81 datasets found
  1. World Population Live Dataset 2022

    • kaggle.com
    zip
    Updated Sep 10, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Aman Chauhan (2022). World Population Live Dataset 2022 [Dataset]. https://www.kaggle.com/datasets/whenamancodes/world-population-live-dataset/code
    Explore at:
    zip(10169 bytes)Available download formats
    Dataset updated
    Sep 10, 2022
    Authors
    Aman Chauhan
    License

    https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/

    Area covered
    World
    Description

    The current US Census Bureau world population estimate in June 2019 shows that the current global population is 7,577,130,400 people on earth, which far exceeds the world population of 7.2 billion from 2015. Our own estimate based on UN data shows the world's population surpassing 7.7 billion.

    China is the most populous country in the world with a population exceeding 1.4 billion. It is one of just two countries with a population of more than 1 billion, with India being the second. As of 2018, India has a population of over 1.355 billion people, and its population growth is expected to continue through at least 2050. By the year 2030, the country of India is expected to become the most populous country in the world. This is because India’s population will grow, while China is projected to see a loss in population.

    The next 11 countries that are the most populous in the world each have populations exceeding 100 million. These include the United States, Indonesia, Brazil, Pakistan, Nigeria, Bangladesh, Russia, Mexico, Japan, Ethiopia, and the Philippines. Of these nations, all are expected to continue to grow except Russia and Japan, which will see their populations drop by 2030 before falling again significantly by 2050.

    Many other nations have populations of at least one million, while there are also countries that have just thousands. The smallest population in the world can be found in Vatican City, where only 801 people reside.

    In 2018, the world’s population growth rate was 1.12%. Every five years since the 1970s, the population growth rate has continued to fall. The world’s population is expected to continue to grow larger but at a much slower pace. By 2030, the population will exceed 8 billion. In 2040, this number will grow to more than 9 billion. In 2055, the number will rise to over 10 billion, and another billion people won’t be added until near the end of the century. The current annual population growth estimates from the United Nations are in the millions - estimating that over 80 million new lives are added each year.

    This population growth will be significantly impacted by nine specific countries which are situated to contribute to the population growth more quickly than other nations. These nations include the Democratic Republic of the Congo, Ethiopia, India, Indonesia, Nigeria, Pakistan, Uganda, the United Republic of Tanzania, and the United States of America. Particularly of interest, India is on track to overtake China's position as the most populous country by the year 2030. Additionally, multiple nations within Africa are expected to double their populations before fertility rates begin to slow entirely.

    Global life expectancy has also improved in recent years, increasing the overall population life expectancy at birth to just over 70 years of age. The projected global life expectancy is only expected to continue to improve - reaching nearly 77 years of age by the year 2050. Significant factors impacting the data on life expectancy include the projections of the ability to reduce AIDS/HIV impact, as well as reducing the rates of infectious and non-communicable diseases.

    Population aging has a massive impact on the ability of the population to maintain what is called a support ratio. One key finding from 2017 is that the majority of the world is going to face considerable growth in the 60 plus age bracket. This will put enormous strain on the younger age groups as the elderly population is becoming so vast without the number of births to maintain a healthy support ratio.

    Although the number given above seems very precise, it is important to remember that it is just an estimate. It simply isn't possible to be sure exactly how many people there are on the earth at any one time, and there are conflicting estimates of the global population in 2016.

    Some, including the UN, believe that a population of 7 billion was reached in October 2011. Others, including the US Census Bureau and World Bank, believe that the total population of the world reached 7 billion in 2012, around March or April.

    ColumnsDescription
    CCA33 Digit Country/Territories Code
    NameName of the Country/Territories
    2022Population of the Country/Territories in the year 2022.
    2020Population of the Country/Territories in the year 2020.
    2015Population of the Country/Territories in the year 2015.
    2010Population of the Country/Territories in the year 2010.
    2000Population of the Country/Territories in the year 2000.
    1990Population of the Country/Territories in the year 1990.
    1980Population of the Country/Territories in the year 1980.
    1970Population of the Country/Territories in the year 1970.
    Area (km²)Area size of the Country/Territories in square kilometer.
    Density (per km²)Population Density per square kilometer.
    Grow...
  2. 🌍 World Population by Country 2025 (Latest)

    • kaggle.com
    zip
    Updated Oct 15, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Asadullah Shehbaz (2025). 🌍 World Population by Country 2025 (Latest) [Dataset]. https://www.kaggle.com/datasets/asadullahcreative/world-population-by-country-2025
    Explore at:
    zip(9275 bytes)Available download formats
    Dataset updated
    Oct 15, 2025
    Authors
    Asadullah Shehbaz
    License

    https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/

    Area covered
    World
    Description

    Have you ever wondered how the population landscape of our planet looks in 2025? This dataset brings together the latest population statistics for 233 countries and territories, carefully collected from Worldometers.info — one of the most trusted global data sources.

    📊 It reveals how countries are growing, shrinking, and evolving demographically. From population density to fertility rate, from migration trends to urbanization, every number tells a story about humanity’s future.

    🌆 You can explore which nations are rapidly expanding, which are aging, and how urban populations are transforming global living patterns. This dataset includes key metrics like yearly population change, net migration, land area, fertility rate, and each country’s share of the world population.

    🧠 Ideal for data analysis, visualization, and machine learning, it can be used to study global trends, forecast population growth, or build engaging dashboards in Python, R, or Tableau. It’s also perfect for students and researchers exploring geography, demographics, or development studies.

    📈 Whether you’re analyzing Asia’s population boom, Europe’s aging curve, or Africa’s youthful surge — this dataset gives you a complete view of the world’s demographic balance in 2025. 🌎 With 233 rows and 12 insightful columns, it’s ready for your next EDA, visualization, or predictive modeling project.

    🚀 Dive in, explore the data, and uncover what the world looks like — one country at a time.

  3. Total population worldwide 1950-2100

    • statista.com
    • feherkonyveloiroda.hu
    • +2more
    Updated Nov 19, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). Total population worldwide 1950-2100 [Dataset]. https://www.statista.com/statistics/805044/total-population-worldwide/
    Explore at:
    Dataset updated
    Nov 19, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Area covered
    World
    Description

    The world population surpassed eight billion people in 2022, having doubled from its figure less than 50 years previously. Looking forward, it is projected that the world population will reach nine billion in 2038, and 10 billion in 2060, but it will peak around 10.3 billion in the 2080s before it then goes into decline. Regional variations The global population has seen rapid growth since the early 1800s, due to advances in areas such as food production, healthcare, water safety, education, and infrastructure, however, these changes did not occur at a uniform time or pace across the world. Broadly speaking, the first regions to undergo their demographic transitions were Europe, North America, and Oceania, followed by Latin America and Asia (although Asia's development saw the greatest variation due to its size), while Africa was the last continent to undergo this transformation. Because of these differences, many so-called "advanced" countries are now experiencing population decline, particularly in Europe and East Asia, while the fastest population growth rates are found in Sub-Saharan Africa. In fact, the roughly two billion difference in population between now and the 2080s' peak will be found in Sub-Saharan Africa, which will rise from 1.2 billion to 3.2 billion in this time (although populations in other continents will also fluctuate). Changing projections The United Nations releases their World Population Prospects report every 1-2 years, and this is widely considered the foremost demographic dataset in the world. However, recent years have seen a notable decline in projections when the global population will peak, and at what number. Previous reports in the 2010s had suggested a peak of over 11 billion people, and that population growth would continue into the 2100s, however a sooner and shorter peak is now projected. Reasons for this include a more rapid population decline in East Asia and Europe, particularly China, as well as a prolonged development arc in Sub-Saharan Africa.

  4. Dataset World Population by Worldometer website

    • kaggle.com
    zip
    Updated Sep 15, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Isma Dian Damara (2025). Dataset World Population by Worldometer website [Dataset]. https://www.kaggle.com/datasets/ismadiandamara/dataset-world-population-by-worldometer-website
    Explore at:
    zip(8367 bytes)Available download formats
    Dataset updated
    Sep 15, 2025
    Authors
    Isma Dian Damara
    License

    Apache License, v2.0https://www.apache.org/licenses/LICENSE-2.0
    License information was derived automatically

    Area covered
    World
    Description

    This dataset was obtained through web scraping from Worldometer, a website that provides real-time global statistics. The data was collected in September 2025.

    Column Description

    • Population: The total number of inhabitants of a country in a given year.
    • Yearly Change (%): The percentage growth in population per year compared to the previous year.
    • Net Change: The difference in the number of inhabitants added each year (in numbers, not percentages).
    • Density (P/Km²): Population density, calculated as the number of people per square kilometer (people per km²).
    • Land Area (Km²): The land area of a country in square kilometers (excluding water areas).
    • Migrants (net): Net migration figures (immigrants minus emigrants). Positive → more people entering, Negative → more people leaving.
    • Fertility Rate: The average number of children born to a woman throughout her lifetime.
    • Median Age: The middle age of the population (half are younger than this number, half are older).
    • Urban Population (%): The percentage of the population living in urban areas.
    • World Share (%): The percentage of a country's population compared to the total world population.
  5. a

    World Population Density Estimate 2016

    • hub.arcgis.com
    Updated Apr 5, 2018
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    ArcGIS StoryMaps (2018). World Population Density Estimate 2016 [Dataset]. https://hub.arcgis.com/datasets/541be35d25ae4847b7a5e129a7eb246f
    Explore at:
    Dataset updated
    Apr 5, 2018
    Dataset authored and provided by
    ArcGIS StoryMaps
    Area covered
    Description

    This service is available to all ArcGIS Online users with organizational accounts. For more information on this service, including the terms of use, visit us at http://goto.arcgisonline.com/landscape7/World_Population_Density_Estimate_2016.This layer is a global estimate of human population density for 2016. The advantage population density affords over raw counts is the ability to compare levels of persons per square kilometer anywhere in the world. Esri calculated density by converting the the World Population Estimate 2016 layer to polygons, then added an attribute for geodesic area, which allowed density to be derived, and that was converted back to raster. A population density raster is better to use for mapping and visualization than a raster of raw population counts because raster cells are square and do not account for area. For instance, compare a cell with 185 people in northern Quito, Ecuador, on the equator to a cell with 185 people in Edmonton, Canada at 53.5 degrees north latitude. This is difficult because the area of the cell in Edmonton is only 35.5% of the area of a cell in Quito. The cell in Edmonton represents a density of 9,810 persons per square kilometer, while the cell in Quito only represents a density of 3,485 persons per square kilometer. Dataset SummaryEach cell in this layer has an integer value with the estimated number of people per square kilometer likely to live in the geographic region represented by that cell. Esri additionally produced several additional layers: World Population Estimate 2016: this layer contains estimates of the count of people living within the the area represented by the cell. World Population Estimate Confidence 2016: the confidence level (1-5) per cell for the probability of people being located and estimated correctly. World Settlement Score 2016: the dasymetric likelihood surface used to create this layer by apportioning population from census polygons to the settlement score raster.To use this layer in analysis, there are several properties or geoprocessing environment settings that should be used:Coordinate system: WGS_1984. This service and its underlying data are WGS_1984. We do this because projecting population count data actually will change the populations due to resampling and either collapsing or splitting cells to fit into another coordinate system. Cell Size: 0.0013474728 degrees (approximately 150-meters) at the equator. No Data: -1Bit Depth: 32-bit signedThis layer has query, identify, pixel, and export image functions enabled, and is restricted to a maximum analysis size of 30,000 x 30,000 pixels - an area about the size of Africa.What can you do with this layer?This layer is primarily intended for cartography and visualization, but may also be useful for analysis, particularly for estimating where people living above specified densities. There are two processing templates defined for this layer: the default, "World Population Estimated 2016 Density Classes" uses a classification, described above, to show locations of levels of rural and urban populations, and should be used for cartography and visualization; and "None," which provides access to the unclassified density values, and should be used for analysis. The breaks for the classes are at the following levels of persons per square kilometer:100 - Rural (3.2% [0.7%] of all people live at this density or lower) 400 - Settled (13.3% [4.1%] of all people live at this density or lower)1,908 - Urban (59.4% [81.1%] of all people live at this density or higher)16,978 - Heavy Urban (13.0% [24.2%] of all people live at this density or higher)26,331 - Extreme Urban (7.8% [15.4%] of all people live at this density or higher) Values over 50,000 are likely to be erroneous due to spatial inaccuracies in source boundary dataNote the above class breaks were derived from Esri's 2015 estimate, which have been maintained for the sake of comparison. The 2015 percentages are in gray brackets []. The differences are mostly due to improvements in the model and source data. While improvements in the source data will continue, it is hoped the 2017 estimate will produce percentages that shift less.For analysis, Esri recommends using the Zonal Statistics tool or the Zonal Statistics to Table tool where you provide input zones as either polygons, or raster data, and the tool will summarize the average, highest, or lowest density within those zones.

  6. a

    Catholic Carbon Footprint Story Map Map

    • hub.arcgis.com
    • catholic-geo-hub-cgisc.hub.arcgis.com
    Updated Oct 7, 2019
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    burhansm2 (2019). Catholic Carbon Footprint Story Map Map [Dataset]. https://hub.arcgis.com/maps/8c3112552bdd4bd3962ab8b94bcf6ee5
    Explore at:
    Dataset updated
    Oct 7, 2019
    Dataset authored and provided by
    burhansm2
    License

    Attribution-NoDerivs 4.0 (CC BY-ND 4.0)https://creativecommons.org/licenses/by-nd/4.0/
    License information was derived automatically

    Area covered
    Description

    Catholic Carbon Footprint Story Map Map:DataBurhans, Molly A., Cheney, David M., Gerlt, R.. . “PerCapita_CO2_Footprint_InDioceses_FULL”. Scale not given. Version 1.0. MO and CT, USA: GoodLands Inc., Environmental Systems Research Institute, Inc., 2019.Map Development: Molly BurhansMethodologyThis is the first global Carbon footprint of the Catholic population. We will continue to improve and develop these data with our research partners over the coming years. While it is helpful, it should also be viewed and used as a "beta" prototype that we and our research partners will build from and improve. The years of carbon data are (2010) and (2015 - SHOWN). The year of Catholic data is 2018. The year of population data is 2016. Care should be taken during future developments to harmonize the years used for catholic, population, and CO2 data.1. Zonal Statistics: Esri Population Data and Dioceses --> Population per dioceses, non Vatican based numbers2. Zonal Statistics: FFDAS and Dioceses and Population dataset --> Mean CO2 per Diocese3. Field Calculation: Population per Diocese and Mean CO2 per diocese --> CO2 per Capita4. Field Calculation: CO2 per Capita * Catholic Population --> Catholic Carbon FootprintAssumption: PerCapita CO2Deriving per-capita CO2 from mean CO2 in a geography assumes that people's footprint accounts for their personal lifestyle and involvement in local business and industries that are contribute CO2. Catholic CO2Assumes that Catholics and non-Catholic have similar CO2 footprints from their lifestyles.Derived from:A multiyear, global gridded fossil fuel CO2 emission data product: Evaluation and analysis of resultshttp://ffdas.rc.nau.edu/About.htmlRayner et al., JGR, 2010 - The is the first FFDAS paper describing the version 1.0 methods and results published in the Journal of Geophysical Research.Asefi et al., 2014 - This is the paper describing the methods and results of the FFDAS version 2.0 published in the Journal of Geophysical Research.Readme version 2.2 - A simple readme file to assist in using the 10 km x 10 km, hourly gridded Vulcan version 2.2 results.Liu et al., 2017 - A paper exploring the carbon cycle response to the 2015-2016 El Nino through the use of carbon cycle data assimilation with FFDAS as the boundary condition for FFCO2."S. Asefi‐Najafabady P. J. Rayner K. R. Gurney A. McRobert Y. Song K. Coltin J. Huang C. Elvidge K. BaughFirst published: 10 September 2014 https://doi.org/10.1002/2013JD021296 Cited by: 30Link to FFDAS data retrieval and visualization: http://hpcg.purdue.edu/FFDAS/index.phpAbstractHigh‐resolution, global quantification of fossil fuel CO2 emissions is emerging as a critical need in carbon cycle science and climate policy. We build upon a previously developed fossil fuel data assimilation system (FFDAS) for estimating global high‐resolution fossil fuel CO2 emissions. We have improved the underlying observationally based data sources, expanded the approach through treatment of separate emitting sectors including a new pointwise database of global power plants, and extended the results to cover a 1997 to 2010 time series at a spatial resolution of 0.1°. Long‐term trend analysis of the resulting global emissions shows subnational spatial structure in large active economies such as the United States, China, and India. These three countries, in particular, show different long‐term trends and exploration of the trends in nighttime lights, and population reveal a decoupling of population and emissions at the subnational level. Analysis of shorter‐term variations reveals the impact of the 2008–2009 global financial crisis with widespread negative emission anomalies across the U.S. and Europe. We have used a center of mass (CM) calculation as a compact metric to express the time evolution of spatial patterns in fossil fuel CO2 emissions. The global emission CM has moved toward the east and somewhat south between 1997 and 2010, driven by the increase in emissions in China and South Asia over this time period. Analysis at the level of individual countries reveals per capita CO2 emission migration in both Russia and India. The per capita emission CM holds potential as a way to succinctly analyze subnational shifts in carbon intensity over time. Uncertainties are generally lower than the previous version of FFDAS due mainly to an improved nightlight data set."Global Diocesan Boundaries:Burhans, M., Bell, J., Burhans, D., Carmichael, R., Cheney, D., Deaton, M., Emge, T. Gerlt, B., Grayson, J., Herries, J., Keegan, H., Skinner, A., Smith, M., Sousa, C., Trubetskoy, S. “Diocesean Boundaries of the Catholic Church” [Feature Layer]. Scale not given. Version 1.2. Redlands, CA, USA: GoodLands Inc., Environmental Systems Research Institute, Inc., 2016.Using: ArcGIS. 10.4. Version 10.0. Redlands, CA: Environmental Systems Research Institute, Inc., 2016.Boundary ProvenanceStatistics and Leadership DataCheney, D.M. “Catholic Hierarchy of the World” [Database]. Date Updated: August 2019. Catholic Hierarchy. Using: Paradox. Retrieved from Original Source.Catholic HierarchyAnnuario Pontificio per l’Anno .. Città del Vaticano :Tipografia Poliglotta Vaticana, Multiple Years.The data for these maps was extracted from the gold standard of Church data, the Annuario Pontificio, published yearly by the Vatican. The collection and data development of the Vatican Statistics Office are unknown. GoodLands is not responsible for errors within this data. We encourage people to document and report errant information to us at data@good-lands.org or directly to the Vatican.Additional information about regular changes in bishops and sees comes from a variety of public diocesan and news announcements.GoodLands’ polygon data layers, version 2.0 for global ecclesiastical boundaries of the Roman Catholic Church:Although care has been taken to ensure the accuracy, completeness and reliability of the information provided, due to this being the first developed dataset of global ecclesiastical boundaries curated from many sources it may have a higher margin of error than established geopolitical administrative boundary maps. Boundaries need to be verified with appropriate Ecclesiastical Leadership. The current information is subject to change without notice. No parties involved with the creation of this data are liable for indirect, special or incidental damage resulting from, arising out of or in connection with the use of the information. We referenced 1960 sources to build our global datasets of ecclesiastical jurisdictions. Often, they were isolated images of dioceses, historical documents and information about parishes that were cross checked. These sources can be viewed here:https://docs.google.com/spreadsheets/d/11ANlH1S_aYJOyz4TtG0HHgz0OLxnOvXLHMt4FVOS85Q/edit#gid=0To learn more or contact us please visit: https://good-lands.org/Esri Gridded Population Data 2016DescriptionThis layer is a global estimate of human population for 2016. Esri created this estimate by modeling a footprint of where people live as a dasymetric settlement likelihood surface, and then assigned 2016 population estimates stored on polygons of the finest level of geography available onto the settlement surface. Where people live means where their homes are, as in where people sleep most of the time, and this is opposed to where they work. Another way to think of this estimate is a night-time estimate, as opposed to a day-time estimate.Knowledge of population distribution helps us understand how humans affect the natural world and how natural events such as storms and earthquakes, and other phenomena affect humans. This layer represents the footprint of where people live, and how many people live there.Dataset SummaryEach cell in this layer has an integer value with the estimated number of people likely to live in the geographic region represented by that cell. Esri additionally produced several additional layers World Population Estimate Confidence 2016: the confidence level (1-5) per cell for the probability of people being located and estimated correctly. World Population Density Estimate 2016: this layer is represented as population density in units of persons per square kilometer.World Settlement Score 2016: the dasymetric likelihood surface used to create this layer by apportioning population from census polygons to the settlement score raster.To use this layer in analysis, there are several properties or geoprocessing environment settings that should be used:Coordinate system: WGS_1984. This service and its underlying data are WGS_1984. We do this because projecting population count data actually will change the populations due to resampling and either collapsing or splitting cells to fit into another coordinate system. Cell Size: 0.0013474728 degrees (approximately 150-meters) at the equator. No Data: -1Bit Depth: 32-bit signedThis layer has query, identify, pixel, and export image functions enabled, and is restricted to a maximum analysis size of 30,000 x 30,000 pixels - an area about the size of Africa.Frye, C. et al., (2018). Using Classified and Unclassified Land Cover Data to Estimate the Footprint of Human Settlement. Data Science Journal. 17, p.20. DOI: http://doi.org/10.5334/dsj-2018-020.What can you do with this layer?This layer is unsuitable for mapping or cartographic use, and thus it does not include a convenient legend. Instead, this layer is useful for analysis, particularly for estimating counts of people living within watersheds, coastal areas, and other areas that do not have standard boundaries. Esri recommends using the Zonal Statistics tool or the Zonal Statistics to Table tool where you provide input zones as either polygons, or raster data, and the tool will summarize the count of population within those zones. https://www.esri.com/arcgis-blog/products/arcgis-living-atlas/data-management/2016-world-population-estimate-services-are-now-available/

  7. w

    Dataset of book subjects that contain Amarillo Slim in a world full of fat...

    • workwithdata.com
    Updated Nov 7, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Work With Data (2024). Dataset of book subjects that contain Amarillo Slim in a world full of fat people : the memoirs of the greatest gambler who ever lived [Dataset]. https://www.workwithdata.com/datasets/book-subjects?f=1&fcol0=j0-book&fop0=%3D&fval0=Amarillo+Slim+in+a+world+full+of+fat+people+:+the+memoirs+of+the+greatest+gambler+who+ever+lived&j=1&j0=books
    Explore at:
    Dataset updated
    Nov 7, 2024
    Dataset authored and provided by
    Work With Data
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    This dataset is about book subjects. It has 2 rows and is filtered where the books is Amarillo Slim in a world full of fat people : the memoirs of the greatest gambler who ever lived. It features 10 columns including number of authors, number of books, earliest publication date, and latest publication date.

  8. Famines kill

    • kaggle.com
    zip
    Updated May 24, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    willian oliveira (2025). Famines kill [Dataset]. https://www.kaggle.com/datasets/willianoliveiragibin/famines-kill
    Explore at:
    zip(394736 bytes)Available download formats
    Dataset updated
    May 24, 2025
    Authors
    willian oliveira
    License

    https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/

    Description

    Famines are still a major global problem. From 2020 to 2023 alone, they caused over a million deaths.

    Yet the long-term trend shows significant progress. In the late 1800s and the first half of the 1900s, it was common for famines to kill over 10 million people per decade. This was true as recently as the 1960s, when China’s Great Leap Forward became the deadliest famine in history.

    But as you can see in the chart, that number has dropped sharply, to about one to two million per decade.

    This improvement is even more striking given that the world’s population has grown substantially. Despite many more people living on Earth, far fewer die from famines than before.

  9. c

    Caribbean Population Estimate 2016

    • caribbeangeoportal.com
    • data.amerigeoss.org
    Updated Mar 19, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Caribbean GeoPortal (2020). Caribbean Population Estimate 2016 [Dataset]. https://www.caribbeangeoportal.com/maps/32a7b62c06c845ddbc45af8fbd988d0d
    Explore at:
    Dataset updated
    Mar 19, 2020
    Dataset authored and provided by
    Caribbean GeoPortal
    Area covered
    Description

    This map features a global estimate of human population for 2016 with a focus on the Caribbean region . Esri created this estimate by modeling a footprint of where people live as a dasymetric settlement likelihood surface, and then assigned 2016 population estimates stored on polygons of the finest level of geography available onto the settlement surface. Where people live means where their homes are, as in where people sleep most of the time, and this is opposed to where they work. Another way to think of this estimate is a night-time estimate, as opposed to a day-time estimate.Knowledge of population distribution helps us understand how humans affect the natural world and how natural events such as storms and earthquakes, and other phenomena affect humans. This layer represents the footprint of where people live, and how many people live there.Dataset SummaryEach cell in this layer has an integer value with the estimated number of people likely to live in the geographic region represented by that cell. Esri additionally produced several additional layers World Population Estimate Confidence 2016: the confidence level (1-5) per cell for the probability of people being located and estimated correctly. World Population Density Estimate 2016: this layer is represented as population density in units of persons per square kilometer.World Settlement Score 2016: the dasymetric likelihood surface used to create this layer by apportioning population from census polygons to the settlement score raster.To use this layer in analysis, there are several properties or geoprocessing environment settings that should be used:Coordinate system: WGS_1984. This service and its underlying data are WGS_1984. We do this because projecting population count data actually will change the populations due to resampling and either collapsing or splitting cells to fit into another coordinate system. Cell Size: 0.0013474728 degrees (approximately 150-meters) at the equator. No Data: -1Bit Depth: 32-bit signedThis layer has query, identify, pixel, and export image functions enabled, and is restricted to a maximum analysis size of 30,000 x 30,000 pixels - an area about the size of Africa.Frye, C. et al., (2018). Using Classified and Unclassified Land Cover Data to Estimate the Footprint of Human Settlement. Data Science Journal. 17, p.20. DOI: https://doi.org/10.5334/dsj-2018-020.What can you do with this layer?This layer is unsuitable for mapping or cartographic use, and thus it does not include a convenient legend. Instead, this layer is useful for analysis, particularly for estimating counts of people living within watersheds, coastal areas, and other areas that do not have standard boundaries. Esri recommends using the Zonal Statistics tool or the Zonal Statistics to Table tool where you provide input zones as either polygons, or raster data, and the tool will summarize the count of population within those zones.

  10. Living Standards Survey IV 1998-1999 - World Bank SHIP Harmonized Dataset -...

    • microdata.worldbank.org
    • catalog.ihsn.org
    • +1more
    Updated Sep 26, 2013
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Ghana Statistical Service (GSS) (2013). Living Standards Survey IV 1998-1999 - World Bank SHIP Harmonized Dataset - Ghana [Dataset]. https://microdata.worldbank.org/index.php/catalog/1065
    Explore at:
    Dataset updated
    Sep 26, 2013
    Dataset provided by
    Ghana Statistical Services
    Authors
    Ghana Statistical Service (GSS)
    Time period covered
    1998 - 1999
    Area covered
    Ghana
    Description

    Abstract

    Survey based Harmonized Indicators (SHIP) files are harmonized data files from household surveys that are conducted by countries in Africa. To ensure the quality and transparency of the data, it is critical to document the procedures of compiling consumption aggregation and other indicators so that the results can be duplicated with ease. This process enables consistency and continuity that make temporal and cross-country comparisons consistent and more reliable.

    Four harmonized data files are prepared for each survey to generate a set of harmonized variables that have the same variable names. Invariably, in each survey, questions are asked in a slightly different way, which poses challenges on consistent definition of harmonized variables. The harmonized household survey data present the best available variables with harmonized definitions, but not identical variables. The four harmonized data files are

    a) Individual level file (Labor force indicators in a separate file): This file has information on basic characteristics of individuals such as age and sex, literacy, education, health, anthropometry and child survival. b) Labor force file: This file has information on labor force including employment/unemployment, earnings, sectors of employment, etc. c) Household level file: This file has information on household expenditure, household head characteristics (age and sex, level of education, employment), housing amenities, assets, and access to infrastructure and services. d) Household Expenditure file: This file has consumption/expenditure aggregates by consumption groups according to Purpose (COICOP) of Household Consumption of the UN.

    Geographic coverage

    National

    Analysis unit

    • Individual level for datasets with suffix _I and _L
    • Household level for datasets with suffix _H and _E

    Universe

    The survey covered all de jure household members (usual residents).

    Kind of data

    Sample survey data [ssd]

    Sampling procedure

    SAMPLE DESIGN FOR ROUND 4 OF THE GLSS A nationally representative sample of households was selected in order to achieve the survey objectives.

    Sample Frame For the purposes of this survey the list of the 1984 population census Enumeration Areas (EAs) with population and household information was used as the sampling frame. The primary sampling units were the 1984 EAs with the secondary units being the households in the EAs. This frame, though quite old, was considered inadequate, it being the best available at the time. Indeed, this frame was used for the earlier rounds of the GLSS.

    Stratification In order to increase precision and reliability of the estimates, the technique of stratification was employed in the sample design, using geographical factors, ecological zones and location of residence as the main controls. Specifically, the EAs were first stratified according to the three ecological zones namely; Coastal, Forest and Savannah, and then within each zone further stratification was done based on the size of the locality into rural or urban.

    SAMPLE SELECTION EAs A two-stage sample was selected for the survey. At the first stage, 300 EAs were selected using systematic sampling with probability proportional to size method (PPS) where the size measure is the 1984 number of households in the EA. This was achieved by ordering the list of EAs with their sizes according to the strata. The size column was then cumulated, and with a random start and a fixed interval the sample EAs were selected.

    It was observed that some of the selected EAs had grown in size over time and therefore needed segmentation. In this connection, such EAs were divided into approximately equal parts, each segment constituting about 200 households. Only one segment was then randomly selected for listing of the households.

    Households At the second stage, a fixed number of 20 households was systematically selected from each selected EA to give a total of 6,000 households. Additional 5 households were selected as reserve to replace missing households. Equal number of households was selected from each EA in order to reflect the labour force focus of the survey.

    NOTE: The above sample selection procedure deviated slightly from that used for the earlier rounds of the GLSS, as such the sample is not self-weighting. This is because, 1. given the long period between 1984 and the GLSS 4 fieldwork the number of households in the various EAs are likely to have grown at different rates. 2. the listing exercise was not properly done as some of the selected EAs were not listed completely. Moreover, it was noted that the segmentation done for larger EAs during the listing was a bit arbitrary.

    Mode of data collection

    Face-to-face [f2f]

  11. P

    Percentage of Population within 1 5 & 10km Coastal Buffers

    • pacificdata.org
    csv, gpkg +1
    Updated Aug 12, 2019
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    SPC Statistics for Development Division (SDD) (2019). Percentage of Population within 1 5 & 10km Coastal Buffers [Dataset]. https://pacificdata.org/data/dataset/percentage-of-population-within-1-5-10km-coastal-buffers
    Explore at:
    gpkg(278528), zipped shapefile(146506), csv(846)Available download formats
    Dataset updated
    Aug 12, 2019
    Dataset provided by
    SPC Statistics for Development Division (SDD)
    License

    Attribution-NonCommercial-ShareAlike 4.0 (CC BY-NC-SA 4.0)https://creativecommons.org/licenses/by-nc-sa/4.0/
    License information was derived automatically

    Description

    A collaborative project between SPC, the World Fish Centre and the University of Wollongong has produced the first detailed population estimates of people living close to the coast in the 22 Pacific Island Countries and Territories (PICTs). These estimates are stratified into 1, 5, and 10km zones. More information about this dataset: https://sdd.spc.int/mapping-coastal

  12. T

    World Coronavirus COVID-19 Deaths

    • tradingeconomics.com
    csv, excel, json, xml
    Updated Mar 9, 2020
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    TRADING ECONOMICS (2020). World Coronavirus COVID-19 Deaths [Dataset]. https://tradingeconomics.com/world/coronavirus-deaths
    Explore at:
    excel, csv, xml, jsonAvailable download formats
    Dataset updated
    Mar 9, 2020
    Dataset authored and provided by
    TRADING ECONOMICS
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Jan 4, 2020 - May 17, 2023
    Area covered
    World
    Description

    The World Health Organization reported 6932591 Coronavirus Deaths since the epidemic began. In addition, countries reported 766440796 Coronavirus Cases. This dataset provides - World Coronavirus Deaths- actual values, historical data, forecast, chart, statistics, economic calendar and news.

  13. World Population Analysis

    • kaggle.com
    zip
    Updated Oct 5, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Manas Parashar (2023). World Population Analysis [Dataset]. https://www.kaggle.com/datasets/parasharmanas/world-population-analysis
    Explore at:
    zip(8635 bytes)Available download formats
    Dataset updated
    Oct 5, 2023
    Authors
    Manas Parashar
    License

    Open Database License (ODbL) v1.0https://www.opendatacommons.org/licenses/odbl/1.0/
    License information was derived automatically

    Area covered
    World
    Description

    The analysis of the world's population is a complex and multifaceted endeavor, encompassing a wide range of demographic, economic, social, and environmental factors. Understanding these trends and dynamics is crucial for policymakers, researchers, and organizations to make informed decisions and plan for the future. This article delves into a comprehensive analysis of the world's population, examining its growth patterns, demographic shifts, challenges, and opportunities.

    Population Growth. The world's population has experienced remarkable growth over the past century. In 1927, the global population reached its first billion, and since then, it has surged exponentially. As of the latest available data in 2021, the world's population stands at approximately 7.8 billion. Projections indicate that this figure will continue to rise, with estimates suggesting a population of over 9 billion by 2050.

    Factors Driving Population Growth. 1. Fertility Rates: High birth rates, particularly in developing countries, have been a significant driver of population growth. Access to healthcare, education, and family planning services plays a crucial role in reducing fertility rates. 2. Increased Life Expectancy: Improvements in healthcare, nutrition, and sanitation have led to longer life expectancy worldwide. This has contributed to population growth, as people are living longer and healthier lives. 3. Demographic Shifts: Demographic shifts are shaping our world in significant ways. In developed countries, an aging population with a higher median age is reshaping healthcare systems, retirement policies, and workforce dynamics. Simultaneously, urbanization is accelerating, with over half of the global population now living in cities, presenting challenges and opportunities for infrastructure, resource management, and social development.

    Challenges. 1. Overpopulation: Rapid population growth in certain regions can strain resources, leading to issues such as food scarcity, water shortages, and overcrowding. 2. Aging Workforce: As the global population ages, there may be a shortage of skilled workers, affecting economic productivity and social support systems. 3. Environmental Impact: Population growth is closely linked to increased resource consumption and environmental degradation. Sustainable development and conservation efforts are essential to mitigate these effects.

    Opportunities. 1. Demographic Dividend: Countries with youthful populations can benefit from a demographic dividend, where a large working-age population can drive economic growth and innovation. 2. Cultural Diversity: A diverse global population can lead to cultural exchange, creativity, and a richer societal tapestry. 3. Innovation and Technology: Addressing the challenges posed by population growth can drive innovation in areas such as healthcare, agriculture, and energy production.

    Analysing the world's population is a complex task that involves understanding its growth patterns, demographic shifts, challenges, and opportunities. As the global population continues to rise, it is essential to address the associated challenges while harnessing the potential benefits of a diverse and dynamic world population. Policymakers, researchers, and organizations must work collaboratively to create sustainable solutions that ensure a prosperous future for all.

  14. f

    Data from: Whole-Genome Sequencing of the World’s Oldest People

    • datasetcatalog.nlm.nih.gov
    • figshare.com
    • +1more
    Updated Nov 12, 2014
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Roach, Jared C.; Smith, Justin D.; Coles, L. Stephen; Fortney, Kristen; Markov, Glenn J.; Gierman, Hinco J.; Li, Hong; Kim, Stuart K.; Coles, Natalie S.; Hood, Leroy; Glusman, Gustavo (2014). Whole-Genome Sequencing of the World’s Oldest People [Dataset]. https://datasetcatalog.nlm.nih.gov/dataset?q=0001221461
    Explore at:
    Dataset updated
    Nov 12, 2014
    Authors
    Roach, Jared C.; Smith, Justin D.; Coles, L. Stephen; Fortney, Kristen; Markov, Glenn J.; Gierman, Hinco J.; Li, Hong; Kim, Stuart K.; Coles, Natalie S.; Hood, Leroy; Glusman, Gustavo
    Area covered
    World
    Description

    Supercentenarians (110 years or older) are the world’s oldest people. Seventy four are alive worldwide, with twenty two in the United States. We performed whole-genome sequencing on 17 supercentenarians to explore the genetic basis underlying extreme human longevity. We found no significant evidence of enrichment for a single rare protein-altering variant or for a gene harboring different rare protein altering variants in supercentenarian compared to control genomes. We followed up on the gene most enriched for rare protein-altering variants in our cohort of supercentenarians, TSHZ3, by sequencing it in a second cohort of 99 long-lived individuals but did not find a significant enrichment. The genome of one supercentenarian had a pathogenic mutation in DSC2, known to predispose to arrhythmogenic right ventricular cardiomyopathy, which is recommended to be reported to this individual as an incidental finding according to a recent position statement by the American College of Medical Genetics and Genomics. Even with this pathogenic mutation, the proband lived to over 110 years. The entire list of rare protein-altering variants and DNA sequence of all 17 supercentenarian genomes is available as a resource to assist the discovery of the genetic basis of extreme longevity in future studies.

  15. w

    Living Standards Survey 1999 - Tajikistan

    • microdata.worldbank.org
    • catalog.ihsn.org
    • +1more
    Updated Jan 30, 2020
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    State Statistical Agency (Goskomstat) (2020). Living Standards Survey 1999 - Tajikistan [Dataset]. https://microdata.worldbank.org/index.php/catalog/279
    Explore at:
    Dataset updated
    Jan 30, 2020
    Dataset authored and provided by
    State Statistical Agency (Goskomstat)
    Time period covered
    1999
    Area covered
    Tajikistan
    Description

    Abstract

    The Tajik Living Standards Survey (TLSS) was conducted jointly by the State Statistical Agency and the Center for Strategic Studies under the Office of the President in collaboration with the sponsors, the United Nations Development Programme (UNDP) and the World Bank (WB). International technical assistance was provided by a team from the London School of Economics (LSE). The purpose of the survey is to provide quantitative data at the individual, household and community level that will facilitate purposeful policy design on issues of welfare and living standards of the population of the Republic of Tajikistan in 1999.

    Geographic coverage

    National coverage. The TLSS sample was designed to represent the population of the country as a whole as well as the strata. The sample was stratified by oblast and by urban and rural areas.

    The country is divided into 4 oblasts, or regions; Leninabad in the northwest of the country, Khatlon in the southwest, Rayons of Republican Subordination (RRS) in the middle and to the west of the country, and Gorno-Badakhshan Autonomous Oblast (GBAO) in the east. The capital, Dushanbe, in the RRS oblast, is a separately administrated area. Oblasts are divided into rayons (districts). Rayons are further subdivided into Mahallas (committees) in urban areas, and Jamoats (villages) in rural areas.

    Analysis unit

    • Households
    • Individuals
    • Communites

    Kind of data

    Sample survey data [ssd]

    Sampling procedure

    The TLSS sample was designed to represent the population of the country as a whole as well as the strata. The sample was stratified by oblast and by urban and rural areas.

    In common with standard LSMS practice a two-stage sample was used. In the first stage 125 primary sample units (PSU) were selected with the probability of selection within strata being proportional to size. At the second stage, 16 households were selected within each PSU, with each household in the area having the same probability of being chosen. [Note: In addition to the main sample, the TLSS also included a secondary sample of 15 extra PSU (containing 400 households) in Dangara and Varzob. Data in the oversampled areas were collected for the sole purpose of providing baseline data for the World Bank Health Project in these areas. The sampling for these additional units was carried out separately after the main sampling procedure in order to allow for their exclusion in nationally representative analysis.] The twostage procedure has the advantage that it provides a self-weighted sample. It also simplified the fieldwork operation as a one-field team could be assigned to cover a number of PSU.

    A critical problem in the sample selection with Tajikistan was the absence of an up to date national sample frame from which to select the PSU. As a result lists of the towns, rayons and jamoats (villages) within rayons were prepared manually. Current data on population size according to village and town registers was then supplied to the regional offices of Goskomstat and conveyed to the center. This allowed the construction of a sample frame of enumeration units by sample size from which to draw the PSU.

    This procedure worked well in establishing a sample frame for the rural population. However administrative units in some of the larger towns and in the cities of Dushanbe, Khojand and Kurgan-Tubbe were too large and had to be sub-divided into smaller enumeration units. Fortuitously the survey team was able to make use of information available as a result of the mapping exercise carried out earlier in the year as preparation for the 2000 Census in order to subdivide these larger areas into enumeration units of roughly similar size.

    The survey team was also able to use the household listings prepared for the Census for the second stage of the sampling in urban areas. In rural areas the selection of households was made using the village registers – a complete listing of all households in the village which is (purported to be) regularly updated by the local administration. When selecting the target households a few extra households (4 in addition to the 16) were also randomly selected and were to be used if replacements were needed. In actuality non-response and refusals from households were very rare and use of replacement households was low. There was never the case that the refusal rate was so high that there were not enough households on the reserve list and this enabled a full sample of 2000 randomly selected households to be interviewed.

    Mode of data collection

    Face-to-face [f2f]

    Research instrument

    The questionnaire was based on the standard LSMS for the CIS countries, and adapted and abridged for Tajikistan. In particular the health section was extended to allow for more in depth information to be collected and a section on food security was also added. The employment section was reduced and excludes information on searching for employment.

    The questionnaires were translated into Tajik, Russian and Uzbek.

    The TLSS consists of three parts: a household questionnaire, a community level questionnaire and a price questionnaire.

    Household questionnaire: the Household questionnaire is comprised of 10 sections covering both household and individual aspects.

    Community/Population point Questionnaire: the Community level or Population Point Questionnaire consists of 8 sections. The community level questionnaire provides information on differences in demographic and economic infrastructure. Open-ended questions in the questionnaire were not coded and hence information on the responses to these qualitative questions is not provided in the data sets.

    Summary of Section contents

    The brief descriptions below provide a summary of the information found in each section. The descriptions are by no means exhaustive of the information covered by the survey and users of the survey need to refer to each particular section of the questionnaire for a complete picture of the information gathered.

    Household information/roster This includes individual level information of all individuals in the household. It establishes who belongs to the household at the time of the interview. Information on gender, age, relation to household head and marital status are included. In the question relating to family status, question 7, “Nekared” means married where nekar is the Islamic (arabic) term for marriage contract. Under Islamic law a man may marry more than once (up-to four wives at any one time). Although during the Soviet period it was illegal to be married to more than one woman this practice did go on. There may be households where the household head is not present but the wife is married or nekared, or in the same household a respondent may answer married and another nekared to the household head.

    Dwelling This section includes information covering the type of dwelling, availability of utilities and water supply as well as questions pertaining to dwelling expenses, rents, and the payment of utilities and other household expenses. Information is at the household level.

    Education This section includes all individuals aged 7 years and older and looks at educational attainment of individuals and reasons for not continuing education for those who are not currently studying. Questions related to educational expenditures at the household level are also covered. Schooling in Tajikistan is compulsory for grades (classes) 1-9. Primary level education refers to grades 1 - 4 for children aged 7 to 11 years old. General secondary level education refers to grades 5-9, corresponding to the age group 12-16 year olds. Post-compulsory schooling can be divided into three types of school: - Upper secondary education covers the grades 10 and 11. - Vocational and Technical schools can start after grade 9 and last around 4 years. These schools can also start after grade 11 and then last only two years. Technical institutions provide medical and technical (e.g. engineering) education as well as in the field of the arts while vocational schools provide training for employment in specialized occupation. - Tertiary or University education can be entered after completing all 11 grades. - Kindergarten schools offer pre-compulsory education for children aged 3 – 6 years old and information on this type of schooling is not covered in this section.

    Health This section examines individual health status and the nature of any illness over the recent months. Additional questions relate to more detailed information on the use of health care services and hospitals, including expenses incurred due to ill health. Section 4B includes a few terms, abbreviations and acronyms that need further clarification. A feldscher is an assistant to a physician. Mediniski dom or FAPs are clinics staffed by physical assistants and/or midwifes and a SUB is a local clinic. CRH is a local hospital while an oblast hospital is a regional hospital based in the oblast administrative centre, and the Repub. Hospital is a national hospital based in the capital, Dushanbe. The latter two are both public hospitals.

    Employment This section covers individuals aged 11 years and over. The first part of this section looks at the different activities in which individuals are involved in order to determine if a person is engaged in an income generating activity. Those who are engaged in such activities are required to answer questions in Part B. This part relates to the nature of the work and the organization the individual is attached to as well as questions relating to income, cash income and in-kind payments. There are also a few questions relating to additional income generating activities in addition to the main activity. Part C examines employment

  16. d

    Mass Killings in America, 2006 - present

    • data.world
    csv, zip
    Updated Dec 1, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    The Associated Press (2025). Mass Killings in America, 2006 - present [Dataset]. https://data.world/associatedpress/mass-killings-public
    Explore at:
    zip, csvAvailable download formats
    Dataset updated
    Dec 1, 2025
    Authors
    The Associated Press
    Time period covered
    Jan 1, 2006 - Nov 29, 2025
    Area covered
    Description

    THIS DATASET WAS LAST UPDATED AT 7:11 AM EASTERN ON DEC. 1

    OVERVIEW

    2019 had the most mass killings since at least the 1970s, according to the Associated Press/USA TODAY/Northeastern University Mass Killings Database.

    In all, there were 45 mass killings, defined as when four or more people are killed excluding the perpetrator. Of those, 33 were mass shootings . This summer was especially violent, with three high-profile public mass shootings occurring in the span of just four weeks, leaving 38 killed and 66 injured.

    A total of 229 people died in mass killings in 2019.

    The AP's analysis found that more than 50% of the incidents were family annihilations, which is similar to prior years. Although they are far less common, the 9 public mass shootings during the year were the most deadly type of mass murder, resulting in 73 people's deaths, not including the assailants.

    One-third of the offenders died at the scene of the killing or soon after, half from suicides.

    About this Dataset

    The Associated Press/USA TODAY/Northeastern University Mass Killings database tracks all U.S. homicides since 2006 involving four or more people killed (not including the offender) over a short period of time (24 hours) regardless of weapon, location, victim-offender relationship or motive. The database includes information on these and other characteristics concerning the incidents, offenders, and victims.

    The AP/USA TODAY/Northeastern database represents the most complete tracking of mass murders by the above definition currently available. Other efforts, such as the Gun Violence Archive or Everytown for Gun Safety may include events that do not meet our criteria, but a review of these sites and others indicates that this database contains every event that matches the definition, including some not tracked by other organizations.

    This data will be updated periodically and can be used as an ongoing resource to help cover these events.

    Using this Dataset

    To get basic counts of incidents of mass killings and mass shootings by year nationwide, use these queries:

    Mass killings by year

    Mass shootings by year

    To get these counts just for your state:

    Filter killings by state

    Definition of "mass murder"

    Mass murder is defined as the intentional killing of four or more victims by any means within a 24-hour period, excluding the deaths of unborn children and the offender(s). The standard of four or more dead was initially set by the FBI.

    This definition does not exclude cases based on method (e.g., shootings only), type or motivation (e.g., public only), victim-offender relationship (e.g., strangers only), or number of locations (e.g., one). The time frame of 24 hours was chosen to eliminate conflation with spree killers, who kill multiple victims in quick succession in different locations or incidents, and to satisfy the traditional requirement of occurring in a “single incident.”

    Offenders who commit mass murder during a spree (before or after committing additional homicides) are included in the database, and all victims within seven days of the mass murder are included in the victim count. Negligent homicides related to driving under the influence or accidental fires are excluded due to the lack of offender intent. Only incidents occurring within the 50 states and Washington D.C. are considered.

    Methodology

    Project researchers first identified potential incidents using the Federal Bureau of Investigation’s Supplementary Homicide Reports (SHR). Homicide incidents in the SHR were flagged as potential mass murder cases if four or more victims were reported on the same record, and the type of death was murder or non-negligent manslaughter.

    Cases were subsequently verified utilizing media accounts, court documents, academic journal articles, books, and local law enforcement records obtained through Freedom of Information Act (FOIA) requests. Each data point was corroborated by multiple sources, which were compiled into a single document to assess the quality of information.

    In case(s) of contradiction among sources, official law enforcement or court records were used, when available, followed by the most recent media or academic source.

    Case information was subsequently compared with every other known mass murder database to ensure reliability and validity. Incidents listed in the SHR that could not be independently verified were excluded from the database.

    Project researchers also conducted extensive searches for incidents not reported in the SHR during the time period, utilizing internet search engines, Lexis-Nexis, and Newspapers.com. Search terms include: [number] dead, [number] killed, [number] slain, [number] murdered, [number] homicide, mass murder, mass shooting, massacre, rampage, family killing, familicide, and arson murder. Offender, victim, and location names were also directly searched when available.

    This project started at USA TODAY in 2012.

    Contacts

    Contact AP Data Editor Justin Myers with questions, suggestions or comments about this dataset at jmyers@ap.org. The Northeastern University researcher working with AP and USA TODAY is Professor James Alan Fox, who can be reached at j.fox@northeastern.edu or 617-416-4400.

  17. w

    Vietnam - Young Lives: School Survey 2011-2012 - Dataset - waterdata

    • wbwaterdata.org
    Updated Mar 16, 2020
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2020). Vietnam - Young Lives: School Survey 2011-2012 - Dataset - waterdata [Dataset]. https://wbwaterdata.org/dataset/vietnam-young-lives-school-survey-2011-2012
    Explore at:
    Dataset updated
    Mar 16, 2020
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Vietnam
    Description

    The Young Lives survey is an innovative long-term project investigating the changing nature of childhood poverty in four developing countries. The purpose of the project is to improve understanding of the causes and consequences of childhood poverty and examine how policies affect children's well-being, in order to inform the development of future policy and to target child welfare interventions more effectively. The study is being conducted in Ethiopia, India (in Andhra Pradesh), Peru and Vietnam. These countries were selected because they reflect a range of cultural, geographical and social contexts and experience differing issues facing the developing world; high debt burden, emergence from conflict, and vulnerability to environmental conditions such as drought and flood. The Young Lives study aims to track the lives of 12,000 children over a 15-year period, surveyed once every 3-4 years. Round 1 of Young Lives surveyed two groups of children in each country, at 1 year old and 5 years old. Round 2 returned to the same children who were then aged 5 and 12 years old. Round 3 surveyed the same children again at aged 7-8 years and 14-15 years, and Round 4 surveyed them at 12 and 19 years old. Thus the younger children are being tracked from infancy to their mid-teens and the older children through into adulthood, when some will become parents themselves. The survey consists of three main elements: a child questionnaire, a household questionnaire and a community questionnaire. The household data gathered is similar to other cross-sectional datasets (such as the World Bank's Living Standards Measurement Study). It covers a range of topics such as household composition, livelihood and assets, household expenditure, child health and access to basic services, and education. This is supplemented with additional questions that cover caregiver perceptions, attitudes, and aspirations for their child and the family. Young Lives also collects detailed time-use data for all family members, information about the child's weight and height (and that of caregivers), and tests the children for school outcomes (language comprehension and mathematics). An important element of the survey asks the children about their daily activities, their experiences and attitudes to work and school, their likes and dislikes, how they feel they are treated by other people, and their hopes and aspirations for the future. The community questionnaire provides background information about the social, economic and environmental context of each community. It covers topics such as ethnicity, religion, economic activity and employment, infrastructure and services, political representation and community networks, crime and environmental changes. The Young Lives survey is carried out by teams of local researchers, supported by the Principal Investigator and Data Manager in each country. Further information about the survey, including publications, can be downloaded from the Young Lives website. School surveys were introduced into Young Lives in 2010 in order to capture detailed information about children's experiences of schooling, and to improve our understanding of: the relationships between learning outcomes, and children's home backgrounds, gender, work, schools, teachers and class and school peer-groups. school effectiveness, by analysing factors explaining the development of cognitive and non-cognitive skills in school, including value-added analysis of schooling and comparative analysis of school-systems. equity issues (including gender) in relation to learning outcomes and the evolution of inequalities within education The survey allows us to link longitudinal information on household and child characteristics from the household survey with data on the schools attended by the Young Lives children and children's achievements inside and outside the school. It provides policy-relevant information on the relationship between child development (and its determinants) and children's experience of school, including access, quality and progression. This combination of household, child and school-level data over time constitutes the comparative advantage of Young Lives. Findings are all available on our Education theme pages and our publications page. Further information is available from the Young Lives School Survey webpages.

  18. U

    United States US: Urban Population

    • ceicdata.com
    Updated Feb 15, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    CEICdata.com (2025). United States US: Urban Population [Dataset]. https://www.ceicdata.com/en/united-states/population-and-urbanization-statistics/us-urban-population
    Explore at:
    Dataset updated
    Feb 15, 2025
    Dataset provided by
    CEICdata.com
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Dec 1, 2005 - Dec 1, 2016
    Area covered
    United States
    Variables measured
    Population
    Description

    United States US: Urban Population data was reported at 267,278,643.000 Person in 2017. This records an increase from the previous number of 264,746,567.000 Person for 2016. United States US: Urban Population data is updated yearly, averaging 184,283,180.000 Person from Dec 1960 (Median) to 2017, with 58 observations. The data reached an all-time high of 267,278,643.000 Person in 2017 and a record low of 126,462,473.000 Person in 1960. United States US: Urban Population data remains active status in CEIC and is reported by World Bank. The data is categorized under Global Database’s United States – Table US.World Bank.WDI: Population and Urbanization Statistics. Urban population refers to people living in urban areas as defined by national statistical offices. It is calculated using World Bank population estimates and urban ratios from the United Nations World Urbanization Prospects. Aggregation of urban and rural population may not add up to total population because of different country coverages.; ; World Bank staff estimates based on the United Nations Population Division's World Urbanization Prospects: 2018 Revision.; Sum;

  19. u

    Census MAF/TIGER database

    • gstore.unm.edu
    csv, geojson, gml +5
    Updated Jun 6, 2011
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Earth Data Analysis Center (2011). Census MAF/TIGER database [Dataset]. https://gstore.unm.edu/apps/rgis/datasets/27830c8a-29d8-4cf5-9776-4f883c6a6975/metadata/FGDC-STD-001-1998.html
    Explore at:
    gml(5), kml(5), json(5), xls(5), geojson(5), zip(1), csv(5), shp(5)Available download formats
    Dataset updated
    Jun 6, 2011
    Dataset provided by
    Earth Data Analysis Center
    Time period covered
    Jan 2010
    Area covered
    Torrance County (35057), West Bounding Coordinate -105.722198 East Bounding Coordinate -103.637022 North Bounding Coordinate 35.871015 South Bounding Coordinate 35.041562
    Description

    The TIGER/Line Files are shapefiles and related database files (.dbf) that are an extract of selected geographic and cartographic information from the U.S. Census Bureau's Master Address File / Topologically Integrated Geographic Encoding and Referencing (MAF/TIGER) Database (MTDB). The MTDB represents a seamless national file with no overlaps or gaps between parts, however, each TIGER/Line File is designed to stand alone as an independent data set, or they can be combined to cover the entire nation. Census tracts are small, relatively permanent statistical subdivisions of a county or equivalent entity, and were defined by local participants as part of the 2010 Census Participant Statistical Areas Program. The Census Bureau delineated the census tracts in situations where no local participant existed or where all the potential participants declined to participate. The primary purpose of census tracts is to provide a stable set of geographic units for the presentation of census data and comparison back to previous decennial censuses. Census tracts generally have a population size between 1,200 and 8,000 people, with an optimum size of 4,000 people. When first delineated, census tracts were designed to be homogeneous with respect to population characteristics, economic status, and living conditions. The spatial size of census tracts varies widely depending on the density of settlement. Physical changes in street patterns caused by highway construction, new development, and so forth, may require boundary revisions. In addition, census tracts occasionally are split due to population growth, or combined as a result of substantial population decline. Census tract boundaries generally follow visible and identifiable features. They may follow legal boundaries such as minor civil division (MCD) or incorporated place boundaries in some States and situations to allow for census tract-to-governmental unit relationships where the governmental boundaries tend to remain unchanged between censuses. State and county boundaries always are census tract boundaries in the standard census geographic hierarchy. In a few rare instances, a census tract may consist of noncontiguous areas. These noncontiguous areas may occur where the census tracts are coextensive with all or parts of legal entities that are themselves noncontiguous. For the 2010 Census, the census tract code range of 9400 through 9499 was enforced for census tracts that include a majority American Indian population according to Census 2000 data and/or their area was primarily covered by federally recognized American Indian reservations and/or off-reservation trust lands; the code range 9800 through 9899 was enforced for those census tracts that contained little or no population and represented a relatively large special land use area such as a National Park, military installation, or a business/industrial park; and the code range 9900 through 9998 was enforced for those census tracts that contained only water area, no land area.

  20. u

    Census MAF/TIGER database

    • gstore.unm.edu
    csv, geojson, gml +5
    Updated Jun 6, 2011
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Earth Data Analysis Center (2011). Census MAF/TIGER database [Dataset]. https://gstore.unm.edu/apps/rgis/datasets/109d7914-c080-4fdd-9087-43cd85728d0f/metadata/FGDC-STD-001-1998.html
    Explore at:
    shp(5), gml(5), json(5), xls(5), zip(1), kml(5), csv(5), geojson(5)Available download formats
    Dataset updated
    Jun 6, 2011
    Dataset provided by
    Earth Data Analysis Center
    Time period covered
    Jan 2010
    Area covered
    Rio Arriba County (35039), West Bounding Coordinate -106.418855 East Bounding Coordinate -106.171656 North Bounding Coordinate 35.973443 South Bounding Coordinate 35.754274
    Description

    The TIGER/Line Files are shapefiles and related database files (.dbf) that are an extract of selected geographic and cartographic information from the U.S. Census Bureau's Master Address File / Topologically Integrated Geographic Encoding and Referencing (MAF/TIGER) Database (MTDB). The MTDB represents a seamless national file with no overlaps or gaps between parts, however, each TIGER/Line File is designed to stand alone as an independent data set, or they can be combined to cover the entire nation. Census tracts are small, relatively permanent statistical subdivisions of a county or equivalent entity, and were defined by local participants as part of the 2010 Census Participant Statistical Areas Program. The Census Bureau delineated the census tracts in situations where no local participant existed or where all the potential participants declined to participate. The primary purpose of census tracts is to provide a stable set of geographic units for the presentation of census data and comparison back to previous decennial censuses. Census tracts generally have a population size between 1,200 and 8,000 people, with an optimum size of 4,000 people. When first delineated, census tracts were designed to be homogeneous with respect to population characteristics, economic status, and living conditions. The spatial size of census tracts varies widely depending on the density of settlement. Physical changes in street patterns caused by highway construction, new development, and so forth, may require boundary revisions. In addition, census tracts occasionally are split due to population growth, or combined as a result of substantial population decline. Census tract boundaries generally follow visible and identifiable features. They may follow legal boundaries such as minor civil division (MCD) or incorporated place boundaries in some States and situations to allow for census tract-to-governmental unit relationships where the governmental boundaries tend to remain unchanged between censuses. State and county boundaries always are census tract boundaries in the standard census geographic hierarchy. In a few rare instances, a census tract may consist of noncontiguous areas. These noncontiguous areas may occur where the census tracts are coextensive with all or parts of legal entities that are themselves noncontiguous. For the 2010 Census, the census tract code range of 9400 through 9499 was enforced for census tracts that include a majority American Indian population according to Census 2000 data and/or their area was primarily covered by federally recognized American Indian reservations and/or off-reservation trust lands; the code range 9800 through 9899 was enforced for those census tracts that contained little or no population and represented a relatively large special land use area such as a National Park, military installation, or a business/industrial park; and the code range 9900 through 9998 was enforced for those census tracts that contained only water area, no land area.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Aman Chauhan (2022). World Population Live Dataset 2022 [Dataset]. https://www.kaggle.com/datasets/whenamancodes/world-population-live-dataset/code
Organization logo

World Population Live Dataset 2022

World Population Live Dataset by Country 2022

Explore at:
zip(10169 bytes)Available download formats
Dataset updated
Sep 10, 2022
Authors
Aman Chauhan
License

https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/

Area covered
World
Description

The current US Census Bureau world population estimate in June 2019 shows that the current global population is 7,577,130,400 people on earth, which far exceeds the world population of 7.2 billion from 2015. Our own estimate based on UN data shows the world's population surpassing 7.7 billion.

China is the most populous country in the world with a population exceeding 1.4 billion. It is one of just two countries with a population of more than 1 billion, with India being the second. As of 2018, India has a population of over 1.355 billion people, and its population growth is expected to continue through at least 2050. By the year 2030, the country of India is expected to become the most populous country in the world. This is because India’s population will grow, while China is projected to see a loss in population.

The next 11 countries that are the most populous in the world each have populations exceeding 100 million. These include the United States, Indonesia, Brazil, Pakistan, Nigeria, Bangladesh, Russia, Mexico, Japan, Ethiopia, and the Philippines. Of these nations, all are expected to continue to grow except Russia and Japan, which will see their populations drop by 2030 before falling again significantly by 2050.

Many other nations have populations of at least one million, while there are also countries that have just thousands. The smallest population in the world can be found in Vatican City, where only 801 people reside.

In 2018, the world’s population growth rate was 1.12%. Every five years since the 1970s, the population growth rate has continued to fall. The world’s population is expected to continue to grow larger but at a much slower pace. By 2030, the population will exceed 8 billion. In 2040, this number will grow to more than 9 billion. In 2055, the number will rise to over 10 billion, and another billion people won’t be added until near the end of the century. The current annual population growth estimates from the United Nations are in the millions - estimating that over 80 million new lives are added each year.

This population growth will be significantly impacted by nine specific countries which are situated to contribute to the population growth more quickly than other nations. These nations include the Democratic Republic of the Congo, Ethiopia, India, Indonesia, Nigeria, Pakistan, Uganda, the United Republic of Tanzania, and the United States of America. Particularly of interest, India is on track to overtake China's position as the most populous country by the year 2030. Additionally, multiple nations within Africa are expected to double their populations before fertility rates begin to slow entirely.

Global life expectancy has also improved in recent years, increasing the overall population life expectancy at birth to just over 70 years of age. The projected global life expectancy is only expected to continue to improve - reaching nearly 77 years of age by the year 2050. Significant factors impacting the data on life expectancy include the projections of the ability to reduce AIDS/HIV impact, as well as reducing the rates of infectious and non-communicable diseases.

Population aging has a massive impact on the ability of the population to maintain what is called a support ratio. One key finding from 2017 is that the majority of the world is going to face considerable growth in the 60 plus age bracket. This will put enormous strain on the younger age groups as the elderly population is becoming so vast without the number of births to maintain a healthy support ratio.

Although the number given above seems very precise, it is important to remember that it is just an estimate. It simply isn't possible to be sure exactly how many people there are on the earth at any one time, and there are conflicting estimates of the global population in 2016.

Some, including the UN, believe that a population of 7 billion was reached in October 2011. Others, including the US Census Bureau and World Bank, believe that the total population of the world reached 7 billion in 2012, around March or April.

ColumnsDescription
CCA33 Digit Country/Territories Code
NameName of the Country/Territories
2022Population of the Country/Territories in the year 2022.
2020Population of the Country/Territories in the year 2020.
2015Population of the Country/Territories in the year 2015.
2010Population of the Country/Territories in the year 2010.
2000Population of the Country/Territories in the year 2000.
1990Population of the Country/Territories in the year 1990.
1980Population of the Country/Territories in the year 1980.
1970Population of the Country/Territories in the year 1970.
Area (km²)Area size of the Country/Territories in square kilometer.
Density (per km²)Population Density per square kilometer.
Grow...
Search
Clear search
Close search
Google apps
Main menu