Open Government Licence - Canada 2.0https://open.canada.ca/en/open-government-licence-canada
License information was derived automatically
In recent years, utility companies in several provinces have started installing wireless smart meters in Canadian businesses and residences. Some people have expressed concern about the possibility of health effects from exposure to the radiofrequency fields that these devices emit.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Overview This dataset offers valuable insights into yearly domestic water consumption across various Lower Super Output Areas (LSOAs) or Data Zones, accompanied by the count of water meters within each area. It is instrumental for analysing residential water use patterns, facilitating water conservation efforts, and guiding infrastructure development and policy making at a localised level. Key Definitions Aggregation The process of summarising or grouping data to obtain a single or reduced set of information, often for analysis or reporting purposes. AMR Meter Automatic meter reading (AMR) is the technology of automatically collecting consumption, diagnostic, and status data from a water meter remotely and periodically. Dataset Structured and organised collection of related elements, often stored digitally, used for analysis and interpretation in various fields. Data Zone Data zones are the key geography for the dissemination of small area statistics in Scotland Dumb Meter A dumb meter or analogue meter is read manually. It does not have any external connectivity. Granularity Data granularity is a measure of the level of detail in a data structure. In time-series data, for example, the granularity of measurement might be based on intervals of years, months, weeks, days, or hours ID Abbreviation for Identification that refers to any means of verifying the unique identifier assigned to each asset for the purposes of tracking, management, and maintenance. LSOA Lower Layer Super Output Areas (LSOA) are a geographic hierarchy designed to improve the reporting of small area statistics in England and Wales. Open Data Triage The process carried out by a Data Custodian to determine if there is any evidence of sensitivities associated with Data Assets, their associated Metadata and Software Scripts used to process Data Assets if they are used as Open Data. Schema Structure for organising and handling data within a dataset, defining the attributes, their data types, and the relationships between different entities. It acts as a framework that ensures data integrity and consistency by specifying permissible data types and constraints for each attribute. Smart Meter A smart meter is an electronic device that records information and communicates it to the consumer and the supplier. It differs from automatic meter reading (AMR) in that it enables two-way communication between the meter and the supplier. Units Standard measurements used to quantify and compare different physical quantities. Water Meter Water metering is the practice of measuring water use. Water meters measure the volume of water used by residential and commercial building units that are supplied with water by a public water supply system. Data History Data Origin Domestic consumption data is recorded using water meters. The consumption recorded is then sent back to water companies. This dataset is extracted from the water companies. Data Triage Considerations This section discusses the careful handling of data to maintain anonymity and addresses the challenges associated with data updates, such as identifying household changes or meter replacements. Identification of Critical Infrastructure This aspect is not applicable for the dataset, as the focus is on domestic water consumption and does not contain any information that reveals critical infrastructure details. Commercial Risks and Anonymisation Individual Identification Risks There is a potential risk of identifying individuals or households if the consumption data is updated irregularly (e.g., every 6 months) and an out-of-cycle update occurs (e.g., after 2 months), which could signal a change in occupancy or ownership. Such patterns need careful handling to avoid accidental exposure of sensitive information. Meter and Property Association Challenges arise in maintaining historical data integrity when meters are replaced but the property remains the same. Ensuring continuity in the data without revealing personal information is crucial. Interpretation of Null Consumption Instances of null consumption could be misunderstood as a lack of water use, whereas they might simply indicate missing data. Distinguishing between these scenarios is vital to prevent misleading conclusions. Meter Re-reads The dataset must account for instances where meters are read multiple times for accuracy. Joint Supplies & Multiple Meters per Household Special consideration is required for households with multiple meters as well as multiple households that share a meter as this could complicate data aggregation. Schema Consistency with the Energy Industry: In formulating the schema for the domestic water consumption dataset, careful consideration was given to the potential risks to individual privacy. This evaluation included examining the frequency of data updates, the handling of property and meter associations, interpretations of null consumption, meter re-reads, joint suppliers, and the presence of multiple meters within a single household as described above. After a thorough assessment of these factors and their implications for individual privacy, it was decided to align the dataset's schema with the standards established within the energy industry. This decision was influenced by the energy sector's experience and established practices in managing similar risks associated with smart meters. This ensures a high level of data integrity and privacy protection. Schema The dataset schema is aligned with those used in the energy industry, which has encountered similar challenges with smart meters. However, it is important to note that the energy industry has a much higher density of meter distribution, especially smart meters. Aggregation to Mitigate Risks The dataset employs an elevated level of data aggregation to minimise the risk of individual identification. This approach is crucial in maintaining the utility of the dataset while ensuring individual privacy. The aggregation level is carefully chosen to remove identifiable risks without excluding valuable data, thus balancing data utility with privacy concerns. Data Freshness Users should be aware that this dataset reflects historical consumption patterns and does not represent real-time data. Publish Frequency Annually Data Triage Review Frequency An annual review is conducted to ensure the dataset's relevance and accuracy, with adjustments made based on specific requests or evolving data trends. Data Specifications For the domestic water consumption dataset, the data specifications are designed to ensure comprehensiveness and relevance, while maintaining clarity and focus. The specifications for this dataset include: Each dataset encompasses recordings of domestic water consumption as measured and reported by the data publisher. It excludes commercial consumption. Where it is necessary to estimate consumption, this is calculated based on actual meter readings. Meters of all types (smart, dumb, AMR) are included in this dataset. The dataset is updated and published annually. Historical data may be made available to facilitate trend analysis and comparative studies, although it is not mandatory for each dataset release. Context Users are cautioned against using the dataset for immediate operational decisions regarding water supply management. The data should be interpreted considering potential seasonal and weather-related influences on water consumption patterns. The geographical data provided does not pinpoint locations of water meters within an LSOA. The dataset aims to cover a broad spectrum of households, from single-meter homes to those with multiple meters, to accurately reflect the diversity of water use within an LSOA.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Overview
This dataset offers valuable insights into yearly domestic water consumption across various Lower Super Output Areas (LSOAs) or Data Zones, accompanied by the count of water meters within each area. It is instrumental for analysing residential water use patterns, facilitating water conservation efforts, and guiding infrastructure development and policy making at a localised level.
Key Definitions
Aggregation
The process of summarising or grouping data to obtain a single or reduced set of information, often for analysis or reporting purposes.
AMR Meter
Automatic meter reading (AMR) is the technology of automatically collecting consumption, diagnostic, and status data from a water meter remotely and periodically.
Dataset
Structured and organised collection of related elements, often stored digitally, used for analysis and interpretation in various fields.
Data Zone
Data zones are the key geography for the dissemination of small area statistics in Scotland
Dumb Meter
A dumb meter or analogue meter is read manually. It does not have any external connectivity.
Granularity
Data granularity is a measure of the level of detail in a data structure. In time-series data, for example, the granularity of measurement might be based on intervals of years, months, weeks, days, or hours
ID
Abbreviation for Identification that refers to any means of verifying the unique identifier assigned to each asset for the purposes of tracking, management, and maintenance.
LSOA
Lower Layer Super Output Areas (LSOA) are a geographic hierarchy designed to improve the reporting of small area statistics in England and Wales.
Open Data Triage
The process carried out by a Data Custodian to determine if there is any evidence of sensitivities associated with Data Assets, their associated Metadata and Software Scripts used to process Data Assets if they are used as Open Data.
Schema
Structure for organising and handling data within a dataset, defining the attributes, their data types, and the relationships between different entities. It acts as a framework that ensures data integrity and consistency by specifying permissible data types and constraints for each attribute.
Smart Meter
A smart meter is an electronic device that records information and communicates it to the consumer and the supplier. It differs from automatic meter reading (AMR) in that it enables two-way communication between the meter and the supplier.
Units
Standard measurements used to quantify and compare different physical quantities.
Water Meter
Water metering is the practice of measuring water use. Water meters measure the volume of water used by residential and commercial building units that are supplied with water by a public water supply system.
Data History
Data Origin
Domestic consumption data is recorded using water meters. The consumption recorded is then sent back to water companies. This dataset is extracted from the water companies.
Data Triage Considerations
This section discusses the careful handling of data to maintain anonymity and addresses the challenges associated with data updates, such as identifying household changes or meter replacements.
Identification of Critical Infrastructure
This aspect is not applicable for the dataset, as the focus is on domestic water consumption and does not contain any information that reveals critical infrastructure details.
Commercial Risks and Anonymisation
Individual Identification Risks
There is a potential risk of identifying individuals or households if the consumption data is updated irregularly (e.g., every 6 months) and an out-of-cycle update occurs (e.g., after 2 months), which could signal a change in occupancy or ownership. Such patterns need careful handling to avoid accidental exposure of sensitive information.
Meter and Property Association
Challenges arise in maintaining historical data integrity when meters are replaced but the property remains the same. Ensuring continuity in the data without revealing personal information is crucial.
Interpretation of Null Consumption
Instances of null consumption could be misunderstood as a lack of water use, whereas they might simply indicate missing data. Distinguishing between these scenarios is vital to prevent misleading conclusions.
Meter Re-reads
The dataset must account for instances where meters are read multiple times for accuracy.
Joint Supplies & Multiple Meters per Household
Special consideration is required for households with multiple meters as well as multiple households that share a meter as this could complicate data aggregation.
Schema Consistency with the Energy Industry:
In formulating the schema for the domestic water consumption dataset, careful consideration was given to the potential risks to individual privacy. This evaluation included examining the frequency of data updates, the handling of property and meter associations, interpretations of null consumption, meter re-reads, joint suppliers, and the presence of multiple meters within a single household as described above.
After a thorough assessment of these factors and their implications for individual privacy, it was decided to align the dataset's schema with the standards established within the energy industry. This decision was influenced by the energy sector's experience and established practices in managing similar risks associated with smart meters. This ensures a high level of data integrity and privacy protection.
Schema
The dataset schema is aligned with those used in the energy industry, which has encountered similar challenges with smart meters. However, it is important to note that the energy industry has a much higher density of meter distribution, especially smart meters.
Aggregation to Mitigate Risks
The dataset employs an elevated level of data aggregation to minimise the risk of individual identification. This approach is crucial in maintaining the utility of the dataset while ensuring individual privacy. The aggregation level is carefully chosen to remove identifiable risks without excluding valuable data, thus balancing data utility with privacy concerns.
Data Freshness
Users should be aware that this dataset reflects historical consumption patterns and does not represent real-time data.
Publish Frequency
Annually
Data Triage Review Frequency
An annual review is conducted to ensure the dataset's relevance and accuracy, with adjustments made based on specific requests or evolving data trends.
Data Specifications
For the domestic water consumption dataset, the data specifications are designed to ensure comprehensiveness and relevance, while maintaining clarity and focus. The specifications for this dataset include:
·
Each
dataset encompasses recordings of domestic water consumption as measured and
reported by the data publisher. It excludes commercial consumption.
· Where it is necessary to estimate consumption, this is calculated based on actual meter readings.
· Meters of all types (smart, dumb, AMR) are included in this dataset.
·
The
dataset is updated and published annually.
·
Historical
data may be made available to facilitate trend analysis and comparative
studies, although it is not mandatory for each dataset release.
Context
Users are cautioned against using the dataset for immediate operational decisions regarding water supply management. The data should be interpreted considering potential seasonal and weather-related influences on water consumption patterns.
The geographical data provided does not pinpoint locations of water meters within an LSOA.
The dataset aims to cover a broad spectrum of households, from single-meter homes to those with multiple meters, to accurately reflect the diversity of water use within an LSOA.
Supplementary Information
Below is a curated selection of links for additional reading, which provide a deeper understanding of this dataset.
Ofwat guidance on water meters
https://www.ofwat.gov.uk/wp-content/uploads/2015/11/prs_lft_101117meters.pdf
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Data HistoryData OriginDomestic consumption data is recorded using water meters. The consumption recorded is then sent back to water companies. This dataset is extracted from the water companies.Data Triage ConsiderationsThis section discusses the careful handling of data to maintain anonymity and addresses the challenges associated with data updates, such as identifying household changes or meter replacements.Identification of Critical InfrastructureThis aspect is not applicable for the dataset, as the focus is on domestic water consumption and does not contain any information that reveals critical infrastructure details.Individual Identification RisksThere is a potential risk of identifying individuals or households if the consumption data is updated irregularly (e.g., every 6 months) and an out-of-cycle update occurs (e.g., after 2 months), which could signal a change in occupancy or ownership. Such patterns need careful handling to avoid accidental exposure of sensitive information.Meter and Property AssociationChallenges arise in maintaining historical data integrity when meters are replaced but the property remains the same. Ensuring continuity in the data without revealing personal information is crucial.Interpretation of Null ConsumptionInstances of null consumption could be misunderstood as a lack of water use, whereas they might simply indicate missing data. Distinguishing between these scenarios is vital to prevent misleading conclusions.Meter Re-readsThe dataset must account for instances where meters are read multiple times for accuracy.Joint Supplies & Multiple Meters per HouseholdSpecial consideration is required for households with multiple meters as well as multiple households that share a meter as this could complicate data aggregation.Schema Consistency with the Energy Industry:In formulating the schema for the domestic water consumption dataset, careful consideration was given to the potential risks to individual privacy. This evaluation included examining the frequency of data updates, the handling of property and meter associations, interpretations of null consumption, meter re-reads, joint suppliers, and the presence of multiple meters within a single household as described above.After a thorough assessment of these factors and their implications for individual privacy, it was decided to align the dataset's schema with the standards established within the energy industry. This decision was influenced by the energy sector's experience and established practices in managing similar risks associated with smart meters. This ensures a high level of data integrity and privacy protection.SchemaThe dataset schema is aligned with those used in the energy industry, which has encountered similar challenges with smart meters. However, it is important to note that the energy industry has a much higher density of meter distribution, especially smart meters.Aggregation to Mitigate RisksThe dataset employs an elevated level of data aggregation to minimise the risk of individual identification. This approach is crucial in maintaining the utility of the dataset while ensuring individual privacy. The aggregation level is carefully chosen to remove identifiable risks without excluding valuable data, thus balancing data utility with privacy concerns.Data FreshnessUsers should be aware that this dataset reflects historical consumption patterns and does not represent real-time data.Publish FrequencyAnnuallyData Triage Review FrequencyAn annual review is conducted to ensure the dataset's relevance and accuracy, with adjustments made based on specific requests or evolving data trends.Data SpecificationsFor the domestic water consumption dataset, the data specifications are designed to ensure comprehensiveness and relevance, while maintaining clarity and focus. The specifications for this dataset include:Each dataset encompasses recordings of domestic water consumption as measured and reported by the data publisher. It excludes commercial consumption.Consumption for calendar year dates is calculated based on actual meter readings.Meters of all types (smart, dumb, AMR) are included in this dataset.The dataset is updated and published annually.The dataset includes LSOAs with 10 or more meters. Any LSOAs with less than 10 meters have been excluded.The dataset includes only meters that are currently shown as active.The dataset excludes any meters where consumption is recorded as null.ContextUsers are cautioned against using the dataset for immediate operational decisions regarding water supply management. The data should be interpreted considering potential seasonal and weather-related influences on water consumption patterns.The geographical data provided does not pinpoint locations of water meters within an LSOA.The dataset aims to cover a broad spectrum of households, from single-meter homes to those with multiple meters, to accurately reflect the diversity of water use within an LSOA.This dataset has been calculated using actual read data. To align reads to calendar year, our approach uses a combination of previous and next usage readings, along with the number of days between these readings to calculate the total consumption.Supplementary InformationBelow is a curated selection of links for additional reading, which provide a deeper understanding of this dataset:Ofwat guidance on water metersData SchemaDATA_SOURCE: Company that provided the dataYEAR: The calendar year covered by the dataLSOA_CODE: LSOA or Data Zone converted code of the meter locationNUMBER_OF_METERS: Number of meters within an LSOATOTAL_CONSUMPTION: Total consumption within the LSOATOTAL_CONSUMPTION_UNITS: Units for total consumption
Open Government Licence - Canada 2.0https://open.canada.ca/en/open-government-licence-canada
License information was derived automatically
In recent years, utility companies in several provinces have started installing wireless smart meters in Canadian businesses and residences. Some people have expressed concern about the possibility of health effects from exposure to the radiofrequency fields that these devices emit.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
OverviewThis dataset offers valuable insights into yearly domestic water consumption across various Lower Super Output Areas (LSOAs) or Data Zones, accompanied by the count of water meters within each area. It is instrumental for analysing residential water use patterns, facilitating water conservation efforts, and guiding infrastructure development and policy making at a localised level.Key DefinitionsAggregation The process of summarising or grouping data to obtain a single or reduced set of information, often for analysis or reporting purposes. AMR MeterAutomatic meter reading (AMR) is the technology of automatically collecting consumption, diagnostic, and status data from a water meter remotely and periodically.Dataset Structured and organised collection of related elements, often stored digitally, used for analysis and interpretation in various fields.Data ZoneData zones are the key geography for the dissemination of small area statistics in ScotlandDumb MeterA dumb meter or analogue meter is read manually. It does not have any external connectivity.Granularity Data granularity is a measure of the level of detail in a data structure. In time-series data, for example, the granularity of measurement might be based on intervals of years, months, weeks, days, or hours.ID Abbreviation for Identification that refers to any means of verifying the unique identifier assigned to each asset for the purposes of tracking, management, and maintenance. LSOALower Layer Super Output Areas (LSOA) are a geographic hierarchy designed to improve the reporting of small area statistics in England and Wales.Open Data Triage The process carried out by a Data Custodian to determine if there is any evidence of sensitivities associated with Data Assets, their associated Metadata and Software Scripts used to process Data Assets if they are used as Open Data. Schema Structure for organising and handling data within a dataset, defining the attributes, their data types, and the relationships between different entities. It acts as a framework that ensures data integrity and consistency by specifying permissible data types and constraints for each attribute. Smart MeterA smart meter is an electronic device that records information and communicates it to the consumer and the supplier. It differs from automatic meter reading (AMR) in that it enables two-way communication between the meter and the supplier.Units Standard measurements used to quantify and compare different physical quantities.Water MeterWater metering is the practice of measuring water use. Water meters measure the volume of water used by residential and commercial building units that are supplied with water by a public water supply system.Data HistoryData Origin Domestic consumption data is recorded using water meters. The consumption recorded is then sent back to water companies. This dataset is extracted from the water companies.Data Triage ConsiderationsThis section discusses the careful handling of data to maintain anonymity and addresses the challenges associated with data updates, such as identifying household changes or meter replacements.Identification of Critical InfrastructureThis aspect is not applicable for the dataset, as the focus is on domestic water consumption and does not contain any information that reveals critical infrastructure details.Commercial Risks and AnonymisationIndividual Identification RisksThere is a potential risk of identifying individuals or households if the consumption data is updated irregularly (e.g., every 6 months) and an out-of-cycle update occurs (e.g., after 2 months), which could signal a change in occupancy or ownership. Such patterns need careful handling to avoid accidental exposure of sensitive information.Meter and Property AssociationChallenges arise in maintaining historical data integrity when meters are replaced but the property remains the same. Ensuring continuity in the data without revealing personal information is crucial.Interpretation of Null ConsumptionInstances of null consumption could be misunderstood as a lack of water use, whereas they might simply indicate missing data. Distinguishing between these scenarios is vital to prevent misleading conclusions.Meter Re-reads The dataset must account for instances where meters are read multiple times for accuracy.Joint Supplies & Multiple Meters per Household Special consideration is required for households with multiple meters as well as multiple households that share a meter as this could complicate data aggregation.Schema Consistency with the Energy IndustryIn formulating the schema for the domestic water consumption dataset, careful consideration was given to the potential risks to individual privacy. This evaluation included examining the frequency of data updates, the handling of property and meter associations, interpretations of null consumption, meter re-reads, joint suppliers, and the presence of multiple meters within a single household as described above. After a thorough assessment of these factors and their implications for individual privacy, it was decided to align the dataset's schema with the standards established within the energy industry. This decision was influenced by the energy sector's experience and established practices in managing similar risks associated with smart meters. This ensures a high level of data integrity and privacy protection.SchemaThe dataset schema is aligned with those used in the energy industry, which has encountered similar challenges with smart meters. However, it is important to note that the energy industry has a much higher density of meter distribution, especially smart meters. Aggregation to Mitigate RisksThe dataset employs an elevated level of data aggregation to minimise the risk of individual identification. This approach is crucial in maintaining the utility of the dataset while ensuring individual privacy. The aggregation level is carefully chosen to remove identifiable risks without excluding valuable data, thus balancing data utility with privacy concerns.Data Triage Review FrequencyAn annual review is conducted to ensure the dataset's relevance and accuracy, with adjustments made based on specific requests or evolving data trends.Data FreshnessUsers should be aware that this dataset reflects historical consumption patterns and does not represent real-time data.Publish FrequencyAnnuallyData SpecificationsFor the domestic water consumption dataset, the data specifications are designed to ensure comprehensiveness and relevance, while maintaining clarity and focus. The specifications for this dataset include:• Each dataset encompasses recordings of domestic water consumption as measured and reported by the data publisher. It excludes commercial consumption.• Where it is necessary to estimate consumption, this is calculated based on actual meter readings.• Meters of all types (smart, dumb, AMR) are included in this dataset.• The dataset is updated and published annually.• Historical data may be made available to facilitate trend analysis and comparative studies, although it is not mandatory for each dataset release.• The dataset includes LSOAs with 2 or more meters. Any LSOAs with less than 2 meters have been excluded.Context Users are cautioned against using the dataset for immediate operational decisions regarding water supply management. The data should be interpreted considering potential seasonal and weather-related influences on water consumption patterns.The geographical data provided does not pinpoint locations of water meters within an LSOA. The dataset aims to cover a broad spectrum of households, from single-meter homes to those with multiple meters, or a single meter for multiple domestic units, to accurately reflect the diversity of water use within an LSOA.This dataset has been aggregated from actual read data and does not use estimated values to align reads to calendar years. Our approach subtracts the latest meter read from the preceding year from the latest meter read in the reported year; this is divided by the number of days between the two reads to obtain an average daily consumption. Data are removed from meters considered as void for seven or more months during the year. Void properties are those within the company’s supply area, which are connected for either a water service only, a wastewater service only or both services but do not receive a charge, as there are no occupants.Supplementary InformationBelow is a curated selection of links for additional reading, which provide a deeper understanding of this dataset. 1. Ofwat guidance on water meters: https://www.ofwat.gov.uk/wp-content/uploads/2015/11/prs_lft_101117meters.pdf2. Wessex Water performance commitment data on void sites: https://marketplace.wessexwater.co.uk/dataset/void-sites-performance-commitment-data
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Data History
Data Origin
Domestic consumption data is recorded using water meters. The consumption recorded is then sent back to water companies. This dataset is extracted from the water companies.
Data Triage Considerations
This section discusses the careful handling of data to maintain anonymity and addresses the challenges associated with data updates, such as identifying household changes or meter replacements.
Identification of Critical Infrastructure
This aspect is not applicable for the dataset, as the focus is on domestic water consumption and does not contain any information that reveals critical infrastructure details.
Commercial Risks and Anonymisation Individual Identification Risks
There is a potential risk of identifying individuals or households if the consumption data is updated irregularly (e.g., every 6 months) and an out-of-cycle update occurs (e.g., after 2 months), which could signal a change in occupancy or ownership. Such patterns need careful handling to avoid accidental exposure of sensitive information.
Meter and Property Association
Challenges arise in maintaining historical data integrity when meters are replaced but the property remains the same. Ensuring continuity in the data without revealing personal information is crucial.
Interpretation of Null Consumption
Instances of null consumption could be misunderstood as a lack of water use, whereas they might simply indicate missing data. Distinguishing between these scenarios is vital to prevent misleading conclusions.
Meter Re-reads
The dataset must account for instances where meters are read multiple times for accuracy.
Joint Supplies & Multiple Meters per Household
Special consideration is required for households with multiple meters as well as multiple households that share a meter as this could complicate data aggregation.
Schema Consistency with the Energy Industry
In formulating the schema for the domestic water consumption dataset, careful consideration was given to the potential risks to individual privacy. This evaluation included examining the frequency of data updates, the handling of property and meter associations, interpretations of null consumption, meter re-reads, joint suppliers, and the presence of multiple meters within a single household as described above.
After a thorough assessment of these factors and their implications for individual privacy, it was decided to align the dataset's schema with the standards established within the energy industry. This decision was influenced by the energy sector's experience and established practices in managing similar risks associated with smart meters. This ensures a high level of data integrity and privacy protection.
Schema The dataset schema is aligned with those used in the energy industry, which has encountered similar challenges with smart meters. However, it is important to note that the energy industry has a much higher density of meter distribution, especially smart meters.
Aggregation to Mitigate Risks The dataset employs an elevated level of data aggregation to minimise the risk of individual identification. This approach is crucial in maintaining the utility of the dataset while ensuring individual privacy. The aggregation level is carefully chosen to remove identifiable risks without excluding valuable data, thus balancing data utility with privacy concerns.
Data Freshness Users should be aware that this dataset reflects historical consumption patterns and does not represent real-time data. Publish Frequency Weekly.
Data Triage Review Frequency An annual review is conducted to ensure the dataset's relevance and accuracy, with adjustments made based on specific requests or evolving data trends.
Data Specifications For the domestic water consumption dataset, the data specifications are designed to ensure comprehensiveness and relevance, while maintaining clarity and focus. The specifications for this dataset include: • Each dataset encompasses recordings of domestic water consumption as measured and reported by the data publisher. It excludes commercial consumption. • Where it is necessary to estimate consumption, this is calculated based on actual meter readings. • Meters of all types (smart, dumb, AMR) are included in this dataset. • The dataset is updated and published Weekly. • Historical data may be made available to facilitate trend analysis and comparative studies, although it is not mandatory for each dataset release. • The dataset includes LSOAs with 2 or more meters. Any LSOAs with less than 2 meters have been excluded. • Consumption data is only included where we have the full consumption data for a year for a given meter.
Context Users are cautioned against using the dataset for immediate operational decisions regarding water supply management. The data should be interpreted considering potential seasonal and weather-related influences on water consumption patterns.
The geographical data provided does not pinpoint locations of water meters within an LSOA.
The dataset aims to cover a broad spectrum of households, from single-meter homes to those with multiple meters, to accurately reflect the diversity of water use within an LSOA.
Supplementary InformationBelow is a curated selection of links for additional reading, which provide a deeper understanding of this dataset.1.Ofwat guidance on water meters. https://www.ofwat.gov.uk/wp-content/uploads/2015/11/prs_lft_101117meters.pdf Data Schema DATA_SOURCE: Company that provided the data YEAR: The calendar year covered by the data LSOA_CODE: LSOA or Data Zone converted code of the meter location NUMBER_OF_METERS: Number of meters within an LSOA TOTAL_CONSUMPTION: Average consumption within the LSOA TOTAL_CONSUMPTION_UNITS: Units for average consumption
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This dataset offers valuable insights into yearly domestic water consumption across various Lower Super Output Areas (LSOAs) or Data Zones, accompanied by the count of water meters within each area. It is instrumental for analysing residential water use patterns, facilitating water conservation efforts, and guiding infrastructure development and policy making at a localised level.Data HistoryData OriginDomestic consumption data is recorded using water meters. The consumption recorded is then sent back to water companies. This dataset is extracted from the water companies.Data Triage ConsiderationsThis section discusses the careful handling of data to maintain anonymity and addresses the challenges associated with data updates, such as identifying household changes or meter replacements.Identification of Critical InfrastructureThis aspect is not applicable for the dataset, as the focus is on domestic water consumption and does not contain any information that reveals critical infrastructure details.Commercial Risks and AnonymisationIndividual Identification RisksThere is a potential risk of identifying individuals or households if the consumption data is updated irregularly (e.g., every 6 months) and an out-of-cycle update occurs (e.g., after 2 months), which could signal a change in occupancy or ownership. Such patterns need careful handling to avoid accidental exposure of sensitive information.Meter and Property AssociationChallenges arise in maintaining historical data integrity when meters are replaced but the property remains the same. Ensuring continuity in the data without revealing personal information is crucial.Interpretation of Null ConsumptionInstances of null consumption could be misunderstood as a lack of water use, whereas they might simply indicate missing data. Distinguishing between these scenarios is vital to prevent misleading conclusions.Meter Re-readsThe dataset must account for instances where meters are read multiple times for accuracy.Joint Supplies & Multiple Meters per HouseholdSpecial consideration is required for households with multiple meters as well as multiple households that share a meter as this could complicate data aggregation.Schema Consistency with the Energy IndustryIn formulating the schema for the domestic water consumption dataset, careful consideration was given to the potential risks to individual privacy. This evaluation included examining the frequency of data updates, the handling of property and meter associations, interpretations of null consumption, meter re-reads, joint suppliers, and the presence of multiple meters within a single household as described above.After a thorough assessment of these factors and their implications for individual privacy, it was decided to align the dataset's schema with the standards established within the energy industry. This decision was influenced by the energy sector's experience and established practices in managing similar risks associated with smart meters. This ensures a high level of data integrity and privacy protection.SchemaThe dataset schema is aligned with those used in the energy industry, which has encountered similar challenges with smart meters. However, it is important to note that the energy industry has a much higher density of meter distribution, especially smart meters.Aggregation to Mitigate RisksThe dataset employs an elevated level of data aggregation to minimise the risk of individual identification. This approach is crucial in maintaining the utility of the dataset while ensuring individual privacy. The aggregation level is carefully chosen to remove identifiable risks without excluding valuable data, thus balancing data utility with privacy concerns.Data FreshnessUsers should be aware that this dataset reflects historical consumption patterns and does not represent real-time data.Publish FrequencyAnnually (1st of April to the 31st of March)Data Triage Review FrequencyAn annual review is conducted to ensure the dataset's relevance and accuracy, with adjustments made based on specific requests or evolving data trends.Data SpecificationsFor the domestic water consumption dataset, the data specifications are designed to ensure comprehensiveness and relevance, while maintaining clarity and focus. The specifications for this dataset include:Each dataset encompasses recordings of domestic water consumption as measured and reported by the data publisher. It excludes commercial consumption.Where it is necessary to estimate consumption, this is calculated based on actual meter readings.Meters of all types (smart, dumb, AMR) are included in this dataset.The dataset is updated and published annually (1st of April to the 31st of March).Historical data may be made available to facilitate trend analysis and comparative studies, although it is not mandatory for each dataset release.The dataset includes LSOAs with 10 or more meters. Any LSOAs with less than 10 meters have been excluded.ContextUsers are cautioned against using the dataset for immediate operational decisions regarding water supply management. The data should be interpreted considering potential seasonal and weather-related influences on water consumption patterns.The geographical data provided does not pinpoint locations of water meters within an LSOA.The dataset aims to cover a broad spectrum of households, from single-meter homes to those with multiple meters, to accurately reflect the diversity of water use within an LSOA.Supplementary InformationBelow is a curated selection of links for additional reading, which provide a deeper understanding of this dataset:Stream - The Value of a Domestic Consumption Data Use Case: https://www.streamwaterdata.co.uk/apps/0742154c5c1547cb8df235ccf2f66d57/exploreOfwat - Guidance on water meters: https://www.ofwat.gov.uk/wp-content/uploads/2015/11/prs_lft_101117meters.pdf
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Data History
Data Origin
Domestic consumption data is recorded using water meters. The consumption recorded is then sent back to water companies. This dataset is extracted from the water companies.
Data Triage Considerations
This section discusses the careful handling of data to maintain anonymity and addresses the challenges associated with data updates, such as identifying household changes or meter replacements.
Identification of Critical Infrastructure
This aspect is not applicable for the dataset, as the focus is on domestic water consumption and does not contain any information that reveals critical infrastructure details.
Commercial Risks and Anonymisation Individual Identification Risks
There is a potential risk of identifying individuals or households if the consumption data is updated irregularly (e.g., every 6 months) and an out-of-cycle update occurs (e.g., after 2 months), which could signal a change in occupancy or ownership. Such patterns need careful handling to avoid accidental exposure of sensitive information.
Meter and Property Association
Challenges arise in maintaining historical data integrity when meters are replaced but the property remains the same. Ensuring continuity in the data without revealing personal information is crucial.
Interpretation of Null Consumption
Instances of null consumption could be misunderstood as a lack of water use, whereas they might simply indicate missing data. Distinguishing between these scenarios is vital to prevent misleading conclusions.
Meter Re-reads
The dataset must account for instances where meters are read multiple times for accuracy.
Joint Supplies & Multiple Meters per Household
Special consideration is required for households with multiple meters as well as multiple households that share a meter as this could complicate data aggregation.
Schema Consistency with the Energy Industry
In formulating the schema for the domestic water consumption dataset, careful consideration was given to the potential risks to individual privacy. This evaluation included examining the frequency of data updates, the handling of property and meter associations, interpretations of null consumption, meter re-reads, joint suppliers, and the presence of multiple meters within a single household as described above.
After a thorough assessment of these factors and their implications for individual privacy, it was decided to align the dataset's schema with the standards established within the energy industry. This decision was influenced by the energy sector's experience and established practices in managing similar risks associated with smart meters. This ensures a high level of data integrity and privacy protection.
Schema The dataset schema is aligned with those used in the energy industry, which has encountered similar challenges with smart meters. However, it is important to note that the energy industry has a much higher density of meter distribution, especially smart meters.
Aggregation to Mitigate Risks The dataset employs an elevated level of data aggregation to minimise the risk of individual identification. This approach is crucial in maintaining the utility of the dataset while ensuring individual privacy. The aggregation level is carefully chosen to remove identifiable risks without excluding valuable data, thus balancing data utility with privacy concerns.
Data Freshness Users should be aware that this dataset reflects historical consumption patterns and does not represent real-time data. Publish Frequency Weekly.
Data Triage Review Frequency An annual review is conducted to ensure the dataset's relevance and accuracy, with adjustments made based on specific requests or evolving data trends.
Data Specifications For the domestic water consumption dataset, the data specifications are designed to ensure comprehensiveness and relevance, while maintaining clarity and focus. The specifications for this dataset include: • Each dataset encompasses recordings of domestic water consumption as measured and reported by the data publisher. It excludes commercial consumption. • Where it is necessary to estimate consumption, this is calculated based on actual meter readings. • Meters of all types (smart, dumb, AMR) are included in this dataset. • The dataset is updated and published Weekly. • Historical data may be made available to facilitate trend analysis and comparative studies, although it is not mandatory for each dataset release. • The dataset includes LSOAs with 2 or more meters. Any LSOAs with less than 2 meters have been excluded. • Consumption data is only included where we have the full consumption data for a year for a given meter.
Context Users are cautioned against using the dataset for immediate operational decisions regarding water supply management. The data should be interpreted considering potential seasonal and weather-related influences on water consumption patterns.
The geographical data provided does not pinpoint locations of water meters within an LSOA.
The dataset aims to cover a broad spectrum of households, from single-meter homes to those with multiple meters, to accurately reflect the diversity of water use within an LSOA.
Supplementary InformationBelow is a curated selection of links for additional reading, which provide a deeper understanding of this dataset.1.Ofwat guidance on water meters. https://www.ofwat.gov.uk/wp-content/uploads/2015/11/prs_lft_101117meters.pdf Data Schema DATA_SOURCE: Company that provided the data YEAR: The calendar year covered by the data LSOA_CODE: LSOA or Data Zone converted code of the meter location NUMBER_OF_METERS: Number of meters within an LSOA TOTAL_CONSUMPTION: Average consumption within the LSOA TOTAL_CONSUMPTION_UNITS: Units for average consumption
http://opendatacommons.org/licenses/dbcl/1.0/http://opendatacommons.org/licenses/dbcl/1.0/
This dataset contains IoT-based data designed to track and analyze the carbon footprint of individuals, based on various factors such as energy consumption, transportation activity, and environmental conditions. The dataset includes 10,000 entries, each representing an individual, with the following features:
Person_ID: A unique identifier for each individual (from 1 to 10,000). Energy_Usage_kWh: The total daily energy consumption in kilowatt-hours, tracked via smart meters. Values range from 2 to 50 kWh. Transportation_Distance_km: The total daily distance traveled by the individual in kilometers, tracked via GPS. Values range from 0 to 100 km. Vehicle_Type: The mode of transportation used by the individual, with possible values: "Car", "Bus", "Walking", and "Electric Vehicle." (Note: "Bike" has been excluded). Smart_Appliance_Usage_hours: The daily usage (in hours) of smart appliances within the home, ranging from 1 to 12 hours. Renewable_Energy_Usage_percent: The percentage of energy usage that comes from renewable sources, ranging from 0% to 100%. Building_Type: The type of building where the individual resides, with possible values: "Residential" and "Commercial." Temperature_C: The ambient temperature in Celsius, tracked by smart thermostats or weather stations, ranging from -10°C to 40°C. Humidity_percent: The percentage of humidity, tracked by IoT humidity sensors, with values ranging from 20% to 90%. Carbon_Emission_kgCO2: The estimated carbon emissions (in kilograms of CO₂) resulting from the individual's energy usage and transportation activities
Attribution-NonCommercial 4.0 (CC BY-NC 4.0)https://creativecommons.org/licenses/by-nc/4.0/
License information was derived automatically
Overview
This dataset is designed to analyze the relationship between cyber attacks, geographic locations, and Internet of Things (IoT) device types. The data has been collected from multiple sources, including cybersecurity incident reports, infrastructure data, environmental conditions, and transportation networks. With a total of 65,450 records, this dataset provides valuable insights for cybersecurity research, smart cities, and artificial intelligence applications.
Dataset Columns and Their Descriptions 1. ID This is a unique identifier assigned to each record in the dataset. It is stored as an integer and serves as the primary key for tracking individual entries.
Latitude This column represents the latitude coordinate of the geographic location where the cyber attack or IoT device activity occurred. It is stored as a floating-point number, with values ranging from -90 to 90.
Longitude Similar to latitude, this column stores the longitude coordinate of the location. It is also a floating-point number, with values ranging from -180 to 180.
Location Type This field describes the type of location where the cyber attack or IoT device was recorded. It is stored as a categorical string and includes values such as "Railway," "Gas Station," "Hospital," "City Boundary," and "River".
Elevation (m) This column contains the elevation of the recorded location, measured in meters above sea level. It is a floating-point number, typically ranging from 0 to 5000 meters.
Population Density (people/km²) This field provides the population density of the given location, measured in people per square kilometer. It is stored as an integer, with values ranging from 50 to 10,000.
Temperature (°C) This column records the temperature at the time of the cyber attack or IoT device activity, measured in degrees Celsius. It is stored as a floating-point number, with values between -30 and 50°C.
Humidity (%) This field represents the relative humidity of the location at the time of the event. It is stored as a floating-point number, with values ranging from 10% to 100%.
Rainfall (mm) This column captures the amount of rainfall in the location at the given time, measured in millimeters. It is stored as a floating-point number, with values ranging from 0 to 300 mm.
Infrastructure Type This field indicates the type of infrastructure present at the location of the event. It is stored as a categorical string and includes values like "Bridge," "Sewage System," "Dam," and "Power Line."
Air Quality Index (AQI) This column records the Air Quality Index (AQI) at the time of the attack or device activity. It is stored as an integer, with values ranging from 0 (clean air) to 500 (hazardous air quality).
Traffic Flow (vehicles/hour) This field provides the number of vehicles passing through the location per hour. It is stored as an integer, typically ranging from 100 to 5000 vehicles per hour.
Public Transport Station This column describes the nearest public transport station to the event location. It is stored as a categorical string and includes values such as "Bus Stop," "Metro Station," and "None."
Cyber Attack Type This field identifies the type of cyber attack recorded at the given location. It is stored as a categorical string and includes values like "Phishing," "DDoS," "Malware," "Zero-Day Exploit," and "SQL Injection."
IoT Device Category This column categorizes the type of IoT device involved in the event. It is stored as a categorical string and includes categories like "Smart Home," "Industrial IoT," "Smart City," "Wearable," and "Healthcare IoT."
IoT Device Type This field provides a more detailed classification of the specific IoT device within the assigned category. It is stored as a categorical string and includes values such as "Smartwatch," "Security Camera," "IoT Sensor," "Smart Meter," and "Remote Patient Monitor."
This dataset is structured to enable comprehensive cybersecurity, geospatial, and AI-driven analyses, making it valuable for research in cyber attack prevention, IoT security, and smart city planning.
Dataset Contents The dataset includes geographic information such as latitude, longitude, and elevation, which help identify the most targeted areas for cyber attacks. It also contains population data, allowing for an analysis of how population density influences cyber threats. Environmental factors like temperature, humidity, and rainfall are included, providing insights into the impact of weather conditions on IoT security.
Additionally, the dataset contains infrastructure-related data such as the type of facilities present at the attack locations, including bridges, sewage systems, and power lines. It also includes information on air quality (AQI index) and traffic flow data, helping analyze how congestion levels might be linked to cyber threats...
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This repository contains raw datasets gathered under the EPSRC-funded Humanitarian Engineering and Energy for Displacement (HEED) research project (EP/P029531/1). The project aimed to understand energy needs of displaced communities by creating an evidence base on the usage of seven different energy interventions, and provide recommendations for improved design of future energy interventions to better meet the needs of people. Below is a brief description of the interventions.
Not seeing a result you expected?
Learn how you can add new datasets to our index.
Open Government Licence - Canada 2.0https://open.canada.ca/en/open-government-licence-canada
License information was derived automatically
In recent years, utility companies in several provinces have started installing wireless smart meters in Canadian businesses and residences. Some people have expressed concern about the possibility of health effects from exposure to the radiofrequency fields that these devices emit.