates to homo sapiens : where and how our ancestors lived [Dataset]. https://www.workwithdata.com/datasets/book-series?f=1&fcol0=j0-book&fop0=%3D&fval0=The+first+people+:+from+the+earliest+primates+to+homo+sapiens+:+where+and+how+our+ancestors+lived&j=1&j0=books
    Explore at:
    Dataset updated
    Nov 25, 2024
    Dataset authored and provided by
    Work With Data
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    This dataset is about book series. It has 1 row and is filtered where the books is The first people : from the earliest primates to homo sapiens : where and how our ancestors lived. It features 10 columns including number of authors, number of books, earliest publication date, and latest publication date.

  2. o

    Geonames - All Cities with a population > 1000

    • public.opendatasoft.com
    • data.smartidf.services
    • +2more
    csv, excel, geojson +1
    Updated Mar 10, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2024). Geonames - All Cities with a population > 1000 [Dataset]. https://public.opendatasoft.com/explore/dataset/geonames-all-cities-with-a-population-1000/
    Explore at:
    csv, json, geojson, excelAvailable download formats
    Dataset updated
    Mar 10, 2024
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    All cities with a population > 1000 or seats of adm div (ca 80.000)Sources and ContributionsSources : GeoNames is aggregating over hundred different data sources. Ambassadors : GeoNames Ambassadors help in many countries. Wiki : A wiki allows to view the data and quickly fix error and add missing places. Donations and Sponsoring : Costs for running GeoNames are covered by donations and sponsoring.Enrichment:add country name

  3. D

    ARCHIVED: Mpox Vaccinations Given to SF Residents by Demographics

    • data.sfgov.org
    • healthdata.gov
    • +2more
    application/rdfxml +5
    Updated Jan 1, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2023). ARCHIVED: Mpox Vaccinations Given to SF Residents by Demographics [Dataset]. https://data.sfgov.org/Health-and-Social-Services/ARCHIVED-Mpox-Vaccinations-Given-to-SF-Residents-b/fk8q-nu3s
    Explore at:
    csv, json, application/rdfxml, application/rssxml, tsv, xmlAvailable download formats
    Dataset updated
    Jan 1, 2023
    Area covered
    San Francisco
    Description

    In early February 2024, we will be retiring the Mpox Vaccinations Given to SF Residents by Demographics dataset. This dataset will be archived and no longer update. A historic record of this data will remain available.

    A. SUMMARY This dataset represents doses of mpox vaccine (JYNNEOS) administered in California to residents of San Francisco ages 18 years or older. This dataset only includes doses of the JYNNEOS vaccine given on or after 5/1/2022. All vaccines given to people who live in San Francisco are included, no matter where the vaccination took place. The data are broken down by multiple demographic stratifications.

    B. HOW THE DATASET IS CREATED Information on doses administered to those who live in San Francisco is from the California Immunization Registry (CAIR2), run by the California Department of Public Health (CDPH). Information on individuals’ city of residence, age, race, ethnicity, and sex are recorded in CAIR2 and are self-reported at the time of vaccine administration. Because CAIR2 does not include information on sexual orientation, we pull information from the San Francisco Department of Public Health’s Epic Electronic Health Record (EHR). The populations represented in our Epic data and the CAIR2 data are different. Epic data only include vaccinations administered at SFDPH managed sites to SF residents.

    Data notes for population characteristic types are listed below.

    Age * Data only include individuals who are 18 years of age or older.

    Race/ethnicity * The response option "Other Race" is categorized by the data source system, and the response option "Unknown" refers to a lack of data.

    Sex * The response option "Other" is categorized by the source system, and the response option "Unknown" refers to a lack of data.

    Sexual orientation * The response option “Unknown/Declined” refers to a lack of data or individuals who reported multiple different sexual orientations during their most recent interaction with SFDPH.

    For convenience, we provide the 2020 5-year American Community Survey population estimates.

    C. UPDATE PROCESS Updated daily via automated process.

    D. HOW TO USE THIS DATASET This dataset includes many different types of demographic groups. Filter the “demographic_group” column to explore a topic area. Then, the “demographic_subgroup” column shows each group or category within that topic area and the total count of doses administered to that population subgroup.

    E. CHANGE LOG

    • UPDATE 1/3/2023: Due to low case numbers, this page will no longer include vaccinations after 12/31/2022.

  4. Statewide Live Birth Profiles

    • data.chhs.ca.gov
    • data.ca.gov
    • +6more
    csv, zip
    Updated Jul 28, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    California Department of Public Health (2025). Statewide Live Birth Profiles [Dataset]. https://data.chhs.ca.gov/dataset/test-cdph-statewide-live-birth-profiles
    Explore at:
    csv(1850), csv(146763), csv(142409), csv(6882), zipAvailable download formats
    Dataset updated
    Jul 28, 2025
    Dataset authored and provided by
    California Department of Public Healthhttps://www.cdph.ca.gov/
    Description

    This dataset contains counts of live births for California as a whole based on information entered on birth certificates. Final counts are derived from static data and include out of state births to California residents, whereas provisional counts are derived from incomplete and dynamic data. Provisional counts are based on the records available when the data was retrieved and may not represent all births that occurred during the time period.

    The final data tables include both births that occurred in California regardless of the place of residence (by occurrence) and births to California residents (by residence), whereas the provisional data table only includes births that occurred in California regardless of the place of residence (by occurrence). The data are reported as totals, as well as stratified by parent giving birth's age, parent giving birth's race-ethnicity, and birth place type. See temporal coverage for more information on which strata are available for which years.

  5. O

    COVID-19 case rate per 100,000 population and percent test positivity in the...

    • data.ct.gov
    • catalog.data.gov
    application/rdfxml +5
    Updated Jun 23, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Department of Public Health (2022). COVID-19 case rate per 100,000 population and percent test positivity in the last 14 days by town - ARCHIVE [Dataset]. https://data.ct.gov/Health-and-Human-Services/COVID-19-case-rate-per-100-000-population-and-perc/hree-nys2
    Explore at:
    application/rssxml, xml, csv, json, tsv, application/rdfxmlAvailable download formats
    Dataset updated
    Jun 23, 2022
    Dataset authored and provided by
    Department of Public Health
    License

    U.S. Government Workshttps://www.usa.gov/government-works
    License information was derived automatically

    Description

    Note: DPH is updating and streamlining the COVID-19 cases, deaths, and testing data. As of 6/27/2022, the data will be published in four tables instead of twelve.

    The COVID-19 Cases, Deaths, and Tests by Day dataset contains cases and test data by date of sample submission. The death data are by date of death. This dataset is updated daily and contains information back to the beginning of the pandemic. The data can be found at https://data.ct.gov/Health-and-Human-Services/COVID-19-Cases-Deaths-and-Tests-by-Day/g9vi-2ahj.

    The COVID-19 State Metrics dataset contains over 93 columns of data. This dataset is updated daily and currently contains information starting June 21, 2022 to the present. The data can be found at https://data.ct.gov/Health-and-Human-Services/COVID-19-State-Level-Data/qmgw-5kp6 .

    The COVID-19 County Metrics dataset contains 25 columns of data. This dataset is updated daily and currently contains information starting June 16, 2022 to the present. The data can be found at https://data.ct.gov/Health-and-Human-Services/COVID-19-County-Level-Data/ujiq-dy22 .

    The COVID-19 Town Metrics dataset contains 16 columns of data. This dataset is updated daily and currently contains information starting June 16, 2022 to the present. The data can be found at https://data.ct.gov/Health-and-Human-Services/COVID-19-Town-Level-Data/icxw-cada . To protect confidentiality, if a town has fewer than 5 cases or positive NAAT tests over the past 7 days, those data will be suppressed.

    This dataset includes a count and rate per 100,000 population for COVID-19 cases, a count of COVID-19 molecular diagnostic tests, and a percent positivity rate for tests among people living in community settings for the previous two-week period. Dates are based on date of specimen collection (cases and positivity).

    A person is considered a new case only upon their first COVID-19 testing result because a case is defined as an instance or bout of illness. If they are tested again subsequently and are still positive, it still counts toward the test positivity metric but they are not considered another case.

    Percent positivity is calculated as the number of positive tests among community residents conducted during the 14 days divided by the total number of positive and negative tests among community residents during the same period. If someone was tested more than once during that 14 day period, then those multiple test results (regardless of whether they were positive or negative) are included in the calculation.

    These case and test counts do not include cases or tests among people residing in congregate settings, such as nursing homes, assisted living facilities, or correctional facilities.

    These data are updated weekly and reflect the previous two full Sunday-Saturday (MMWR) weeks (https://wwwn.cdc.gov/nndss/document/MMWR_week_overview.pdf).

    DPH note about change from 7-day to 14-day metrics: Prior to 10/15/2020, these metrics were calculated using a 7-day average rather than a 14-day average. The 7-day metrics are no longer being updated as of 10/15/2020 but the archived dataset can be accessed here: https://data.ct.gov/Health-and-Human-Services/COVID-19-case-rate-per-100-000-population-and-perc/s22x-83rd

    As you know, we are learning more about COVID-19 all the time, including the best ways to measure COVID-19 activity in our communities. CT DPH has decided to shift to 14-day rates because these are more stable, particularly at the town level, as compared to 7-day rates. In addition, since the school indicators were initially published by DPH last summer, CDC has recommended 14-day rates and other states (e.g., Massachusetts) have started to implement 14-day metrics for monitoring COVID transmission as well.

    With respect to geography, we also have learned that many people are looking at the town-level data to inform decision making, despite emphasis on the county-level metrics in the published addenda. This is understandable as there has been variation within counties in COVID-19 activity (for example, rates that are higher in one town than in most other towns in the county).

    Additional notes: As of 11/5/2020, CT DPH has added antigen testing for SARS-CoV-2 to reported test counts in this dataset. The tests included in this dataset include both molecular and antigen datasets. Molecular tests reported include polymerase chain reaction (PCR) and nucleic acid amplicfication (NAAT) tests.

    The population data used to calculate rates is based on the CT DPH population statistics for 2019, which is available online here: https://portal.ct.gov/DPH/Health-Information-Systems--Reporting/Population/Population-Statistics. Prior to 5/10/2021, the population estimates from 2018 were used.

    Data suppression is applied when the rate is <5 cases per 100,000 or if there are <5 cases within the town. Information on why data suppression rules are applied can be found online here: https://www.cdc.gov/cancer/uscs/technical_notes/stat_methods/suppression.htm

  6. Forest proximate people - 5km cutoff distance (Global - 100m)

    • data.amerigeoss.org
    http, wmts
    Updated Oct 24, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Food and Agriculture Organization (2022). Forest proximate people - 5km cutoff distance (Global - 100m) [Dataset]. https://data.amerigeoss.org/dataset/8ed893bd-842a-4866-a655-a0a0c02b79b5
    Explore at:
    http, wmtsAvailable download formats
    Dataset updated
    Oct 24, 2022
    Dataset provided by
    Food and Agriculture Organizationhttp://fao.org/
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    The "Forest Proximate People" (FPP) dataset is one of the data layers contributing to the development of indicator #13, “number of forest-dependent people in extreme poverty,” of the Collaborative Partnership on Forests (CPF) Global Core Set of forest-related indicators (GCS). The FPP dataset provides an estimate of the number of people living in or within 5 kilometers of forests (forest-proximate people) for the year 2019 with a spatial resolution of 100 meters at a global level.

    For more detail, such as the theory behind this indicator and the definition of parameters, and to cite this data, see: Newton, P., Castle, S.E., Kinzer, A.T., Miller, D.C., Oldekop, J.A., Linhares-Juvenal, T., Pina, L. Madrid, M., & de Lamo, J. 2022. The number of forest- and tree-proximate people: A new methodology and global estimates. Background Paper to The State of the World’s Forests 2022 report. Rome, FAO.

    Contact points:

    Maintainer: Leticia Pina

    Maintainer: Sarah E., Castle

    Data lineage:

    The FPP data are generated using Google Earth Engine. Forests are defined by the Copernicus Global Land Cover (CGLC) (Buchhorn et al. 2020) classification system’s definition of forests: tree cover ranging from 15-100%, with or without understory of shrubs and grassland, and including both open and closed forests. Any area classified as forest sized ≥ 1 ha in 2019 was included in this definition. Population density was defined by the WorldPop global population data for 2019 (WorldPop 2018). High density urban populations were excluded from the analysis. High density urban areas were defined as any contiguous area with a total population (using 2019 WorldPop data for population) of at least 50,000 people and comprised of pixels all of which met at least one of two criteria: either the pixel a) had at least 1,500 people per square km, or b) was classified as “built-up” land use by the CGLC dataset (where “built-up” was defined as land covered by buildings and other manmade structures) (Dijkstra et al. 2020). Using these datasets, any rural people living in or within 5 kilometers of forests in 2019 were classified as forest proximate people. Euclidean distance was used as the measure to create a 5-kilometer buffer zone around each forest cover pixel. The scripts for generating the forest-proximate people and the rural-urban datasets using different parameters or for different years are published and available to users. For more detail, such as the theory behind this indicator and the definition of parameters, and to cite this data, see: Newton, P., Castle, S.E., Kinzer, A.T., Miller, D.C., Oldekop, J.A., Linhares-Juvenal, T., Pina, L., Madrid, M., & de Lamo, J. 2022. The number of forest- and tree-proximate people: a new methodology and global estimates. Background Paper to The State of the World’s Forests 2022. Rome, FAO.

    References:

    Buchhorn, M., Smets, B., Bertels, L., De Roo, B., Lesiv, M., Tsendbazar, N.E., Herold, M., Fritz, S., 2020. Copernicus Global Land Service: Land Cover 100m: collection 3 epoch 2019. Globe.

    Dijkstra, L., Florczyk, A.J., Freire, S., Kemper, T., Melchiorri, M., Pesaresi, M. and Schiavina, M., 2020. Applying the degree of urbanisation to the globe: A new harmonised definition reveals a different picture of global urbanisation. Journal of Urban Economics, p.103312.

    WorldPop (www.worldpop.org - School of Geography and Environmental Science, University of Southampton; Department of Geography and Geosciences, University of Louisville; Departement de Geographie, Universite de Namur) and Center for International Earth Science Information Network (CIESIN), Columbia University, 2018. Global High Resolution Population Denominators Project - Funded by The Bill and Melinda Gates Foundation (OPP1134076). https://dx.doi.org/10.5258/SOTON/WP00645

    Online resources:

    GEE asset for "Forest proximate people - 5km cutoff distance"

  7. Effect of suicide rates on life expectancy dataset

    • zenodo.org
    • data.niaid.nih.gov
    csv
    Updated Apr 16, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Filip Zoubek; Filip Zoubek (2021). Effect of suicide rates on life expectancy dataset [Dataset]. http://doi.org/10.5281/zenodo.4694270
    Explore at:
    csvAvailable download formats
    Dataset updated
    Apr 16, 2021
    Dataset provided by
    Zenodohttp://zenodo.org/
    Authors
    Filip Zoubek; Filip Zoubek
    License

    Attribution-NonCommercial-ShareAlike 3.0 (CC BY-NC-SA 3.0)https://creativecommons.org/licenses/by-nc-sa/3.0/
    License information was derived automatically

    Description

    Effect of suicide rates on life expectancy dataset

    Abstract
    In 2015, approximately 55 million people died worldwide, of which 8 million committed suicide. In the USA, one of the main causes of death is the aforementioned suicide, therefore, this experiment is dealing with the question of how much suicide rates affects the statistics of average life expectancy.
    The experiment takes two datasets, one with the number of suicides and life expectancy in the second one and combine data into one dataset. Subsequently, I try to find any patterns and correlations among the variables and perform statistical test using simple regression to confirm my assumptions.

    Data

    The experiment uses two datasets - WHO Suicide Statistics[1] and WHO Life Expectancy[2], which were firstly appropriately preprocessed. The final merged dataset to the experiment has 13 variables, where country and year are used as index: Country, Year, Suicides number, Life expectancy, Adult Mortality, which is probability of dying between 15 and 60 years per 1000 population, Infant deaths, which is number of Infant Deaths per 1000 population, Alcohol, which is alcohol, recorded per capita (15+) consumption, Under-five deaths, which is number of under-five deaths per 1000 population, HIV/AIDS, which is deaths per 1 000 live births HIV/AIDS, GDP, which is Gross Domestic Product per capita, Population, Income composition of resources, which is Human Development Index in terms of income composition of resources, and Schooling, which is number of years of schooling.

    LICENSE

    THE EXPERIMENT USES TWO DATASET - WHO SUICIDE STATISTICS AND WHO LIFE EXPECTANCY, WHICH WERE COLLEECTED FROM WHO AND UNITED NATIONS WEBSITE. THEREFORE, ALL DATASETS ARE UNDER THE LICENSE ATTRIBUTION-NONCOMMERCIAL-SHAREALIKE 3.0 IGO (https://creativecommons.org/licenses/by-nc-sa/3.0/igo/).

    [1] https://www.kaggle.com/szamil/who-suicide-statistics

    [2] https://www.kaggle.com/kumarajarshi/life-expectancy-who

  8. D

    ARCHIVED: COVID-19 Deaths by Population Characteristics Over Time

    • data.sfgov.org
    application/rdfxml +5
    Updated Sep 11, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2023). ARCHIVED: COVID-19 Deaths by Population Characteristics Over Time [Dataset]. https://data.sfgov.org/COVID-19/ARCHIVED-COVID-19-Deaths-by-Population-Characteris/w6fd-iq9e
    Explore at:
    csv, tsv, application/rssxml, xml, json, application/rdfxmlAvailable download formats
    Dataset updated
    Sep 11, 2023
    Description

    A. SUMMARY This archived dataset includes data for population characteristics that are no longer being reported publicly. The date on which each population characteristic type was archived can be found in the field “data_loaded_at”.

    To access the dataset that continues to refresh daily, navigate to this page: COVID-19 Deaths by Population Characteristics Over Time.   The dataset contains data on the following population characteristics that are no longer being reported publicly:

    • Skilled Nursing Facility Occupancy
    • Sexual orientation
    • Comorbidities
    • Homelessness
    • Single room occupancy (SRO) tenancy
    • Transmission Type

    B. HOW THE DATASET IS CREATED COVID-19 deaths are suspected to be associated with COVID-19. This means COVID-19 is listed as a cause of death or significant condition on the death certificate.    Data on the population characteristics of COVID-19 deaths are from:  * Case interviews  * Laboratories  * Medical providers    These multiple streams of data are merged, deduplicated, and undergo data verification processes.      Skilled Nursing Facility (SNF) occupancy * A Skilled Nursing Facility (SNF) is a type of long-term care facility that provides care to individuals, generally in their 60s and older, who need functional assistance in their daily lives.  * This dataset includes data for COVID-19 deaths reported in Skilled Nursing Facilities (SNFs) through 12/31/2022, archived on 1/5/2023. These data were identified where “Characteristic_Type” = ‘Skilled Nursing Facility Occupancy’.

    Sexual orientation    * The City began asking adults 18 years old or older for their sexual orientation identification during case interviews as of April 28, 2020. Sexual orientation data prior to this date is unavailable. * The City doesn’t collect or report information about sexual orientation for persons under 12 years of age. * Case investigation interviews transitioned to Virtual Assistant information gathering starting December 2021. The California Department of Public Health, Virtual Assistant is only sent to adults who are 18+ years old. Learn more about our data collection guidelines pertaining to sexual orientation.

    Comorbidities * Underlying conditions are reported when a person has one or more underlying health conditions at the time of diagnosis or death.

    Homelessness Persons are identified as homeless based on several data sources: * self-reported living situation * the location at the time of testing * Department of Public Health homelessness and health databases * Residents in Single-Room Occupancy hotels are not included in these figures. These methods serve as an estimate of persons experiencing homelessness. They may not meet other homelessness definitions.

    Single Room Occupancy (SRO) tenancy * SRO buildings are defined by the San Francisco Housing Code as having six or more "residential guest rooms" which may be attached to shared bathrooms, kitchens, and living spaces. * The details of a person's living arrangements are verified during case interviews.

    Transmission type * Information on transmission of COVID-19 is based on case interviews with individuals who have a confirmed positive test. Individuals are asked if they have been in close contact with a known COVID-19 case. If they answer yes, transmission category is recorded as contact with a known case. If they report no contact with a known case, transmission category is recorded as community transmission. If the case is not interviewed or was not asked the question, they are counted as unknown.

    C. UPDATE PROCESS This dataset will only update when any population characteristics are archived. Data for existing characteristic types will not change but new characteristic types may be added.   D. HOW TO USE THIS DATASET This dataset may include different types of characteristics. Filter the “Characteristic Type” column to explore a topic area. Then, the “Characteristic Group” column shows each group or category within that topic area and the number of deaths on each date.

    New deaths are the count of deaths within that characteristic group on that specific date. Cumulative deaths are the running total of all San Francisco COVID-19 deaths in that characteristic group up to the date listed.

    E. CHANGE LOG

    • 6/6/2023 - data on deaths by transmission type are no longer being updated. This data is currently through 6/1/2023 (as of 6/6/2023) and will not include any new data after this date.
    • 5/16/2023 - data on deaths by sexual orientation, comorbidities, homelessness, and single room occupancy are no longer being updated. This data is currently through 5/11/2023 (as of 5/16/2023) and will not include any new data after this date.
    • 1/5/2023 - data on SNF deaths are no longer being updated. SNF data is currently through 12/31/2022 (as of 1/5/2023) and will not include any new data after this date.

  9. N

    United States Age Group Population Dataset: A Complete Breakdown of United...

    • neilsberg.com
    csv, json
    Updated Jul 24, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Neilsberg Research (2024). United States Age Group Population Dataset: A Complete Breakdown of United States Age Demographics from 0 to 85 Years and Over, Distributed Across 18 Age Groups // 2024 Edition [Dataset]. https://www.neilsberg.com/research/datasets/aabf26b9-4983-11ef-ae5d-3860777c1fe6/
    Explore at:
    csv, jsonAvailable download formats
    Dataset updated
    Jul 24, 2024
    Dataset authored and provided by
    Neilsberg Research
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    United States
    Variables measured
    Population Under 5 Years, Population over 85 years, Population Between 5 and 9 years, Population Between 10 and 14 years, Population Between 15 and 19 years, Population Between 20 and 24 years, Population Between 25 and 29 years, Population Between 30 and 34 years, Population Between 35 and 39 years, Population Between 40 and 44 years, and 9 more
    Measurement technique
    The data presented in this dataset is derived from the latest U.S. Census Bureau American Community Survey (ACS) 2018-2022 5-Year Estimates. To measure the two variables, namely (a) population and (b) population as a percentage of the total population, we initially analyzed and categorized the data for each of the age groups. For age groups we divided it into roughly a 5 year bucket for ages between 0 and 85. For over 85, we aggregated data into a single group for all ages. For further information regarding these estimates, please feel free to reach out to us via email at research@neilsberg.com.
    Dataset funded by
    Neilsberg Research
    Description
    About this dataset

    Context

    The dataset tabulates the United States population distribution across 18 age groups. It lists the population in each age group along with the percentage population relative of the total population for United States. The dataset can be utilized to understand the population distribution of United States by age. For example, using this dataset, we can identify the largest age group in United States.

    Key observations

    The largest age group in United States was for the group of age 30 to 34 years years with a population of 22.71 million (6.86%), according to the ACS 2018-2022 5-Year Estimates. At the same time, the smallest age group in United States was the 80 to 84 years years with a population of 6.25 million (1.89%). Source: U.S. Census Bureau American Community Survey (ACS) 2018-2022 5-Year Estimates

    Content

    When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2018-2022 5-Year Estimates

    Age groups:

    • Under 5 years
    • 5 to 9 years
    • 10 to 14 years
    • 15 to 19 years
    • 20 to 24 years
    • 25 to 29 years
    • 30 to 34 years
    • 35 to 39 years
    • 40 to 44 years
    • 45 to 49 years
    • 50 to 54 years
    • 55 to 59 years
    • 60 to 64 years
    • 65 to 69 years
    • 70 to 74 years
    • 75 to 79 years
    • 80 to 84 years
    • 85 years and over

    Variables / Data Columns

    • Age Group: This column displays the age group in consideration
    • Population: The population for the specific age group in the United States is shown in this column.
    • % of Total Population: This column displays the population of each age group as a proportion of United States total population. Please note that the sum of all percentages may not equal one due to rounding of values.

    Good to know

    Margin of Error

    Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.

    Custom data

    If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.

    Inspiration

    Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.

    Recommended for further research

    This dataset is a part of the main dataset for United States Population by Age. You can refer the same here

  10. T

    United States Population

    • tradingeconomics.com
    • es.tradingeconomics.com
    • +13more
    csv, excel, json, xml
    Updated Mar 15, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    TRADING ECONOMICS (2025). United States Population [Dataset]. https://tradingeconomics.com/united-states/population
    Explore at:
    excel, xml, csv, jsonAvailable download formats
    Dataset updated
    Mar 15, 2025
    Dataset authored and provided by
    TRADING ECONOMICS
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Dec 31, 1900 - Dec 31, 2024
    Area covered
    United States
    Description

    The total population in the United States was estimated at 341.2 million people in 2024, according to the latest census figures and projections from Trading Economics. This dataset provides - United States Population - actual values, historical data, forecast, chart, statistics, economic calendar and news.

  11. Wildfire Risk to Communities Housing Unit Density (Image Service)

    • resilience.climate.gov
    • agdatacommons.nal.usda.gov
    • +10more
    Updated Apr 14, 2021
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Forest Service (2021). Wildfire Risk to Communities Housing Unit Density (Image Service) [Dataset]. https://resilience.climate.gov/datasets/6f49e46d5a2743c8bef156f1d7157121
    Explore at:
    Dataset updated
    Apr 14, 2021
    Dataset provided by
    U.S. Department of Agriculture Forest Servicehttp://fs.fed.us/
    Authors
    U.S. Forest Service
    License

    CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
    License information was derived automatically

    Area covered
    Description

    The data included in this publication depict components of wildfire risk specifically for populated areas in the United States. These datasets represent where people live in the United States and the in situ risk from wildfire, i.e., the risk at the location where the adverse effects take place.National wildfire hazard datasets of annual burn probability and fire intensity, generated by the USDA Forest Service, Rocky Mountain Research Station and Pyrologix LLC, form the foundation of the Wildfire Risk to Communities data. Vegetation and wildland fuels data from LANDFIRE 2020 (version 2.2.0) were used as input to two different but related geospatial fire simulation systems. Annual burn probability was produced with the USFS geospatial fire simulator (FSim) at a relatively coarse cell size of 270 meters (m). To bring the burn probability raster data down to a finer resolution more useful for assessing hazard and risk to communities, we upsampled them to the native 30 m resolution of the LANDFIRE fuel and vegetation data. In this upsampling process, we also spread values of modeled burn probability into developed areas represented in LANDFIRE fuels data as non-burnable. Burn probability rasters represent landscape conditions as of the end of 2020. Fire intensity characteristics were modeled at 30 m resolution using a process that performs a comprehensive set of FlamMap runs spanning the full range of weather-related characteristics that occur during a fire season and then integrates those runs into a variety of results based on the likelihood of those weather types occurring. Before the fire intensity modeling, the LANDFIRE 2020 data were updated to reflect fuels disturbances occurring in 2021 and 2022. As such, the fire intensity datasets represent landscape conditions as of the end of 2022. The data products in this publication that represent where people live, reflect 2021 estimates of housing unit and population counts from the U.S. Census Bureau, combined with building footprint data from Onegeo and USA Structures, both reflecting 2022 conditions.The specific raster datasets included in this publication include:Building Count: Building Count is a 30-m raster representing the count of buildings in the building footprint dataset located within each 30-m pixel.Building Density: Building Density is a 30-m raster representing the density of buildings in the building footprint dataset (buildings per square kilometer [km²]).Building Coverage: Building Coverage is a 30-m raster depicting the percentage of habitable land area covered by building footprints.Population Count (PopCount): PopCount is a 30-m raster with pixel values representing residential population count (persons) in each pixel.Population Density (PopDen): PopDen is a 30-m raster of residential population density (people/km²).Housing Unit Count (HUCount): HUCount is a 30-m raster representing the number of housing units in each pixel.Housing Unit Density (HUDen): HUDen is a 30-m raster of housing-unit density (housing units/km²).Housing Unit Exposure (HUExposure): HUExposure is a 30-m raster that represents the expected number of housing units within a pixel potentially exposed to wildfire in a year. This is a long-term annual average and not intended to represent the actual number of housing units exposed in any specific year.Housing Unit Impact (HUImpact): HUImpact is a 30-m raster that represents the relative potential impact of fire to housing units at any pixel, if a fire were to occur. It is an index that incorporates the general consequences of fire on a home as a function of fire intensity and uses flame length probabilities from wildfire modeling to capture likely intensity of fire.Housing Unit Risk (HURisk): HURisk is a 30-m raster that integrates all four primary elements of wildfire risk - likelihood, intensity, susceptibility, and exposure - on pixels where housing unit density is greater than zero.Additional methodology documentation is provided with the data publication download. Metadata and Downloads.Note: Pixel values in this image service have been altered from the original raster dataset due to data requirements in web services. The service is intended primarily for data visualization. Relative values and spatial patterns have been largely preserved in the service, but users are encouraged to download the source data for quantitative analysis.

  12. t

    PLACE OF BIRTH - DP02_DES_T - Dataset - CKAN

    • portal.tad3.org
    Updated Nov 18, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2024). PLACE OF BIRTH - DP02_DES_T - Dataset - CKAN [Dataset]. https://portal.tad3.org/dataset/place-of-birth-dp02_des_t
    Explore at:
    Dataset updated
    Nov 18, 2024
    License

    Attribution-ShareAlike 4.0 (CC BY-SA 4.0)https://creativecommons.org/licenses/by-sa/4.0/
    License information was derived automatically

    Description

    SELECTED SOCIAL CHARACTERISTICS IN THE UNITED STATES PLACE OF BIRTH - DP02 Universe - Total population Survey-Program - American Community Survey 5-year estimates Years - 2020, 2021, 2022 People not reporting a place of birth were assigned the state or country of birth of another family member, or were allocated the response of another individual with similar characteristics. People born outside the United States were asked to report their place of birth according to current international boundaries. Since numerous changes in boundaries of foreign countries have occurred in the last century, some people may have reported their place of birth in terms of boundaries that existed at the time of their birth or emigration, or in accordance with their own national preference.

  13. Total population worldwide 1950-2100

    • statista.com
    • ai-chatbox.pro
    Updated Jul 28, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). Total population worldwide 1950-2100 [Dataset]. https://www.statista.com/statistics/805044/total-population-worldwide/
    Explore at:
    Dataset updated
    Jul 28, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Area covered
    World
    Description

    The world population surpassed eight billion people in 2022, having doubled from its figure less than 50 years previously. Looking forward, it is projected that the world population will reach nine billion in 2038, and 10 billion in 2060, but it will peak around 10.3 billion in the 2080s before it then goes into decline. Regional variations The global population has seen rapid growth since the early 1800s, due to advances in areas such as food production, healthcare, water safety, education, and infrastructure, however, these changes did not occur at a uniform time or pace across the world. Broadly speaking, the first regions to undergo their demographic transitions were Europe, North America, and Oceania, followed by Latin America and Asia (although Asia's development saw the greatest variation due to its size), while Africa was the last continent to undergo this transformation. Because of these differences, many so-called "advanced" countries are now experiencing population decline, particularly in Europe and East Asia, while the fastest population growth rates are found in Sub-Saharan Africa. In fact, the roughly two billion difference in population between now and the 2080s' peak will be found in Sub-Saharan Africa, which will rise from 1.2 billion to 3.2 billion in this time (although populations in other continents will also fluctuate). Changing projections The United Nations releases their World Population Prospects report every 1-2 years, and this is widely considered the foremost demographic dataset in the world. However, recent years have seen a notable decline in projections when the global population will peak, and at what number. Previous reports in the 2010s had suggested a peak of over 11 billion people, and that population growth would continue into the 2100s, however a sooner and shorter peak is now projected. Reasons for this include a more rapid population decline in East Asia and Europe, particularly China, as well as a prolonged development arc in Sub-Saharan Africa.

  14. Live Birth Profiles by County

    • data.chhs.ca.gov
    • data.ca.gov
    • +4more
    csv, zip
    Updated Jun 26, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    California Department of Public Health (2025). Live Birth Profiles by County [Dataset]. https://data.chhs.ca.gov/dataset/live-birth-profiles-by-county
    Explore at:
    csv(1911), csv(8256822), csv(9986780), zip, csv(456184)Available download formats
    Dataset updated
    Jun 26, 2025
    Dataset authored and provided by
    California Department of Public Healthhttps://www.cdph.ca.gov/
    Description

    This dataset contains counts of live births for California counties based on information entered on birth certificates. Final counts are derived from static data and include out of state births to California residents, whereas provisional counts are derived from incomplete and dynamic data. Provisional counts are based on the records available when the data was retrieved and may not represent all births that occurred during the time period.

    The final data tables include both births that occurred in California regardless of the place of residence (by occurrence) and births to California residents (by residence), whereas the provisional data table only includes births that occurred in California regardless of the place of residence (by occurrence). The data are reported as totals, as well as stratified by parent giving birth's age, parent giving birth's race-ethnicity, and birth place type. See temporal coverage for more information on which strata are available for which years.

  15. w

    Dataset of book subjects that contain When making others happy is making you...

    • workwithdata.com
    Updated Nov 7, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Work With Data (2024). Dataset of book subjects that contain When making others happy is making you miserable : how to break the pattern of people pleasing and confidently live your life [Dataset]. https://www.workwithdata.com/datasets/book-subjects?f=1&fcol0=j0-book&fop0=%3D&fval0=When+making+others+happy+is+making+you+miserable+:+how+to+break+the+pattern+of+people+pleasing+and+confidently+live+your+life&j=1&j0=books
    Explore at:
    Dataset updated
    Nov 7, 2024
    Dataset authored and provided by
    Work With Data
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    This dataset is about book subjects. It has 2 rows and is filtered where the books is When making others happy is making you miserable : how to break the pattern of people pleasing and confidently live your life. It features 10 columns including number of authors, number of books, earliest publication date, and latest publication date.

  16. Freebase Datasets for Robust Evaluation of Knowledge Graph Link Prediction...

    • zenodo.org
    • data.niaid.nih.gov
    zip
    Updated Nov 29, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Nasim Shirvani Mahdavi; Farahnaz Akrami; Mohammed Samiul Saeef; Xiao Shi; Chengkai Li; Nasim Shirvani Mahdavi; Farahnaz Akrami; Mohammed Samiul Saeef; Xiao Shi; Chengkai Li (2023). Freebase Datasets for Robust Evaluation of Knowledge Graph Link Prediction Models [Dataset]. http://doi.org/10.5281/zenodo.7909511
    Explore at:
    zipAvailable download formats
    Dataset updated
    Nov 29, 2023
    Dataset provided by
    Zenodohttp://zenodo.org/
    Authors
    Nasim Shirvani Mahdavi; Farahnaz Akrami; Mohammed Samiul Saeef; Xiao Shi; Chengkai Li; Nasim Shirvani Mahdavi; Farahnaz Akrami; Mohammed Samiul Saeef; Xiao Shi; Chengkai Li
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Freebase is amongst the largest public cross-domain knowledge graphs. It possesses three main data modeling idiosyncrasies. It has a strong type system; its properties are purposefully represented in reverse pairs; and it uses mediator objects to represent multiary relationships. These design choices are important in modeling the real-world. But they also pose nontrivial challenges in research of embedding models for knowledge graph completion, especially when models are developed and evaluated agnostically of these idiosyncrasies. We make available several variants of the Freebase dataset by inclusion and exclusion of these data modeling idiosyncrasies. This is the first-ever publicly available full-scale Freebase dataset that has gone through proper preparation.

    Dataset Details

    The dataset consists of the four variants of Freebase dataset as well as related mapping/support files. For each variant, we made three kinds of files available:

    • Subject matter triples file
      • fb+/-CVT+/-REV One folder for each variant. In each folder there are 5 files: train.txt, valid.txt, test.txt, entity2id.txt, relation2id.txt Subject matter triples are the triples belong to subject matters domains—domains describing real-world facts.
        • Example of a row in train.txt, valid.txt, and test.txt:
          • 2, 192, 0
        • Example of a row in entity2id.txt:
          • /g/112yfy2xr, 2
        • Example of a row in relation2id.txt:
          • /music/album/release_type, 192
        • Explaination
          • "/g/112yfy2xr" and "/m/02lx2r" are the MID of the subject entity and object entity, respectively. "/music/album/release_type" is the realtionship between the two entities. 2, 192, and 0 are the IDs assigned by the authors to the objects.
    • Type system file
      • freebase_endtypes: Each row maps an edge type to its required subject type and object type.
        • Example
          • 92, 47178872, 90
        • Explanation
          • "92" and "90" are the type id of the subject and object which has the relationship id "47178872".
    • Metadata files
      • object_types: Each row maps the MID of a Freebase object to a type it belongs to.
        • Example
          • /g/11b41c22g, /type/object/type, /people/person
        • Explanation
          • The entity with MID "/g/11b41c22g" has a type "/people/person"
      • object_names: Each row maps the MID of a Freebase object to its textual label.
        • Example
          • /g/11b78qtr5m, /type/object/name, "Viroliano Tries Jazz"@en
        • Explanation
          • The entity with MID "/g/11b78qtr5m" has name "Viroliano Tries Jazz" in English.
      • object_ids: Each row maps the MID of a Freebase object to its user-friendly identifier.
        • Example
          • /m/05v3y9r, /type/object/id, "/music/live_album/concert"
        • Explanation
          • The entity with MID "/m/05v3y9r" can be interpreted by human as a music concert live album.
      • domains_id_label: Each row maps the MID of a Freebase domain to its label.
        • Example
          • /m/05v4pmy, geology, 77
        • Explanation
          • The object with MID "/m/05v4pmy" in Freebase is the domain "geology", and has id "77" in our dataset.
      • types_id_label: Each row maps the MID of a Freebase type to its label.
        • Example
          • /m/01xljxh, /government/political_party, 147
        • Explanation
          • The object with MID "/m/01xljxh" in Freebase is the type "/government/political_party", and has id "147" in our dataset.
      • entities_id_label: Each row maps the MID of a Freebase entity to its label.
        • Example
          • /g/11b78qtr5m, Viroliano Tries Jazz, 2234
        • Explanation
          • The entity with MID "/g/11b78qtr5m" in Freebase is "Viroliano Tries Jazz", and has id "2234" in our dataset.
        • properties_id_label: Each row maps the MID of a Freebase property to its label.
          • Example
            • /m/010h8tp2, /comedy/comedy_group/members, 47178867
          • Explanation
            • The object with MID "/m/010h8tp2" in Freebase is a property(relation/edge), it has label "/comedy/comedy_group/members" and has id "47178867" in our dataset.
        • uri_original2simplified and uri_simplified2original: The mapping between original URI and simplified URI and the mapping between simplified URI and original URI repectively.

  17. w

    Afrobarometer Survey 1 1999-2000, Merged 7 Country - Botswana, Lesotho,...

    • microdata.worldbank.org
    • catalog.ihsn.org
    • +1more
    Updated Apr 27, 2021
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Institute for Democracy in South Africa (IDASA) (2021). Afrobarometer Survey 1 1999-2000, Merged 7 Country - Botswana, Lesotho, Malawi, Namibia, South Africa, Zambia, Zimbabwe [Dataset]. https://microdata.worldbank.org/index.php/catalog/889
    Explore at:
    Dataset updated
    Apr 27, 2021
    Dataset provided by
    Institute for Democracy in South Africa (IDASA)
    Michigan State University (MSU)
    Ghana Centre for Democratic Development (CDD-Ghana)
    Time period covered
    1999 - 2000
    Area covered
    Africa, Botswana, Zambia, Zimbabwe, Namibia, South Africa, Malawi, Lesotho
    Description

    Abstract

    Round 1 of the Afrobarometer survey was conducted from July 1999 through June 2001 in 12 African countries, to solicit public opinion on democracy, governance, markets, and national identity. The full 12 country dataset released was pieced together out of different projects, Round 1 of the Afrobarometer survey,the old Southern African Democracy Barometer, and similar surveys done in West and East Africa.

    The 7 country dataset is a subset of the Round 1 survey dataset, and consists of a combined dataset for the 7 Southern African countries surveyed with other African countries in Round 1, 1999-2000 (Botswana, Lesotho, Malawi, Namibia, South Africa, Zambia and Zimbabwe). It is a useful dataset because, in contrast to the full 12 country Round 1 dataset, all countries in this dataset were surveyed with the identical questionnaire

    Geographic coverage

    Botswana Lesotho Malawi Namibia South Africa Zambia Zimbabwe

    Analysis unit

    Basic units of analysis that the study investigates include: individuals and groups

    Kind of data

    Sample survey data [ssd]

    Sampling procedure

    A new sample has to be drawn for each round of Afrobarometer surveys. Whereas the standard sample size for Round 3 surveys will be 1200 cases, a larger sample size will be required in societies that are extremely heterogeneous (such as South Africa and Nigeria), where the sample size will be increased to 2400. Other adaptations may be necessary within some countries to account for the varying quality of the census data or the availability of census maps.

    The sample is designed as a representative cross-section of all citizens of voting age in a given country. The goal is to give every adult citizen an equal and known chance of selection for interview. We strive to reach this objective by (a) strictly applying random selection methods at every stage of sampling and by (b) applying sampling with probability proportionate to population size wherever possible. A randomly selected sample of 1200 cases allows inferences to national adult populations with a margin of sampling error of no more than plus or minus 2.5 percent with a confidence level of 95 percent. If the sample size is increased to 2400, the confidence interval shrinks to plus or minus 2 percent.

    Sample Universe

    The sample universe for Afrobarometer surveys includes all citizens of voting age within the country. In other words, we exclude anyone who is not a citizen and anyone who has not attained this age (usually 18 years) on the day of the survey. Also excluded are areas determined to be either inaccessible or not relevant to the study, such as those experiencing armed conflict or natural disasters, as well as national parks and game reserves. As a matter of practice, we have also excluded people living in institutionalized settings, such as students in dormitories and persons in prisons or nursing homes.

    What to do about areas experiencing political unrest? On the one hand we want to include them because they are politically important. On the other hand, we want to avoid stretching out the fieldwork over many months while we wait for the situation to settle down. It was agreed at the 2002 Cape Town Planning Workshop that it is difficult to come up with a general rule that will fit all imaginable circumstances. We will therefore make judgments on a case-by-case basis on whether or not to proceed with fieldwork or to exclude or substitute areas of conflict. National Partners are requested to consult Core Partners on any major delays, exclusions or substitutions of this sort.

    Sample Design

    The sample design is a clustered, stratified, multi-stage, area probability sample.

    To repeat the main sampling principle, the objective of the design is to give every sample element (i.e. adult citizen) an equal and known chance of being chosen for inclusion in the sample. We strive to reach this objective by (a) strictly applying random selection methods at every stage of sampling and by (b) applying sampling with probability proportionate to population size wherever possible.

    In a series of stages, geographically defined sampling units of decreasing size are selected. To ensure that the sample is representative, the probability of selection at various stages is adjusted as follows:

    The sample is stratified by key social characteristics in the population such as sub-national area (e.g. region/province) and residential locality (urban or rural). The area stratification reduces the likelihood that distinctive ethnic or language groups are left out of the sample. And the urban/rural stratification is a means to make sure that these localities are represented in their correct proportions. Wherever possible, and always in the first stage of sampling, random sampling is conducted with probability proportionate to population size (PPPS). The purpose is to guarantee that larger (i.e., more populated) geographical units have a proportionally greater probability of being chosen into the sample. The sampling design has four stages

    A first-stage to stratify and randomly select primary sampling units;

    A second-stage to randomly select sampling start-points;

    A third stage to randomly choose households;

    A final-stage involving the random selection of individual respondents

    We shall deal with each of these stages in turn.

    STAGE ONE: Selection of Primary Sampling Units (PSUs)

    The primary sampling units (PSU's) are the smallest, well-defined geographic units for which reliable population data are available. In most countries, these will be Census Enumeration Areas (or EAs). Most national census data and maps are broken down to the EA level. In the text that follows we will use the acronyms PSU and EA interchangeably because, when census data are employed, they refer to the same unit.

    We strongly recommend that NIs use official national census data as the sampling frame for Afrobarometer surveys. Where recent or reliable census data are not available, NIs are asked to inform the relevant Core Partner before they substitute any other demographic data. Where the census is out of date, NIs should consult a demographer to obtain the best possible estimates of population growth rates. These should be applied to the outdated census data in order to make projections of population figures for the year of the survey. It is important to bear in mind that population growth rates vary by area (region) and (especially) between rural and urban localities. Therefore, any projected census data should include adjustments to take such variations into account.

    Indeed, we urge NIs to establish collegial working relationships within professionals in the national census bureau, not only to obtain the most recent census data, projections, and maps, but to gain access to sampling expertise. NIs may even commission a census statistician to draw the sample to Afrobarometer specifications, provided that provision for this service has been made in the survey budget.

    Regardless of who draws the sample, the NIs should thoroughly acquaint themselves with the strengths and weaknesses of the available census data and the availability and quality of EA maps. The country and methodology reports should cite the exact census data used, its known shortcomings, if any, and any projections made from the data. At minimum, the NI must know the size of the population and the urban/rural population divide in each region in order to specify how to distribute population and PSU's in the first stage of sampling. National investigators should obtain this written data before they attempt to stratify the sample.

    Once this data is obtained, the sample population (either 1200 or 2400) should be stratified, first by area (region/province) and then by residential locality (urban or rural). In each case, the proportion of the sample in each locality in each region should be the same as its proportion in the national population as indicated by the updated census figures.

    Having stratified the sample, it is then possible to determine how many PSU's should be selected for the country as a whole, for each region, and for each urban or rural locality.

    The total number of PSU's to be selected for the whole country is determined by calculating the maximum degree of clustering of interviews one can accept in any PSU. Because PSUs (which are usually geographically small EAs) tend to be socially homogenous we do not want to select too many people in any one place. Thus, the Afrobarometer has established a standard of no more than 8 interviews per PSU. For a sample size of 1200, the sample must therefore contain 150 PSUs/EAs (1200 divided by 8). For a sample size of 2400, there must be 300 PSUs/EAs.

    These PSUs should then be allocated proportionally to the urban and rural localities within each regional stratum of the sample. Let's take a couple of examples from a country with a sample size of 1200. If the urban locality of Region X in this country constitutes 10 percent of the current national population, then the sample for this stratum should be 15 PSUs (calculated as 10 percent of 150 PSUs). If the rural population of Region Y constitutes 4 percent of the current national population, then the sample for this stratum should be 6 PSU's.

    The next step is to select particular PSUs/EAs using random methods. Using the above example of the rural localities in Region Y, let us say that you need to pick 6 sample EAs out of a census list that contains a total of 240 rural EAs in Region Y. But which 6? If the EAs created by the national census bureau are of equal or roughly equal population size, then selection is relatively straightforward. Just number all EAs consecutively, then make six selections using a table of random numbers. This procedure, known as simple random sampling (SRS), will

  18. A

    ‘COVID-19 case rate per 100,000 population and percent test positivity in...

    • analyst-2.ai
    Updated Oct 8, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Analyst-2 (analyst-2.ai) / Inspirient GmbH (inspirient.com) (2020). ‘COVID-19 case rate per 100,000 population and percent test positivity in the last 7 days by town - ARCHIVE’ analyzed by Analyst-2 [Dataset]. https://analyst-2.ai/analysis/data-gov-covid-19-case-rate-per-100000-population-and-percent-test-positivity-in-the-last-7-days-by-town-archive-fd8b/39e43ba8/?iid=004-584&v=presentation
    Explore at:
    Dataset updated
    Oct 8, 2020
    Dataset authored and provided by
    Analyst-2 (analyst-2.ai) / Inspirient GmbH (inspirient.com)
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Analysis of ‘COVID-19 case rate per 100,000 population and percent test positivity in the last 7 days by town - ARCHIVE’ provided by Analyst-2 (analyst-2.ai), based on source dataset retrieved from https://catalog.data.gov/dataset/ceb31b99-df28-4d47-bfc9-dd3ab1896172 on 26 January 2022.

    --- Dataset description provided by original source is as follows ---

    DPH note about change from 7-day to 14-day metrics: As of 10/15/2020, this dataset is no longer being updated. Starting on 10/15/2020, these metrics will be calculated using a 14-day average rather than a 7-day average. The new dataset using 14-day averages can be accessed here: https://data.ct.gov/Health-and-Human-Services/COVID-19-case-rate-per-100-000-population-and-perc/hree-nys2

    As you know, we are learning more about COVID-19 all the time, including the best ways to measure COVID-19 activity in our communities. CT DPH has decided to shift to 14-day rates because these are more stable, particularly at the town level, as compared to 7-day rates. In addition, since the school indicators were initially published by DPH last summer, CDC has recommended 14-day rates and other states (e.g., Massachusetts) have started to implement 14-day metrics for monitoring COVID transmission as well.

    With respect to geography, we also have learned that many people are looking at the town-level data to inform decision making, despite emphasis on the county-level metrics in the published addenda. This is understandable as there has been variation within counties in COVID-19 activity (for example, rates that are higher in one town than in most other towns in the county).

    This dataset includes a weekly count and weekly rate per 100,000 population for COVID-19 cases, a weekly count of COVID-19 PCR diagnostic tests, and a weekly percent positivity rate for tests among people living in community settings. Dates are based on date of specimen collection (cases and positivity).

    A person is considered a new case only upon their first COVID-19 testing result because a case is defined as an instance or bout of illness. If they are tested again subsequently and are still positive, it still counts toward the test positivity metric but they are not considered another case.

    These case and test counts do not include cases or tests among people residing in congregate settings, such as nursing homes, assisted living facilities, or correctional facilities.

    These data are updated weekly; the previous week period for each dataset is the previous Sunday-Saturday, known as an MMWR week (https://wwwn.cdc.gov/nndss/document/MMWR_week_overview.pdf). The date listed is the date the dataset was last updated and corresponds to a reporting period of the previous MMWR week. For instance, the data for 8/20/2020 corresponds to a reporting period of 8/9/2020-8/15/2020.

    Notes: 9/25/2020: Data for Mansfield and Middletown for the week of Sept 13-19 were unavailable at the time of reporting due to delays in lab reporting.

    --- Original source retains full ownership of the source dataset ---

  19. i

    Ouagadougou HDSS INDEPTH Core Dataset 2009 - 2014 (Release 2017) - Burkina...

    • catalog.ihsn.org
    Updated Mar 29, 2019
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Abdramane Soura (2019). Ouagadougou HDSS INDEPTH Core Dataset 2009 - 2014 (Release 2017) - Burkina Faso [Dataset]. http://catalog.ihsn.org/catalog/5240
    Explore at:
    Dataset updated
    Mar 29, 2019
    Dataset authored and provided by
    Abdramane Soura
    Time period covered
    2009 - 2014
    Area covered
    Burkina Faso
    Description

    Abstract

    The Ouagadougou Health and Demographic Surveillance System (Ouagadougou HDSS), located in five neighborhoods at the northern periphery of the capital of Burkina Faso, was established in 2008. Data on vital events (births, deaths, unions, migration events) are collected during household visits that have taken place every 10 months.

    The areas were selected to contrast informal neighborhoods (40,000 residents) with formal areas (40,000 residents), with the aims of understanding the problems of the urban poor, and testing innovative programs that promote the well-being of this population. People living in informal areas tend to be marginalized in several ways: they are younger, poorer, less educated, farther from public services and more often migrants. Half of the residents live in the Sanitary District of Kossodo and the other half in the District of Sig-Nonghin.

    The Ouaga HDSS has been used to study health inequalities, conduct a surveillance of typhoid fever, measure water quality in informal areas, study the link between fertility and school investments, test a non-governmental organization (NGO)-led program of poverty alleviation and test a community-led targeting of the poor eligible for benefits in the urban context. Key informants help maintain a good rapport with the community.

    The areas researchers follow consist of 55 census tracks divided into 494 blocks. Researchers mapped all the census tracks and blocks using fieldworkers with handheld global positioning system (GPS) receivers and ArcGIS. During a first census (October 2008 to March 2009), the demographic surveillance system was explained to every head of household and a consent form was signed; during subsequent censuses, new households were enrolled in the same way.

    Geographic coverage

    Ouagadougou is the capital city of Burkina Faso and lies at the centre of this country, located in the middle of West Africa (128 North of the Equator and 18 West of the Prime Meridian).

    Analysis unit

    Individual

    Universe

    Resident household members of households resident within the demographic surveillance area. Inmigrants (visitors) are defined by intention to become resident, but actual residence episodes of less than six months (180 days) are censored. Outmigrants are defined by intention to become resident elsewhere, but actual periods of non-residence less than six months (180 days) are censored. Children born to resident women are considered resident by default, irrespective of actual place of birth. The dataset contains the events of all individuals ever residents during the study period (03 Oct. 2009 to 31 Dec. 2014).

    Kind of data

    Event history data

    Frequency of data collection

    This dataset contains rounds 0 to 7 of demographic surveillance data covering the period from 07 Oct. 2008 to 31 December 2014.

    Sampling procedure

    This dataset is not based on a sample, it contains information from the complete demographic surveillance area of Ouagadougou in Burkina Faso.

    Reponse units (households) by Round: Round Households
    2008 4941
    2009 19159 2010 21168
    2011 12548 2012 24174 2013 22326

    Sampling deviation

    None

    Mode of data collection

    Proxy Respondent [proxy]

    Research instrument

    List of questionnaires:

    Collective Housing Unit (UCH) Survey Form - Used to register characteristics of the house - Use to register Sanitation installations - All registered house as at previous round are uploaded behind the PDA or tablet.

    Household registration (HHR) or update (HHU) Form - Used to register characteristics of the HH - Used to update information about the composition of the household - All registered households as at previous rounds are uploaded behind the PDA or tablet.

    Household Membership Registration (HMR) or update (HMU) - Used to link individuals to households. - Used to update information about the household memberships and member status observations - All member status observations as at previous rounds are uploaded behind the PDA or tablet.

    Presences registration form (PDR) - Used to uniquely identify the presence of each individual in the household and to identify the new individual in the household - Mainly to ensure members with multiple household memberships are appropriately captured - All presences observations as at previous rounds are uploaded behind the PDA or tablet.

    Visitor registration form (VDR) - Used register the characteristics of the new individual in the household - Used to capt the internal migration - Use matching form to facilitate pairing migration

    Out Migration notification form (MGN) - Used to record change in the status of residency of individuals or households - Migrants are tracked and updated in the database

    Pregnancy history form (PGH) & pregnancy outcome notification form (PON) - Records details of pregnancies and their outcomes - Only if woman is a new member - Only if woman has never completed WHL or WGH - All member pregnancy without pregnancy outcome as at previous rounds are uploaded behind the PDA or tablet.

    Death notification form (DTN) - Records all deaths that have recently occurred - Includes information about time, place, circumstances and possible cause of death

    Updated Basic information Form (UBIF) - Use to change the individual basic information

    Health questionnaire (adults, women, child, elder) - Family planning - Chronic illnesses - Violence and accident - Mental health - Nutrition, alcohol, tobacco - Access to health services - Anthropometric measures - Physical limitations - Self-rated health - Food security

    Variability of climate and water accessibility - accessibility to water - child health outcomes - gender outcomes - data on rainfall, temperatures, water quality

    Cleaning operations

    The data collection system is composed by two databases: - A temporary database, which contains data collected and transferred each day during the round. - A reference database, which contains all data of Ouagadougou Health and Demographic Surveillance System, in which is transferred the data of the temporary database to the end of each round. The temporary database is emptied at the end of the round for a new round.

    The data processing takes place in two ways:

    1) When collecting data with PDAs or tablets and theirs transfers by Wi-Fi, data consistency and plausibility are controlled by verification rules in the mobile application and in the database. In addition to these verifications, the data from the temporary database undergo validation. This validation is performed each week and produces a validation report for the data collection team. After the validation, if the error is due to an error in the data collection, the field worker equipped with his PDA or tablet go back to the field to revisit and correct this error. At the end of this correction, the field worker makes again the transfer of data through the wireless access points on the server. If the error is due to data inconsistencies that might not be directly related to an error in data collection, the case is remanded to the scientific team of the main database that could resolve the inconsistency directly in the database or could with supervisors perform a thorough investigation in order to correct the error.

    2) At the end of the round, the data from the temporary database are automatically transferred into the reference database by a transfer program. After the success of this transfer, further validation is performed on the data in the database to ensure data consistency and plausibility. This still produces a validation report for the data collection team. And the same process of error correction is taken.

    Response rate

    Household response rates are as follows (assuming that if a household has not responded for 2 years following the last recorded visit to that household, that the household is lost to follow-up and no longer part of the response rate denominator):

    Year Response Rate
    2008 100%
    2009 100%
    2010 100%
    2011 98% 2012 100% 2013 95%

    Sampling error estimates

    Not applicable

    Data appraisal

    CentreId MetricTable QMetric Illegal Legal Total Metric RunDate BF041 MicroDataCleaned Starts 151624 2017-05-16 13:36
    BF041 MicroDataCleaned Transitions 0 314778 314778 0 2017-05-16 13:36
    BF041 MicroDataCleaned Ends 151624 2017-05-16 13:36
    BF041 MicroDataCleaned SexValues 314778 2017-05-16 13:36
    BF041 MicroDataCleaned DoBValues 314778 2017-05-16 13:36

  20. d

    COVID-19 case rate per 100,000 population and percent test positivity in the...

    • datasets.ai
    • data.ct.gov
    • +1more
    23, 40, 55, 8
    Updated Sep 8, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    State of Connecticut (2024). COVID-19 case rate per 100,000 population and percent test positivity in the last 7 days by town - ARCHIVE [Dataset]. https://datasets.ai/datasets/covid-19-case-rate-per-100000-population-and-percent-test-positivity-in-the-last-7-days-by
    Explore at:
    23, 55, 40, 8Available download formats
    Dataset updated
    Sep 8, 2024
    Dataset authored and provided by
    State of Connecticut
    Description

    DPH note about change from 7-day to 14-day metrics: As of 10/15/2020, this dataset is no longer being updated. Starting on 10/15/2020, these metrics will be calculated using a 14-day average rather than a 7-day average. The new dataset using 14-day averages can be accessed here: https://data.ct.gov/Health-and-Human-Services/COVID-19-case-rate-per-100-000-population-and-perc/hree-nys2

    As you know, we are learning more about COVID-19 all the time, including the best ways to measure COVID-19 activity in our communities. CT DPH has decided to shift to 14-day rates because these are more stable, particularly at the town level, as compared to 7-day rates. In addition, since the school indicators were initially published by DPH last summer, CDC has recommended 14-day rates and other states (e.g., Massachusetts) have started to implement 14-day metrics for monitoring COVID transmission as well.

    With respect to geography, we also have learned that many people are looking at the town-level data to inform decision making, despite emphasis on the county-level metrics in the published addenda. This is understandable as there has been variation within counties in COVID-19 activity (for example, rates that are higher in one town than in most other towns in the county).

    This dataset includes a weekly count and weekly rate per 100,000 population for COVID-19 cases, a weekly count of COVID-19 PCR diagnostic tests, and a weekly percent positivity rate for tests among people living in community settings. Dates are based on date of specimen collection (cases and positivity).

    A person is considered a new case only upon their first COVID-19 testing result because a case is defined as an instance or bout of illness. If they are tested again subsequently and are still positive, it still counts toward the test positivity metric but they are not considered another case.

    These case and test counts do not include cases or tests among people residing in congregate settings, such as nursing homes, assisted living facilities, or correctional facilities.

    These data are updated weekly; the previous week period for each dataset is the previous Sunday-Saturday, known as an MMWR week (https://wwwn.cdc.gov/nndss/document/MMWR_week_overview.pdf). The date listed is the date the dataset was last updated and corresponds to a reporting period of the previous MMWR week. For instance, the data for 8/20/2020 corresponds to a reporting period of 8/9/2020-8/15/2020.

    Notes: 9/25/2020: Data for Mansfield and Middletown for the week of Sept 13-19 were unavailable at the time of reporting due to delays in lab reporting.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Work With Data (2024). Dataset of books series that contain The first people : from the earliest primates to homo sapiens : where and how our ancestors lived [Dataset]. https://www.workwithdata.com/datasets/book-series?f=1&fcol0=j0-book&fop0=%3D&fval0=The+first+people+:+from+the+earliest+primates+to+homo+sapiens+:+where+and+how+our+ancestors+lived&j=1&j0=books

Dataset of books series that contain The first people : from the earliest primates to homo sapiens : where and how our ancestors lived

Explore at:
Dataset updated
Nov 25, 2024
Dataset authored and provided by
Work With Data
License

Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically

Description

This dataset is about book series. It has 1 row and is filtered where the books is The first people : from the earliest primates to homo sapiens : where and how our ancestors lived. It features 10 columns including number of authors, number of books, earliest publication date, and latest publication date.

Search
Clear search
Close search
Google apps
Main menu