Apache License, v2.0https://www.apache.org/licenses/LICENSE-2.0
License information was derived automatically
This dataset contains non-seasonally adjusted California Unemployment Rate by age groups, from the Current Population Survey (CPS). The age group ranges are as follows; 16-19 ; 20 - 24; 25 - 34; 35 - 44; 45 - 54; 55 -64; 65+. This data is based on a 12-month moving average.
This dataset is invaluable for data science applications due to its granularity and the historical depth it offers. With detailed monthly data on unemployment rates by age groups, data scientists can perform a myriad of analyses:
The dataset can also be merged with other socioeconomic indicators like GDP, education levels, and industry growth metrics to examine broader economic narratives or policy impacts.
Note: In these datasets, a person is defined as up to date if they have received at least one dose of an updated COVID-19 vaccine. The Centers for Disease Control and Prevention (CDC) recommends that certain groups, including adults ages 65 years and older, receive additional doses.
On 6/16/2023 CDPH replaced the booster measures with a new “Up to Date” measure based on CDC’s new recommendations, replacing the primary series, boosted, and bivalent booster metrics The definition of “primary series complete” has not changed and is based on previous recommendations that CDC has since simplified. A person cannot complete their primary series with a single dose of an updated vaccine. Whereas the booster measures were calculated using the eligible population as the denominator, the new up to date measure uses the total estimated population. Please note that the rates for some groups may change since the up to date measure is calculated differently than the previous booster and bivalent measures.
This data is from the same source as the Vaccine Progress Dashboard at https://covid19.ca.gov/vaccination-progress-data/ which summarizes vaccination data at the county level by county of residence. Where county of residence was not reported in a vaccination record, the county of provider that vaccinated the resident is included. This applies to less than 1% of vaccination records. The sum of county-level vaccinations does not equal statewide total vaccinations due to out-of-state residents vaccinated in California.
These data do not include doses administered by the following federal agencies who received vaccine allocated directly from CDC: Indian Health Service, Veterans Health Administration, Department of Defense, and the Federal Bureau of Prisons.
Totals for the Vaccine Progress Dashboard and this dataset may not match, as the Dashboard totals doses by Report Date and this dataset totals doses by Administration Date. Dose numbers may also change for a particular Administration Date as data is updated.
Previous updates:
On March 3, 2023, with the release of HPI 3.0 in 2022, the previous equity scores have been updated to reflect more recent community survey information. This change represents an improvement to the way CDPH monitors health equity by using the latest and most accurate community data available. The HPI uses a collection of data sources and indicators to calculate a measure of community conditions ranging from the most to the least healthy based on economic, housing, and environmental measures.
Starting on July 13, 2022, the denominator for calculating vaccine coverage has been changed from age 5+ to all ages to reflect new vaccine eligibility criteria. Previously the denominator was changed from age 16+ to age 12+ on May 18, 2021, then changed from age 12+ to age 5+ on November 10, 2021, to reflect previous changes in vaccine eligibility criteria. The previous datasets based on age 16+ and age 5+ denominators have been uploaded as archived tables.
Starting on May 29, 2021 the methodology for calculating on-hand inventory in the shipped/delivered/on-hand dataset has changed. Please see the accompanying data dictionary for details. In addition, this dataset is now down to the ZIP code level.
VITAL SIGNS INDICATOR Migration (EQ4)
FULL MEASURE NAME Migration flows
LAST UPDATED December 2018
DESCRIPTION Migration refers to the movement of people from one location to another, typically crossing a county or regional boundary. Migration captures both voluntary relocation – for example, moving to another region for a better job or lower home prices – and involuntary relocation as a result of displacement. The dataset includes metropolitan area, regional, and county tables.
DATA SOURCE American Community Survey County-to-County Migration Flows 2012-2015 5-year rolling average http://www.census.gov/topics/population/migration/data/tables.All.html
CONTACT INFORMATION vitalsigns.info@bayareametro.gov
METHODOLOGY NOTES (across all datasets for this indicator) Data for migration comes from the American Community Survey; county-to-county flow datasets experience a longer lag time than other standard datasets available in FactFinder. 5-year rolling average data was used for migration for all geographies, as the Census Bureau does not release 1-year annual data. Data is not available at any geography below the county level; note that flows that are relatively small on the county level are often within the margin of error. The metropolitan area comparison was performed for the nine-county San Francisco Bay Area, in addition to the primary MSAs for the nine other major metropolitan areas, by aggregating county data based on current metropolitan area boundaries. Data prior to 2011 is not available on Vital Signs due to inconsistent Census formats and a lack of net migration statistics for prior years. Only counties with a non-negligible flow are shown in the data; all other pairs can be assumed to have zero migration.
Given that the vast majority of migration out of the region was to other counties in California, California counties were bundled into the following regions for simplicity: Bay Area: Alameda, Contra Costa, Marin, Napa, San Francisco, San Mateo, Santa Clara, Solano, Sonoma Central Coast: Monterey, San Benito, San Luis Obispo, Santa Barbara, Santa Cruz Central Valley: Fresno, Kern, Kings, Madera, Merced, Tulare Los Angeles + Inland Empire: Imperial, Los Angeles, Orange, Riverside, San Bernardino, Ventura Sacramento: El Dorado, Placer, Sacramento, Sutter, Yolo, Yuba San Diego: San Diego San Joaquin Valley: San Joaquin, Stanislaus Rural: all other counties (23)
One key limitation of the American Community Survey migration data is that it is not able to track emigration (movement of current U.S. residents to other countries). This is despite the fact that it is able to quantify immigration (movement of foreign residents to the U.S.), generally by continent of origin. Thus the Vital Signs analysis focuses primarily on net domestic migration, while still specifically citing in-migration flows from countries abroad based on data availability.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Note: In these datasets, a person is defined as up to date if they have received at least one dose of an updated COVID-19 vaccine. The Centers for Disease Control and Prevention (CDC) recommends that certain groups, including adults ages 65 years and older, receive additional doses.
Starting on July 13, 2022, the denominator for calculating vaccine coverage has been changed from age 5+ to all ages to reflect new vaccine eligibility criteria. Previously the denominator was changed from age 16+ to age 12+ on May 18, 2021, then changed from age 12+ to age 5+ on November 10, 2021, to reflect previous changes in vaccine eligibility criteria. The previous datasets based on age 12+ and age 5+ denominators have been uploaded as archived tables.
Starting June 30, 2021, the dataset has been reconfigured so that all updates are appended to one dataset to make it easier for API and other interfaces. In addition, historical data has been extended back to January 5, 2021.
This dataset shows full, partial, and at least 1 dose coverage rates by zip code tabulation area (ZCTA) for the state of California. Data sources include the California Immunization Registry and the American Community Survey’s 2015-2019 5-Year data.
This is the data table for the LHJ Vaccine Equity Performance dashboard. However, this data table also includes ZTCAs that do not have a VEM score.
This dataset also includes Vaccine Equity Metric score quartiles (when applicable), which combine the Public Health Alliance of Southern California’s Healthy Places Index (HPI) measure with CDPH-derived scores to estimate factors that impact health, like income, education, and access to health care. ZTCAs range from less healthy community conditions in Quartile 1 to more healthy community conditions in Quartile 4.
The Vaccine Equity Metric is for weekly vaccination allocation and reporting purposes only. CDPH-derived quartiles should not be considered as indicative of the HPI score for these zip codes. CDPH-derived quartiles were assigned to zip codes excluded from the HPI score produced by the Public Health Alliance of Southern California due to concerns with statistical reliability and validity in populations smaller than 1,500 or where more than 50% of the population resides in a group setting.
These data do not include doses administered by the following federal agencies who received vaccine allocated directly from CDC: Indian Health Service, Veterans Health Administration, Department of Defense, and the Federal Bureau of Prisons.
For some ZTCAs, vaccination coverage may exceed 100%. This may be a result of many people from outside the county coming to that ZTCA to get their vaccine and providers reporting the county of administration as the county of residence, and/or the DOF estimates of the population in that ZTCA are too low. Please note that population numbers provided by DOF are projections and so may not be accurate, especially given unprecedented shifts in population as a result of the pandemic.
The Clear Lake herd contains migrants, but this herd does not migrate between traditional summer and winter seasonal ranges. Instead, much of the herd displays a nomadic tendency, slowly migrating north, east, or south for the summer using various high use areas as they move. Therefore, annual ranges were modeled using year-round data to demarcate high use areas in lieu of modeling specific winter ranges. The areas adjacent to Clear Lake Reservoir were heavily used during winter by many of the collared animals. A few collared individuals persisted west of State Route 139 year-round, seemingly separated from the rest of the herd due to this highway barrier. However, some pronghorn cross this road near Cornell and join this subgroup. Summer ranges are spread out, with many individuals moving southeast through protected forests or over the state border into Oregon. A few outliers in the herd moved long distances south, crossing State Route 139 to Oak Ridge, or east into Likely Tables pronghorn herd areas. Drought, increasing fire frequency, invasive annual grasses, and juniper encroachment negatively affect pronghorn habitat. Recent population surveys indicate a declining population (Trausch and others, 2020). Juniper removal on public and private lands has potential to improve habitat quality and potentially reduce predation (Ewanyk, 2020). These mapping layers show the location of the migration corridors for pronghorn (Antilocapra americana) in the Clear Lake population in California. They were developed from 72 migration sequences collected from a sample size of 23 animals comprising GPS locations collected every 1-6 hours.
The Likely Tables herd contains migrants, but this herd does not migrate between traditional summer and winter seasonal ranges. Instead, much of the herd displays a nomadic tendency, slowly migrating north for the summer using various high use areas as they move. Therefore, annual ranges were modeled using year-round data to demarcate high use areas in lieu modeling specific winter ranges. A high use area being used during winter by many of the collared animals is west of the Warner Mountains, east of U.S. Highway 395, and north of Moon Lake. Some animals live in the agricultural fields west of U.S. Highway 395. There appears to be little if any movement across the highway, which is fenced on both sides in this area. Summer ranges are spread out, with some individuals moving as far north as Goose Lake. A few outliers in the herd moved long distances south toward the Lassen herd or east to Nevada. Drought, increasing fire frequency, invasive annual grasses, and juniper encroachment negatively affect pronghorn habitat. Recent population surveys indicate a declining population (Trausch and others, 2020). Juniper removal on public and private lands have potential to improve habitat quality and potentially reduce predation (Ewanyk, 2020). Fences on public and private lands affect movement corridors and increase crossing and/or migration times. Recent fence modifications on BLM lands have shown potential to ease pronghorn movements (Hudgens, 2022). These mapping layers show the location of the migration stopovers for pronghorn (Antilocapra americana) in the Likely Tables population in California. They were developed from 29 migration sequences collected from a sample size of 17 animals comprising GPS locations collected every 1-4 hours.
Note: This dataset is no longer being updated due to the end of the COVID-19 Public Health Emergency.
The California Department of Public Health (CDPH) is identifying vaccination status of COVID-19 cases, hospitalizations, and deaths by analyzing the state immunization registry and registry of confirmed COVID-19 cases. Post-vaccination cases are individuals who have a positive SARS-Cov-2 molecular test (e.g. PCR) at least 14 days after they have completed their primary vaccination series.
Tracking cases of COVID-19 that occur after vaccination is important for monitoring the impact of immunization campaigns. While COVID-19 vaccines are safe and effective, some cases are still expected in persons who have been vaccinated, as no vaccine is 100% effective. For more information, please see https://www.cdph.ca.gov/Programs/CID/DCDC/Pages/COVID-19/Post-Vaccine-COVID19-Cases.aspx
Post-vaccination infection data is updated monthly and includes data on cases, hospitalizations, and deaths among the unvaccinated and the vaccinated. Partially vaccinated individuals are excluded. To account for reporting and processing delays, there is at least a one-month lag in provided data (for example data published on 9/9/22 will include data through 7/31/22).
Notes:
On September 9, 2022, the post-vaccination data has been changed to compare unvaccinated with those with at least a primary series completed for persons age 5+. These data will be updated monthly (first Thursday of the month) and include at least a one month lag.
On February 2, 2022, the post-vaccination data has been changed to distinguish between vaccination with a primary series only versus vaccinated and boosted. The previous dataset has been uploaded as an archived table. Additionally, the lag on this data has been extended to 14 days.
On November 29, 2021, the denominator for calculating vaccine coverage has been changed from age 16+ to age 12+ to reflect new vaccine eligibility criteria. The previous dataset based on age 16+ denominators has been uploaded as an archived table.
UPDATE 1/7/2025: On June 28th 2023, the San Francisco Police Department (SFPD) changed its Stops Data Collection System (SDCS). As a result of this change, record identifiers have changed from the Department of Justice (DOJ) identifier to an internal record numbering system (referred to as "LEA Record ID"). The data that SFPD uploads to the DOJ system will contain the internal record number which can be used for joins with the data available on DataSF. A. SUMMARY The San Francisco Police Department (SFPD) Stop Data was designed to capture information to comply with the Racial and Identity Profiling Act (RIPA), or California Assembly Bill (AB)953. SFPD officers collect specific information on each stop, including elements of the stop, circumstances and the perceived identity characteristics of the individual(s) stopped. The information obtained by officers is reported to the California Department of Justice. This dataset includes data on stops starting on July 1st, 2018, which is when the data collection program went into effect. Read the detailed overview for this dataset here. B. HOW THE DATASET IS CREATED By the end of each shift, officers enter all stop data into the Stop Data Collection System, which is automatically submitted to the California Department of Justice (CA DOJ). Once a quarter the Department receives a stops data file from CA DOJ. The SFPD conducts several transformations of this data to ensure privacy, accuracy and compliance with State law and regulation. For increased usability, text descriptions have also been added for several data fields which include numeric codes (including traffic, suspicion, citation, and custodial arrest offense codes, and actions taken as a result of a stop). See the data dictionaries below for explanations of all coded data fields. Read more about the data collection, and transformation, including geocoding and PII cleaning processes, in the detailed overview of this dataset. C. UPDATE PROCESS Information is updated on a quarterly basis. D. HOW TO USE THIS DATASET This dataset includes information about police stops that occurred, including some details about the person(s) stopped, and what happened during the stop. Each row is a person stopped with a record identifier for the stop and a unique identifier for the person. A single stop may involve multiple people and may produce more than one associated unique identifier for the same record identifier. A certain percentage of stops have stop information that can’t be geocoded. This may be due to errors in data input at the officer level (typos in entry or providing an address that doesn't exist). More often, this is due to officers providing a level of detail that isn't codable to a geographic coordinate - most often at the Airport (ie: Terminal 3, door 22.) In these cases, the location of the stops is coded as unknown. E. DATA DICTIONARIES CJIS Offense Codes data look up table Look up table for other coded data fields
CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
Find people who have recently moved into any neighborhood anywhere in the USA. This covers both renters and homeowners. Filter by movers in-state or out-of-state, in-city or out-of-city, in-zip-code or out-of-zip-code. Also filter by dwelling type and recency of their move
Background
The Labour Force Survey (LFS) is a unique source of information using international definitions of employment and unemployment and economic inactivity, together with a wide range of related topics such as occupation, training, hours of work and personal characteristics of household members aged 16 years and over. It is used to inform social, economic and employment policy. The LFS was first conducted biennially from 1973-1983. Between 1984 and 1991 the survey was carried out annually and consisted of a quarterly survey conducted throughout the year and a 'boost' survey in the spring quarter (data were then collected seasonally). From 1992 quarterly data were made available, with a quarterly sample size approximately equivalent to that of the previous annual data. The survey then became known as the Quarterly Labour Force Survey (QLFS). From December 1994, data gathering for Northern Ireland moved to a full quarterly cycle to match the rest of the country, so the QLFS then covered the whole of the UK (though some additional annual Northern Ireland LFS datasets are also held at the UK Data Archive). Further information on the background to the QLFS may be found in the documentation.
Longitudinal data
The LFS retains each sample household for five consecutive quarters, with a fifth of the sample replaced each quarter. The main survey was designed to produce cross-sectional data, but the data on each individual have now been linked together to provide longitudinal information. The longitudinal data comprise two types of linked datasets, created using the weighting method to adjust for non-response bias. The two-quarter datasets link data from two consecutive waves, while the five-quarter datasets link across a whole year (for example January 2010 to March 2011 inclusive) and contain data from all five waves. A full series of longitudinal data has been produced, going back to winter 1992. Linking together records to create a longitudinal dimension can, for example, provide information on gross flows over time between different labour force categories (employed, unemployed and economically inactive). This will provide detail about people who have moved between the categories. Also, longitudinal information is useful in monitoring the effects of government policies and can be used to follow the subsequent activities and circumstances of people affected by specific policy initiatives, and to compare them with other groups in the population. There are however methodological problems which could distort the data resulting from this longitudinal linking. The ONS continues to research these issues and advises that the presentation of results should be carefully considered, and warnings should be included with outputs where necessary.
New reweighting policy
Following the new reweighting policy ONS has reviewed the latest population estimates made available during 2019 and have decided not to carry out a 2019 LFS and APS reweighting exercise. Therefore, the next reweighting exercise will take place in 2020. These will incorporate the 2019 Sub-National Population Projection data (published in May 2020) and 2019 Mid-Year Estimates (published in June 2020). It is expected that reweighted Labour Market aggregates and microdata will be published towards the end of 2020/early 2021.
LFS Documentation
The documentation available from the Archive to accompany LFS datasets largely consists of the latest version of each user guide volume alongside the appropriate questionnaire for the year concerned. However, volumes are updated periodically by ONS, so users are advised to check the latest documents on the ONS Labour Force Survey - User Guidance pages before commencing analysis. This is especially important for users of older QLFS studies, where information and guidance in the user guide documents may have changed over time.
Additional data derived from the QLFS
The Archive also holds further QLFS series: End User Licence (EUL) quarterly data; Secure Access datasets; household datasets; quarterly, annual and ad hoc module datasets compiled for Eurostat; and some additional annual Northern Ireland datasets.
Variables DISEA and LNGLST
Dataset A08 (Labour market status of disabled people) which ONS suspended due to an apparent discontinuity between April to June 2017 and July to September 2017 is now available. As a result of this apparent discontinuity and the inconclusive investigations at this stage, comparisons should be made with caution between April to June 2017 and subsequent time periods. However users should note that the estimates are not seasonally adjusted, so some of the change between quarters could be due to seasonality. Further recommendations on historical comparisons of the estimates will be given in November 2018 when ONS are due to publish estimates for July to September 2018.
An article explaining the quality assurance investigations that have been conducted so far is available on the ONS Methodology webpage. For any queries about Dataset A08 please email Labour.Market@ons.gov.uk.
Occupation data for 2021 and 2022 data files
The ONS has identified an issue with the collection of some occupational data in 2021 and 2022 data files in a number of their surveys. While they estimate any impacts will be small overall, this will affect the accuracy of the breakdowns of some detailed (four-digit Standard Occupational Classification (SOC)) occupations, and data derived from them. Further information can be found in the ONS article published on 11 July 2023: https://www.ons.gov.uk/employmentandlabourmarket/peopleinwork/employmentandemployeetypes/articles/revisionofmiscodedoccupationaldataintheonslabourforcesurveyuk/january2021toseptember2022" style="background-color: rgb(255, 255, 255);">Revision of miscoded occupational data in the ONS Labour Force Survey, UK: January 2021 to September 2022.
2022 Weighting
The population totals used for the latest LFS estimates use projected growth rates from Real Time Information (RTI) data for UK, EU and non-EU populations based on 2021 patterns. The total population used for the LFS therefore does not take into account any changes in migration, birth rates, death rates, and so on since June 2021, and hence levels estimates may be under- or over-estimating the true values and should be used with caution. Estimates of rates will, however, be robust.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Introduction
The 802.11 standard includes several management features and corresponding frame types. One of them are Probe Requests (PR), which are sent by mobile devices in an unassociated state to scan the nearby area for existing wireless networks. The frame part of PRs consists of variable-length fields, called Information Elements (IE), which represent the capabilities of a mobile device, such as supported data rates.
This dataset contains PRs collected over a seven-day period by four gateway devices in an uncontrolled urban environment in the city of Catania.
It can be used for various use cases, e.g., analyzing MAC randomization, determining the number of people in a given location at a given time or in different time periods, analyzing trends in population movement (streets, shopping malls, etc.) in different time periods, etc.
Related dataset
Same authors also produced the Labeled dataset of IEEE 802.11 probe requests with same data layout and recording equipment.
Measurement setup
The system for collecting PRs consists of a Raspberry Pi 4 (RPi) with an additional WiFi dongle to capture WiFi signal traffic in monitoring mode (gateway device). Passive PR monitoring is performed by listening to 802.11 traffic and filtering out PR packets on a single WiFi channel.
The following information about each received PR is collected: - MAC address - Supported data rates - extended supported rates - HT capabilities - extended capabilities - data under extended tag and vendor specific tag - interworking - VHT capabilities - RSSI - SSID - timestamp when PR was received.
The collected data was forwarded to a remote database via a secure VPN connection. A Python script was written using the Pyshark package to collect, preprocess, and transmit the data.
Data preprocessing
The gateway collects PRs for each successive predefined scan interval (10 seconds). During this interval, the data is preprocessed before being transmitted to the database. For each detected PR in the scan interval, the IEs fields are saved in the following JSON structure:
PR_IE_data = { 'DATA_RTS': {'SUPP': DATA_supp , 'EXT': DATA_ext}, 'HT_CAP': DATA_htcap, 'EXT_CAP': {'length': DATA_len, 'data': DATA_extcap}, 'VHT_CAP': DATA_vhtcap, 'INTERWORKING': DATA_inter, 'EXT_TAG': {'ID_1': DATA_1_ext, 'ID_2': DATA_2_ext ...}, 'VENDOR_SPEC': {VENDOR_1:{ 'ID_1': DATA_1_vendor1, 'ID_2': DATA_2_vendor1 ...}, VENDOR_2:{ 'ID_1': DATA_1_vendor2, 'ID_2': DATA_2_vendor2 ...} ...} }
Supported data rates and extended supported rates are represented as arrays of values that encode information about the rates supported by a mobile device. The rest of the IEs data is represented in hexadecimal format. Vendor Specific Tag is structured differently than the other IEs. This field can contain multiple vendor IDs with multiple data IDs with corresponding data. Similarly, the extended tag can contain multiple data IDs with corresponding data.
Missing IE fields in the captured PR are not included in PR_IE_DATA.
When a new MAC address is detected in the current scan time interval, the data from PR is stored in the following structure:
{'MAC': MAC_address, 'SSIDs': [ SSID ], 'PROBE_REQs': [PR_data] },
where PR_data is structured as follows:
{ 'TIME': [ DATA_time ], 'RSSI': [ DATA_rssi ], 'DATA': PR_IE_data }.
This data structure allows to store only 'TOA' and 'RSSI' for all PRs originating from the same MAC address and containing the same 'PR_IE_data'. All SSIDs from the same MAC address are also stored. The data of the newly detected PR is compared with the already stored data of the same MAC in the current scan time interval. If identical PR's IE data from the same MAC address is already stored, only data for the keys 'TIME' and 'RSSI' are appended. If identical PR's IE data from the same MAC address has not yet been received, then the PR_data structure of the new PR for that MAC address is appended to the 'PROBE_REQs' key. The preprocessing procedure is shown in Figure ./Figures/Preprocessing_procedure.png
At the end of each scan time interval, all processed data is sent to the database along with additional metadata about the collected data, such as the serial number of the wireless gateway and the timestamps for the start and end of the scan. For an example of a single PR capture, see the Single_PR_capture_example.json file.
Folder structure
For ease of processing of the data, the dataset is divided into 7 folders, each containing a 24-hour period. Each folder contains four files, each containing samples from that device.
The folders are named after the start and end time (in UTC). For example, the folder 2022-09-22T22-00-00_2022-09-23T22-00-00 contains samples collected between 23th of September 2022 00:00 local time, until 24th of September 2022 00:00 local time.
Files representing their location via mapping: - 1.json -> location 1 - 2.json -> location 2 - 3.json -> location 3 - 4.json -> location 4
Environments description
The measurements were carried out in the city of Catania, in Piazza Università and Piazza del Duomo The gateway devices (rPIs with WiFi dongle) were set up and gathering data before the start time of this dataset. As of September 23, 2022, the devices were placed in their final configuration and personally checked for correctness of installation and data status of the entire data collection system. Devices were connected either to a nearby Ethernet outlet or via WiFi to the access point provided.
Four Raspbery Pi-s were used: - location 1 -> Piazza del Duomo - Chierici building (balcony near Fontana dell’Amenano) - location 2 -> southernmost window in the building of Via Etnea near Piazza del Duomo - location 3 -> nothernmost window in the building of Via Etnea near Piazza Università - location 4 -> first window top the right of the entrance of the University of Catania
Locations were suggested by the authors and adjusted during deployment based on physical constraints (locations of electrical outlets or internet access) Under ideal circumstances, the locations of the devices and their coverage area would cover both squares and the part of Via Etna between them, with a partial overlap of signal detection. The locations of the gateways are shown in Figure ./Figures/catania.png.
Known dataset shortcomings
Due to technical and physical limitations, the dataset contains some identified deficiencies.
PRs are collected and transmitted in 10-second chunks. Due to the limited capabilites of the recording devices, some time (in the range of seconds) may not be accounted for between chunks if the transmission of the previous packet took too long or an unexpected error occurred.
Every 20 minutes the service is restarted on the recording device. This is a workaround for undefined behavior of the USB WiFi dongle, which can no longer respond. For this reason, up to 20 seconds of data will not be recorded in each 20-minute period.
The devices had a scheduled reboot at 4:00 each day which is shown as missing data of up to a few minutes.
Location 1 - Piazza del Duomo - Chierici
The gateway device (rPi) is located on the second floor balcony and is hardwired to the Ethernet port. This device appears to function stably throughout the data collection period. Its location is constant and is not disturbed, dataset seems to have complete coverage.
Location 2 - Via Etnea - Piazza del Duomo
The device is located inside the building. During working hours (approximately 9:00-17:00), the device was placed on the windowsill. However, the movement of the device cannot be confirmed. As the device was moved back and forth, power outages and internet connection issues occurred. The last three days in the record contain no PRs from this location.
Location 3 - Via Etnea - Piazza Università
Similar to Location 2, the device is placed on the windowsill and moved around by people working in the building. Similar behavior is also observed, e.g., it is placed on the windowsill and moved inside a thick wall when no people are present. This device appears to have been collecting data throughout the whole dataset period.
Location 4 - Piazza Università
This location is wirelessly connected to the access point. The device was placed statically on a windowsill overlooking the square. Due to physical limitations, the device had lost power several times during the deployment. The internet connection was also interrupted sporadically.
Recognitions
The data was collected within the scope of Resiloc project with the help of City of Catania and project partners.
Cost of Living - Country Rankings Dataset
The "Cost of Living - Country Rankings Dataset" provides comprehensive information on the cost of living in various countries around the world. Understanding the cost of living is crucial for individuals, businesses, and policymakers alike, as it impacts decisions related to travel, relocation, investment, and economic analysis. This dataset is intended to serve as a valuable resource for researchers, data analysts, and anyone interested in exploring and comparing the cost of living across different nations.
This dataset comprises four primary columns:
1. Countries: This column contains the names of various countries included in the dataset. Each country is identified by its official name.
2. Cost of Living: The "Cost of Living" column represents the cost of living index or score for each country. This index is typically calculated by considering various factors, such as housing, food, transportation, healthcare, and other essential expenses. A higher index value indicates a higher cost of living in that particular country, while a lower value suggests a more affordable cost of living.
3. 2017 Global Rank: This column provides the global ranking of each country's cost of living in the year 2017. The ranking is based on the cost of living index mentioned earlier. A lower rank indicates a lower cost of living relative to other countries, while a higher rank suggests a higher cost of living position.
4. Available Data: The "Available Data" column indicates whether or not data for a specific country and year is available.
This dataset is designed to support various data analysis and visualization tasks. Users can explore trends in the cost of living, identify countries with high or low cost of living, and analyze how rankings have changed over time. Researchers can use this dataset to conduct in-depth studies on the factors influencing the cost of living in different regions and the economic implications of such variations.
Please note that the dataset includes information for the year 2017, and users are encouraged to consider this when interpreting the data, as economic conditions and the cost of living may have changed since then. Additionally, this dataset aims to provide a snapshot of cost of living rankings for countries in 2017 and may not cover every country in the world.
Link: https://www.theglobaleconomy.com/rankings/cost_of_living_wb/
Disclaimer: The accuracy and completeness of the data provided in this dataset are subject to the source from which it was obtained. Users are advised to cross-reference this data with authoritative sources and exercise discretion when making decisions based on it. The dataset creator and Kaggle assume no responsibility for any actions taken based on the information provided herein.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The project lead for the collection of this data was and Richard Shinn. Pronghorn (28 adult females) were captured and equipped with GPS collars (Sirtrack, Havelock North, NZ) transmitting data from 2015-2020. The Clear Lake herd contains migrants, but this herd does not migrate between traditional summer and winter seasonal ranges. Instead, much of the herd displays a somewhat nomadic migratory tendency, slowly migrating north, east, or south for the summer using various high use areas as they move. Therefore, annual home ranges were modeled using year-round data to demarcate high use areas in lieu of modeling the specific winter ranges commonly seen in other ungulate analyses in California. The areas adjacent to both east and west of Clear Lake Reservoir are highly used during winter by many of the collared animals. Additionally, a few individuals persist west of Highway 139 year-round, seemingly separated from the rest of the herd due to this highway barrier. However, other pronghorn cross this road near Cornell and join this subgroup. Summer ranges are spread out, with many individuals moving southeast through Modoc National Forest or as far north as Fremont National Forest in Oregon. A few outliers in the herd moved long distances south, crossing Rt 139 to Oak Ridge, or east into Likely Tables pronghorn herd areas. GPS locations were fixed between 1-6 hour intervals in the dataset. To improve the quality of the data set as per Bjørneraas et al. (2010), the GPS data were filtered prior to analysis to remove locations which were: i) further from either the previous point or subsequent point than an individual pronghorn is able to travel in the elapsed time, ii) forming spikes in the movement trajectory based on outgoing and incoming speeds and turning angles sharper than a predefined threshold , or iii) fixed in 2D space and visually assessed as a bad fix by the analyst.
The methodology used for this migration analysis allowed for the mapping of the herd’s home range and the identification and prioritization of migration corridors. Brownian Bridge Movement Models (BBMMs; Sawyer et al. 2009) were constructed with GPS collar data from 23 migrating pronghorn, including 72 migration sequences, location, date, time, and average location error as inputs in Migration Mapper. The average migration time and average migration distance for pronghorn was 12.11 days and 34.18 km, respectively. Corridors and stopovers were prioritized based on the number of animals moving through a particular area. BBMMs were produced at a spatial resolution of 50 m using a sequential fix interval of less than 27 hours. Due to varying fix rates in the data, separate models using Brownian bridge movement models (BMMM), with an adaptable variance rate, and fixed motion variances of 1000 were produced per migration sequence and visually compared for the entire dataset, with best models being combined prior to population-level analyses (68% of sequences selected with BBMM). In general, fixed motion variances were used when BBMM variances exceeded 8000. Home range analyses were based on data from 24 pronghorn and 47 year-round sequences using a fixed motion variance of 1000. Home range designations for this herd may expand with a larger sample, filling in some of the gaps between home range polygons in the map. Large water bodies were clipped from the final outputs.
Corridors are visualized based on pronghorn use per cell, with greater than or equal to 1 pronghorn, greater than or equal to 3 pronghorn (10% of the sample), and greater than or equal to 5 pronghorn (20% of the sample) representing migration corridors, medium use corridors, and high use corridors, respectively. Stopovers were calculated as the top 10 percent of the population level utilization distribution during migrations and can be interpreted as high use areas. Stopover polygon areas less than 20,000 m2 were removed, but remaining small stopovers may be interpreted as short-term resting sites, likely based on a small concentration of points from an individual animal. Home range is visualized as the 50th percentile contour of the home range utilization distribution.
Abstract copyright UK Data Service and data collection copyright owner.Background The Labour Force Survey (LFS) is a unique source of information using international definitions of employment and unemployment and economic inactivity, together with a wide range of related topics such as occupation, training, hours of work and personal characteristics of household members aged 16 years and over. It is used to inform social, economic and employment policy. The LFS was first conducted biennially from 1973-1983. Between 1984 and 1991 the survey was carried out annually and consisted of a quarterly survey conducted throughout the year and a 'boost' survey in the spring quarter (data were then collected seasonally). From 1992 quarterly data were made available, with a quarterly sample size approximately equivalent to that of the previous annual data. The survey then became known as the Quarterly Labour Force Survey (QLFS). From December 1994, data gathering for Northern Ireland moved to a full quarterly cycle to match the rest of the country, so the QLFS then covered the whole of the UK (though some additional annual Northern Ireland LFS datasets are also held at the UK Data Archive). Further information on the background to the QLFS may be found in the documentation. Longitudinal data The LFS retains each sample household for five consecutive quarters, with a fifth of the sample replaced each quarter. The main survey was designed to produce cross-sectional data, but the data on each individual have now been linked together to provide longitudinal information. The longitudinal data comprise two types of linked datasets, created using the weighting method to adjust for non-response bias. The two-quarter datasets link data from two consecutive waves, while the five-quarter datasets link across a whole year (for example January 2010 to March 2011 inclusive) and contain data from all five waves. A full series of longitudinal data has been produced, going back to winter 1992. Linking together records to create a longitudinal dimension can, for example, provide information on gross flows over time between different labour force categories (employed, unemployed and economically inactive). This will provide detail about people who have moved between the categories. Also, longitudinal information is useful in monitoring the effects of government policies and can be used to follow the subsequent activities and circumstances of people affected by specific policy initiatives, and to compare them with other groups in the population. There are however methodological problems which could distort the data resulting from this longitudinal linking. The ONS continues to research these issues and advises that the presentation of results should be carefully considered, and warnings should be included with outputs where necessary. LFS Documentation The documentation available from the Archive to accompany LFS datasets largely consists of the latest version of each user guide volume alongside the appropriate questionnaire for the year concerned. However, volumes are updated periodically by ONS, so users are advised to check the latest documents on the ONS Labour Force Survey - User Guidance pages before commencing analysis. This is especially important for users of older QLFS studies, where information and guidance in the user guide documents may have changed over time.Occupation data for 2021 and 2022 data filesThe ONS has identified an issue with the collection of some occupational data in 2021 and 2022 data files in a number of their surveys. While they estimate any impacts will be small overall, this will affect the accuracy of the breakdowns of some detailed (four-digit Standard Occupational Classification (SOC)) occupations, and data derived from them. Further information can be found in the ONS article published on 11 July 2023: Revision of miscoded occupational data in the ONS Labour Force Survey, UK: January 2021 to September 2022.2022 WeightingThe population totals used for the latest LFS estimates use projected growth rates from Real Time Information (RTI) data for UK, EU and non-EU populations based on 2021 patterns. The total population used for the LFS therefore does not take into account any changes in migration, birth rates, death rates, and so on since June 2021, and hence levels estimates may be under- or over-estimating the true values and should be used with caution. Estimates of rates will, however, be robust. For the second edition of the study, the depositor supplied a re-weighted version of the data file. The re-weighting has been done to bring LFS data in line with the population estimates from the 2001 Census. Main Topics:The five-quarter longitudinal datasets include a subset of the most commonly used variables from the Quarterly Labour Force Survey (QLFS), covering the main areas of the survey. See documentation for details Compilation or synthesis of existing material the datasets were created from existing QLFS data. They do not contain all records, but only those of respondents of working age who have responded to the survey in all the periods being linked. The data therefore comprise approximately one third of all QLFS variables. Cases were linked using the QLFS panel design.
Tables on:
The previous Survey of English Housing live table number is given in brackets below. Please note from July 2024 amendments have been made to the following tables:
Tables FA4401 and FA4411 have been combined into table FA4412.
Tables FA4622 and FA4623 have been combined into table FA4624.
For data prior to 2022-23 for the above tables, see discontinued tables.
<p class="gem-c-attachment_metadata"><span class="gem-c-attachment_attribute"><abbr title="OpenDocument Spreadsheet" class="gem-c-attachment_abbr">ODS</abbr></span>, <span class="gem-c-attachment_attribute">105 KB</span></p>
<p class="gem-c-attachment_metadata">
This file is in an <a href="https://www.gov.uk/guidance/using-open-document-formats-odf-in-your-organisation" target="_self" class="govuk-link">OpenDocument</a> format
<p class="gem-c-attachment_metadata"><span class="gem-c-attachment_attribute"><abbr title="OpenDocument Spreadsheet" class="gem-c-attachment_abbr">ODS</abbr></span>, <span class="gem-c-attachment_attribute">42.3 KB</span></p>
<p class="gem-c-attachment_metadata">
This file is in an <a href="https://www.gov.uk/guidance/using-open-document-formats-odf-in-your-organisation" target="_self" class="govuk-link">OpenDocument</a> format
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Note: 11/1/2023: Publication of the COVID data will be delayed because of technical difficulties. Note: 9/20/2023: With the end of the federal emergency and reporting requirements continuing to evolve, the Indiana Department of Health will no longer publish and refresh the COVID-19 datasets after November 15, 2023 - one final dataset publication will continue to be available. Vaccination demographics data by county/region, by race, by ethnicity, by gender, and by age. Fields with less than 5 results have been marked as suppressed. Note: 3/22/2023: Due to a technical issue updates are delayed for COVID data. New files will be published as soon as they are available. Historical Changes: 1/5/2023: Due to a technical issue the COVID datasets were not updated on 1/4/23. Updates will be published as soon as they are available. 9/29/22: Due to a technical difficulty, the weekly COVID datasets were not generated yesterday. They will be updated with current data today - 9/29 - and may result in a temporary discrepancy with the numbers published on the dashboard until the normal weekly refresh resumes 10/5. 9/27/2022: As of 9/28, the Indiana Department of Health (IDOH) is moving to a weekly COVID update for the dashboard and all associated datasets to continue to provide trend data that is applicable and usable for our partners and the public. This is to maintain alignment across the nation as states move to weekly updates. 8/19/2022 - The first and second dose columns are being removed as of 8/22/22 as the Health department has transitioned to reporting on Fully/Partially vaccinated. The final historical file including these columns from 8/19 will continue to be available. 2/10/2022: Data was not published on 2/9/2022 due to a technical issue, but updated data was released 2/10/2022. 10/13/2021: This dataset now includes columns for new and total booster shots administered. Please see the data dictionary for additional details. 08/06/2021: There are updates today to county-level vaccination rates to reflect a correction to records that were assigned to the wrong location based on ZIP code. 06/23/2021: COVID Hub files will no longer be updated on Saturdays. The normal refresh of these files has been changed to Mon-Fri. 06/10/2021: COVID Hub files will no longer be updated on Sundays. The normal refresh of these files has been changed to Mon-Sat. 06/07/2021: Today’s new counts include doses newly reported to the Indiana Department of Health on Saturday and Sunday. 06/03/2021: Individuals are able to update their personal and demographic information during the vaccination registration process. Today’s data reflects changes made by individuals to their race, ethnicity, or county of residence over the course of their vaccination series. 05/13/2021: The 12-15 year-old age group has been added into the dataset as of today. 05/06/2021: On Monday 5/3, individuals classified as "Unknown" county of residence were inadvertently converted to "Out of State." These individuals have been corrected in today's dataset. 03/11/2021: This dataset has been updated to include totals and newly administered single dose vaccination data. Additionally the existing age groups have been further stratified into a 16-19 year old age group, and 5 year groups for 20-79 year olds.
CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
Under the direction of University College London (UCL), this international, multidisciplinary project assessed the feasibility of using non-destructive digital imaging technology to make texts visible in images of papyrus in Ancient Egyptian mummy case cartonnages for open research and analysis. Our pilot project has led to an understanding of which imaging modalities are worth pursuing in future research projects. The massive finding of papyri in Egypt between the end of the 19th and the beginning of the 20th century has dramatically increased our knowledge of the ancient world. The recovering of new texts has brought to light classical and biblical literature, and everyday writing of people that have changed the way we interpret antiquity. Papyri were and still are found in two main ways: in situ, i.e. where they were left by the ancients, or recycled for fabricating other objects such as mummy masks and coverings, book binding and other kinds of what scholars broadly define as 'cartonnage.' Papyri were also used sometimes to stuffing animal mummies. In the past, the awareness that such ancient objects could be filled with manuscripts has led papyrologists to destroy cartonnage, mummy masks and other material for retrieving their contents. With the passing of decades, specialists' recognition of the problems connected with such practice has increased, and new, less invasive techniques have been developed in order to avoid the destruction of important historical evidence. The decision to eventually dismount cartonnage involves careful evaluations of the pros and cons and of the methods to be followed. Besides papyrologists, conservators and other specialists, the practice of dissolving cartonnage in order to retrieve papyri has been employed by dealers and collectors seeing the opportunity to multiply their earnings or simply looking for manuscripts without recognizing the issues involved with the destruction of ancient artefacts. In these cases, the damage produced to our cultural heritage is even greater since little if any attention to the methods employed and to the recording of the process is paid. The application of advanced imaging techniques has the potential to dramatically improve our study of papyri encapsulated in ancient artefacts and will potentially solve the problem of invasive, destructive approaches to the remains of our ancient past. This exploratory, pilot project, working with a range of international partners and collections between November 2015 and December 2017, tested the feasibility of non-destructive imaging of multi-layered Papyrus found in Egyptian mummy cartonnages. Our research has shown that no current single imaging technique can identify both iron and carbon based inks at depths within cartonnage. If we are to detect and ultimately read text within cartonnage, a multimodal imaging approach is required, but this will necessarily be limited by cost, access to imaging systems, and the portability of both the system and the cartonnage. We are currently in the process of publishing lessons-learned on findings and imaging methodologies for further research, including on affordances and limitations of specific imaging approaches, and how they can be used in tandem to recover extant text within layers of cartonnage. This data is hosted by UCL Research Data Repository for public access and use. All images are licensed for use under Creative Commons 0 1.0 Universal License.
This data set comprises a core content set of digital images, analytical data and technical reports on the imaging and analysis of mummy mask cartonnage and modern surrogates. These are intended for access by researchers, scholars, students and the general public. The data set contains the following folders organized by imaging method:
Documentation.7z contains documentation, metadata, photographs and reports for each modality (151MB). Data_FiberOpticReflectanceSpectroscopy.7z is Fiber Optic Reflectance Spectroscopy Data from testing conducted by Equipoise Imaging (30MB) Data_OpticalCoherenceTomography.7z is Optical Coherence Tomography Data from imaging conducted in the Duke University Eye Center and Department of Biomedical Engineering. (619MB) Data_Terahertz.7z is Terahertz Data from experimental imaging at the University of Western Australia (1MB) Data_Xray.7z contains XRF data from the SLAC Stanford Synchrotron Radiation Lightsource in California and "Micro-CT ALS Berkeley" data from the Lawrence Livermore National Laboratory Advanced Light Source in California. (21.3GB). ImageData_RBT.7z - Multispectral imaging data from RB Toth Associates at Duke University and University of California at Berkeley, with processed images of US and UCL images. (31 GB.) UCBsn_LC.7z - Data from multispectral imaging at the University of California at Berkeley s.n. cartonnage fragment by the Library of Congress before and after x-ray of the fragment for damage assessment (2.1GB) UCL_Digital_Humanities.7z - Data from multispectral imaging of the UCL Phantom surrogates and Petrie Museum cartonnage UC806037i in the UCL Centre for Digital Humanities, London. (22.6GB) UManchester_JohnRylands: Data from multispectral imaging of both sides of cartonnage Greek P458 P458 at the University of Manchester John Rylands Library. (5.5GB)
README files with more specific information are included with the data set from each imaging modality. This data was first shared online in July 2017. It was moved to its current location and assigned a doi in November 2022.
People's living arrangements change over the life cycle. In many countries, when young people move out of their parents' home, they frequently share dwellings with other young people before setting up their own home to move in with a partner and/or to start a family. At the same time, when children leave home, elderly parents often would like to downsize as household size has diminished. This indicator shows how living arrangements vary across age groups, with a particular focus on youth (aged 15 to 29) and seniors (65 and older). The data presented here are based on household survey microdata and concern population-level data. They exclude living arrangements such as group accommodation, such as nursing homes, hospitals and military quarters. Data in this indicator refer to private households. The data analysis considers living arrangements in the latest year available for different age groups.
This dataset has been migrated from our Geocommons platform, and lacks a description from the original posting user. This is not a Fortiusone provided dataset. Please keep this in mind, and make of the dataset what you will. Thank you for visiting Finder!
Annual number of interprovincial migrants by province of origin and destination, Canada, provinces and territories.
Apache License, v2.0https://www.apache.org/licenses/LICENSE-2.0
License information was derived automatically
This dataset contains non-seasonally adjusted California Unemployment Rate by age groups, from the Current Population Survey (CPS). The age group ranges are as follows; 16-19 ; 20 - 24; 25 - 34; 35 - 44; 45 - 54; 55 -64; 65+. This data is based on a 12-month moving average.
This dataset is invaluable for data science applications due to its granularity and the historical depth it offers. With detailed monthly data on unemployment rates by age groups, data scientists can perform a myriad of analyses:
The dataset can also be merged with other socioeconomic indicators like GDP, education levels, and industry growth metrics to examine broader economic narratives or policy impacts.