100+ datasets found
  1. Covid-19 variants survival data

    • kaggle.com
    zip
    Updated Jan 2, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Massock Batalong Maurice Blaise (2025). Covid-19 variants survival data [Dataset]. https://www.kaggle.com/datasets/lumierebatalong/covid-19-variants-survival-data
    Explore at:
    zip(216589 bytes)Available download formats
    Dataset updated
    Jan 2, 2025
    Authors
    Massock Batalong Maurice Blaise
    License

    Apache License, v2.0https://www.apache.org/licenses/LICENSE-2.0
    License information was derived automatically

    Description

    Overview:

    This dataset provides a unique resource for researchers and data scientists interested in the global dynamics of the COVID-19 pandemic. It focuses on the impact of different SARS-CoV-2 variants and mutations on the duration of local epidemics. By combining variant information with epidemiological data, this dataset allows for a comprehensive analysis of factors influencing the trajectory of the pandemic.

    Key Features:

    • Global Coverage: Includes data from multiple countries.
    • Variant-Specific Information: Detailed records for various SARS-CoV-2 variants.
    • Epidemic Duration: Data on the duration of local epidemics, accounting for right-censoring.
    • Epidemiological Variables: Includes mortality rates, a proxy for R0, transmission proxies, and other pertinent variables.
    • Geographical characteristics: Include a continent variable for exploring geographical patterns
    • Time varying variables: Include the number of waves and the number of variants in the different countries for more in-depth exploration.

    Data Source: The data combines information from the Johns Hopkins University COVID-19 dataset (confirmed_cases.csv and deaths_cases.csv) and the covariants.org dataset (variants.csv). The dataset you see here is the combination of two datasets from Johns Hopkins University and covariants.org.

    Questions to Inspire Users:

    This dataset is designed for a diverse set of analytical questions. Here are some ideas to inspire the Kaggle community:

    Survival Analysis:

    1. How do different SARS-CoV-2 variants influence the duration of local epidemics?
    2. Which factors (mortality, R0, etc.) are most strongly associated with shorter or longer epidemic durations?
    3. Does the type of variant/mutation (mutation,S, Omicron, Delta, Other) have a significant impact on epidemic duration?
    4. Is there a geographical pattern to the duration of epidemics?

    Epidemiological Analysis:

    1. How do local transmission rates (represented by our proxy of R0) affect the duration of an epidemic?
    2. Do countries with higher mortality rates have different patterns of epidemic progression?
    3. How can we predict the duration of an epidemic based on its initial characteristics?
    4. How does the number of epidemic waves impact the duration of an epidemic?
    5. Does the number of variants in a country affect the duration of an épidémie?

    Data Science/Machine Learning:

    1. Can we develop a machine learning model to predict the duration of an epidemic?
    2. What features have the best predictive power ?
    3. Can we identify clusters of variants/regions with similar epidemic patterns?
    4. Are there interactions between variables that can explain the non-linearities that we have identified ?
  2. g

    Coronavirus (Covid-19) Data in the United States

    • github.com
    • openicpsr.org
    • +4more
    csv
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    New York Times, Coronavirus (Covid-19) Data in the United States [Dataset]. https://github.com/nytimes/covid-19-data
    Explore at:
    csvAvailable download formats
    Dataset provided by
    New York Times
    License

    https://github.com/nytimes/covid-19-data/blob/master/LICENSEhttps://github.com/nytimes/covid-19-data/blob/master/LICENSE

    Description

    The New York Times is releasing a series of data files with cumulative counts of coronavirus cases in the United States, at the state and county level, over time. We are compiling this time series data from state and local governments and health departments in an attempt to provide a complete record of the ongoing outbreak.

    Since the first reported coronavirus case in Washington State on Jan. 21, 2020, The Times has tracked cases of coronavirus in real time as they were identified after testing. Because of the widespread shortage of testing, however, the data is necessarily limited in the picture it presents of the outbreak.

    We have used this data to power our maps and reporting tracking the outbreak, and it is now being made available to the public in response to requests from researchers, scientists and government officials who would like access to the data to better understand the outbreak.

    The data begins with the first reported coronavirus case in Washington State on Jan. 21, 2020. We will publish regular updates to the data in this repository.

  3. COVID-19 Dataset

    • kaggle.com
    zip
    Updated Nov 13, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Meir Nizri (2022). COVID-19 Dataset [Dataset]. https://www.kaggle.com/datasets/meirnizri/covid19-dataset
    Explore at:
    zip(4890659 bytes)Available download formats
    Dataset updated
    Nov 13, 2022
    Authors
    Meir Nizri
    License

    https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/

    Description

    Context

    Coronavirus disease (COVID-19) is an infectious disease caused by a newly discovered coronavirus. Most people infected with COVID-19 virus will experience mild to moderate respiratory illness and recover without requiring special treatment. Older people, and those with underlying medical problems like cardiovascular disease, diabetes, chronic respiratory disease, and cancer are more likely to develop serious illness. During the entire course of the pandemic, one of the main problems that healthcare providers have faced is the shortage of medical resources and a proper plan to efficiently distribute them. In these tough times, being able to predict what kind of resource an individual might require at the time of being tested positive or even before that will be of immense help to the authorities as they would be able to procure and arrange for the resources necessary to save the life of that patient.

    The main goal of this project is to build a machine learning model that, given a Covid-19 patient's current symptom, status, and medical history, will predict whether the patient is in high risk or not.

    content

    The dataset was provided by the Mexican government (link). This dataset contains an enormous number of anonymized patient-related information including pre-conditions. The raw dataset consists of 21 unique features and 1,048,576 unique patients. In the Boolean features, 1 means "yes" and 2 means "no". values as 97 and 99 are missing data.

    • sex: 1 for female and 2 for male.
    • age: of the patient.
    • classification: covid test findings. Values 1-3 mean that the patient was diagnosed with covid in different degrees. 4 or higher means that the patient is not a carrier of covid or that the test is inconclusive.
    • patient type: type of care the patient received in the unit. 1 for returned home and 2 for hospitalization.
    • pneumonia: whether the patient already have air sacs inflammation or not.
    • pregnancy: whether the patient is pregnant or not.
    • diabetes: whether the patient has diabetes or not.
    • copd: Indicates whether the patient has Chronic obstructive pulmonary disease or not.
    • asthma: whether the patient has asthma or not.
    • inmsupr: whether the patient is immunosuppressed or not.
    • hypertension: whether the patient has hypertension or not.
    • cardiovascular: whether the patient has heart or blood vessels related disease.
    • renal chronic: whether the patient has chronic renal disease or not.
    • other disease: whether the patient has other disease or not.
    • obesity: whether the patient is obese or not.
    • tobacco: whether the patient is a tobacco user.
    • usmr: Indicates whether the patient treated medical units of the first, second or third level.
    • medical unit: type of institution of the National Health System that provided the care.
    • intubed: whether the patient was connected to the ventilator.
    • icu: Indicates whether the patient had been admitted to an Intensive Care Unit.
    • date died: If the patient died indicate the date of death, and 9999-99-99 otherwise.
  4. T

    World Coronavirus COVID-19 Deaths

    • tradingeconomics.com
    csv, excel, json, xml
    Updated Mar 9, 2020
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    TRADING ECONOMICS (2020). World Coronavirus COVID-19 Deaths [Dataset]. https://tradingeconomics.com/world/coronavirus-deaths
    Explore at:
    excel, csv, xml, jsonAvailable download formats
    Dataset updated
    Mar 9, 2020
    Dataset authored and provided by
    TRADING ECONOMICS
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Jan 4, 2020 - May 17, 2023
    Area covered
    World
    Description

    The World Health Organization reported 6932591 Coronavirus Deaths since the epidemic began. In addition, countries reported 766440796 Coronavirus Cases. This dataset provides - World Coronavirus Deaths- actual values, historical data, forecast, chart, statistics, economic calendar and news.

  5. Pre-existing conditions of people who died due to coronavirus (COVID-19),...

    • ons.gov.uk
    • cy.ons.gov.uk
    xlsx
    Updated Jul 21, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Office for National Statistics (2023). Pre-existing conditions of people who died due to coronavirus (COVID-19), England and Wales [Dataset]. https://www.ons.gov.uk/peoplepopulationandcommunity/birthsdeathsandmarriages/deaths/datasets/preexistingconditionsofpeoplewhodiedduetocovid19englandandwales
    Explore at:
    xlsxAvailable download formats
    Dataset updated
    Jul 21, 2023
    Dataset provided by
    Office for National Statisticshttp://www.ons.gov.uk/
    License

    Open Government Licence 3.0http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
    License information was derived automatically

    Description

    Pre-existing conditions of people who died due to COVID-19, broken down by country, broad age group, and place of death occurrence, usual residents of England and Wales.

  6. COVID-19 Time-Series Metrics by County and State (ARCHIVED)

    • data.chhs.ca.gov
    • data.ca.gov
    • +3more
    csv, xlsx, zip
    Updated Nov 7, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    California Department of Public Health (2025). COVID-19 Time-Series Metrics by County and State (ARCHIVED) [Dataset]. https://data.chhs.ca.gov/dataset/covid-19-time-series-metrics-by-county-and-state
    Explore at:
    csv(7729431), csv(6223281), xlsx(11305), xlsx(7811), csv(3313), csv(4836928), xlsx(6471), zipAvailable download formats
    Dataset updated
    Nov 7, 2025
    Dataset authored and provided by
    California Department of Public Healthhttps://www.cdph.ca.gov/
    Description

    Note: This COVID-19 data set is no longer being updated as of December 1, 2023. Access current COVID-19 data on the CDPH respiratory virus dashboard (https://www.cdph.ca.gov/Programs/CID/DCDC/Pages/Respiratory-Viruses/RespiratoryDashboard.aspx) or in open data format (https://data.chhs.ca.gov/dataset/respiratory-virus-dashboard-metrics).

    As of August 17, 2023, data is being updated each Friday.

    For death data after December 31, 2022, California uses Provisional Deaths from the Center for Disease Control and Prevention’s National Center for Health Statistics (NCHS) National Vital Statistics System (NVSS). Prior to January 1, 2023, death data was sourced from the COVID-19 registry. The change in data source occurred in July 2023 and was applied retroactively to all 2023 data to provide a consistent source of death data for the year of 2023.

    As of May 11, 2023, data on cases, deaths, and testing is being updated each Thursday. Metrics by report date have been removed, but previous versions of files with report date metrics are archived below.

    All metrics include people in state and federal prisons, US Immigration and Customs Enforcement facilities, US Marshal detention facilities, and Department of State Hospitals facilities. Members of California's tribal communities are also included.

    The "Total Tests" and "Positive Tests" columns show totals based on the collection date. There is a lag between when a specimen is collected and when it is reported in this dataset. As a result, the most recent dates on the table will temporarily show NONE in the "Total Tests" and "Positive Tests" columns. This should not be interpreted as no tests being conducted on these dates. Instead, these values will be updated with the number of tests conducted as data is received.

  7. O

    COVID-19 Cases and Deaths by Race/Ethnicity - ARCHIVE

    • data.ct.gov
    • s.cnmilf.com
    • +2more
    csv, xlsx, xml
    Updated Jun 24, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Department of Public Health (2022). COVID-19 Cases and Deaths by Race/Ethnicity - ARCHIVE [Dataset]. https://data.ct.gov/Health-and-Human-Services/COVID-19-Cases-and-Deaths-by-Race-Ethnicity-ARCHIV/7rne-efic
    Explore at:
    xlsx, csv, xmlAvailable download formats
    Dataset updated
    Jun 24, 2022
    Dataset authored and provided by
    Department of Public Health
    License

    U.S. Government Workshttps://www.usa.gov/government-works
    License information was derived automatically

    Description

    Note: DPH is updating and streamlining the COVID-19 cases, deaths, and testing data. As of 6/27/2022, the data will be published in four tables instead of twelve.

    The COVID-19 Cases, Deaths, and Tests by Day dataset contains cases and test data by date of sample submission. The death data are by date of death. This dataset is updated daily and contains information back to the beginning of the pandemic. The data can be found at https://data.ct.gov/Health-and-Human-Services/COVID-19-Cases-Deaths-and-Tests-by-Day/g9vi-2ahj.

    The COVID-19 State Metrics dataset contains over 93 columns of data. This dataset is updated daily and currently contains information starting June 21, 2022 to the present. The data can be found at https://data.ct.gov/Health-and-Human-Services/COVID-19-State-Level-Data/qmgw-5kp6 .

    The COVID-19 County Metrics dataset contains 25 columns of data. This dataset is updated daily and currently contains information starting June 16, 2022 to the present. The data can be found at https://data.ct.gov/Health-and-Human-Services/COVID-19-County-Level-Data/ujiq-dy22 .

    The COVID-19 Town Metrics dataset contains 16 columns of data. This dataset is updated daily and currently contains information starting June 16, 2022 to the present. The data can be found at https://data.ct.gov/Health-and-Human-Services/COVID-19-Town-Level-Data/icxw-cada . To protect confidentiality, if a town has fewer than 5 cases or positive NAAT tests over the past 7 days, those data will be suppressed.

    COVID-19 cases and associated deaths that have been reported among Connecticut residents, broken down by race and ethnicity. All data in this report are preliminary; data for previous dates will be updated as new reports are received and data errors are corrected. Deaths reported to the either the Office of the Chief Medical Examiner (OCME) or Department of Public Health (DPH) are included in the COVID-19 update.

    The following data show the number of COVID-19 cases and associated deaths per 100,000 population by race and ethnicity. Crude rates represent the total cases or deaths per 100,000 people. Age-adjusted rates consider the age of the person at diagnosis or death when estimating the rate and use a standardized population to provide a fair comparison between population groups with different age distributions. Age-adjustment is important in Connecticut as the median age of among the non-Hispanic white population is 47 years, whereas it is 34 years among non-Hispanic blacks, and 29 years among Hispanics. Because most non-Hispanic white residents who died were over 75 years of age, the age-adjusted rates are lower than the unadjusted rates. In contrast, Hispanic residents who died tend to be younger than 75 years of age which results in higher age-adjusted rates.

    The population data used to calculate rates is based on the CT DPH population statistics for 2019, which is available online here: https://portal.ct.gov/DPH/Health-Information-Systems--Reporting/Population/Population-Statistics. Prior to 5/10/2021, the population estimates from 2018 were used.

    Rates are standardized to the 2000 US Millions Standard population (data available here: https://seer.cancer.gov/stdpopulations/). Standardization was done using 19 age groups (0, 1-4, 5-9, 10-14, ..., 80-84, 85 years and older). More information about direct standardization for age adjustment is available here: https://www.cdc.gov/nchs/data/statnt/statnt06rv.pdf

    Categories are mutually exclusive. The category “multiracial” includes people who answered ‘yes’ to more than one race category. Counts may not add up to total case counts as data on race and ethnicity may be missing. Age adjusted rates calculated only for groups with more than 20 deaths. Abbreviation: NH=Non-Hispanic.

    Data on Connecticut deaths were obtained from the Connecticut Deaths Registry maintained by the DPH Office of Vital Records. Cause of death was determined by a death certifier (e.g., physician, APRN, medical examiner) using their best clinical judgment. Additionally, all COVID-19 deaths, including suspected or related, are required to be reported to OCME. On April 4, 2020, CT DPH and OCME released a joint memo to providers and facilities within Connecticut providing guidelines for certifying deaths due to COVID-19 that were consistent with the CDC’s guidelines and a reminder of the required reporting to OCME.25,26 As of July 1, 2021, OCME had reviewed every case reported and performed additional investigation on about one-third of reported deaths to better ascertain if COVID-19 did or did not cause or contribute to the death. Some of these investigations resulted in the OCME performing postmortem swabs for PCR testing on individuals whose deaths were suspected to be due to COVID-19, but antemortem diagnosis was unable to be made.31 The OCME issued or re-issued about 10% of COVID-19 death certificates and, when appropriate, removed COVID-19 from the death certificate. For standardization and tabulation of mortality statistics, written cause of death statements made by the certifiers on death certificates are sent to the National Center for Health Statistics (NCHS) at the CDC which assigns cause of death codes according to the International Causes of Disease 10th Revision (ICD-10) classification system.25,26 COVID-19 deaths in this report are defined as those for which the death certificate has an ICD-10 code of U07.1 as either a primary (underlying) or a contributing cause of death. More information on COVID-19 mortality can be found at the following link: https://portal.ct.gov/DPH/Health-Information-Systems--Reporting/Mortality/Mortality-Statistics

    Data are subject to future revision as reporting changes.

    Starting in July 2020, this dataset will be updated every weekday.

    Additional notes: A delay in the data pull schedule occurred on 06/23/2020. Data from 06/22/2020 was processed on 06/23/2020 at 3:30 PM. The normal data cycle resumed with the data for 06/23/2020.

    A network outage on 05/19/2020 resulted in a change in the data pull schedule. Data from 5/19/2020 was processed on 05/20/2020 at 12:00 PM. Data from 5/20/2020 was processed on 5/20/2020 8:30 PM. The normal data cycle resumed on 05/20/2020 with the 8:30 PM data pull. As a result of the network outage, the timestamp on the datasets on the Open Data Portal differ from the timestamp in DPH's daily PDF reports.

    Starting 5/10/2021, the date field will represent the date this data was updated on data.ct.gov. Previously the date the data was pulled by DPH was listed, which typically coincided with the date before the data was published on data.ct.gov. This change was made to standardize the COVID-19 data sets on data.ct.gov.

  8. d

    Johns Hopkins COVID-19 Case Tracker

    • data.world
    • kaggle.com
    csv, zip
    Updated Dec 3, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    The Associated Press (2025). Johns Hopkins COVID-19 Case Tracker [Dataset]. https://data.world/associatedpress/johns-hopkins-coronavirus-case-tracker
    Explore at:
    zip, csvAvailable download formats
    Dataset updated
    Dec 3, 2025
    Authors
    The Associated Press
    Time period covered
    Jan 22, 2020 - Mar 9, 2023
    Area covered
    Description

    Updates

    • Notice of data discontinuation: Since the start of the pandemic, AP has reported case and death counts from data provided by Johns Hopkins University. Johns Hopkins University has announced that they will stop their daily data collection efforts after March 10. As Johns Hopkins stops providing data, the AP will also stop collecting daily numbers for COVID cases and deaths. The HHS and CDC now collect and visualize key metrics for the pandemic. AP advises using those resources when reporting on the pandemic going forward.

    • April 9, 2020

      • The population estimate data for New York County, NY has been updated to include all five New York City counties (Kings County, Queens County, Bronx County, Richmond County and New York County). This has been done to match the Johns Hopkins COVID-19 data, which aggregates counts for the five New York City counties to New York County.
    • April 20, 2020

      • Johns Hopkins death totals in the US now include confirmed and probable deaths in accordance with CDC guidelines as of April 14. One significant result of this change was an increase of more than 3,700 deaths in the New York City count. This change will likely result in increases for death counts elsewhere as well. The AP does not alter the Johns Hopkins source data, so probable deaths are included in this dataset as well.
    • April 29, 2020

      • The AP is now providing timeseries data for counts of COVID-19 cases and deaths. The raw counts are provided here unaltered, along with a population column with Census ACS-5 estimates and calculated daily case and death rates per 100,000 people. Please read the updated caveats section for more information.
    • September 1st, 2020

      • Johns Hopkins is now providing counts for the five New York City counties individually.
    • February 12, 2021

      • The Ohio Department of Health recently announced that as many as 4,000 COVID-19 deaths may have been underreported through the state’s reporting system, and that the "daily reported death counts will be high for a two to three-day period."
      • Because deaths data will be anomalous for consecutive days, we have chosen to freeze Ohio's rolling average for daily deaths at the last valid measure until Johns Hopkins is able to back-distribute the data. The raw daily death counts, as reported by Johns Hopkins and including the backlogged death data, will still be present in the new_deaths column.
    • February 16, 2021

      - Johns Hopkins has reconciled Ohio's historical deaths data with the state.

      Overview

    The AP is using data collected by the Johns Hopkins University Center for Systems Science and Engineering as our source for outbreak caseloads and death counts for the United States and globally.

    The Hopkins data is available at the county level in the United States. The AP has paired this data with population figures and county rural/urban designations, and has calculated caseload and death rates per 100,000 people. Be aware that caseloads may reflect the availability of tests -- and the ability to turn around test results quickly -- rather than actual disease spread or true infection rates.

    This data is from the Hopkins dashboard that is updated regularly throughout the day. Like all organizations dealing with data, Hopkins is constantly refining and cleaning up their feed, so there may be brief moments where data does not appear correctly. At this link, you’ll find the Hopkins daily data reports, and a clean version of their feed.

    The AP is updating this dataset hourly at 45 minutes past the hour.

    To learn more about AP's data journalism capabilities for publishers, corporations and financial institutions, go here or email kromano@ap.org.

    Queries

    Use AP's queries to filter the data or to join to other datasets we've made available to help cover the coronavirus pandemic

    Interactive

    The AP has designed an interactive map to track COVID-19 cases reported by Johns Hopkins.

    @(https://datawrapper.dwcdn.net/nRyaf/15/)

    Interactive Embed Code

    <iframe title="USA counties (2018) choropleth map Mapping COVID-19 cases by county" aria-describedby="" id="datawrapper-chart-nRyaf" src="https://datawrapper.dwcdn.net/nRyaf/10/" scrolling="no" frameborder="0" style="width: 0; min-width: 100% !important;" height="400"></iframe><script type="text/javascript">(function() {'use strict';window.addEventListener('message', function(event) {if (typeof event.data['datawrapper-height'] !== 'undefined') {for (var chartId in event.data['datawrapper-height']) {var iframe = document.getElementById('datawrapper-chart-' + chartId) || document.querySelector("iframe[src*='" + chartId + "']");if (!iframe) {continue;}iframe.style.height = event.data['datawrapper-height'][chartId] + 'px';}}});})();</script>
    

    Caveats

    • This data represents the number of cases and deaths reported by each state and has been collected by Johns Hopkins from a number of sources cited on their website.
    • In some cases, deaths or cases of people who've crossed state lines -- either to receive treatment or because they became sick and couldn't return home while traveling -- are reported in a state they aren't currently in, because of state reporting rules.
    • In some states, there are a number of cases not assigned to a specific county -- for those cases, the county name is "unassigned to a single county"
    • This data should be credited to Johns Hopkins University's COVID-19 tracking project. The AP is simply making it available here for ease of use for reporters and members.
    • Caseloads may reflect the availability of tests -- and the ability to turn around test results quickly -- rather than actual disease spread or true infection rates.
    • Population estimates at the county level are drawn from 2014-18 5-year estimates from the American Community Survey.
    • The Urban/Rural classification scheme is from the Center for Disease Control and Preventions's National Center for Health Statistics. It puts each county into one of six categories -- from Large Central Metro to Non-Core -- according to population and other characteristics. More details about the classifications can be found here.

    Johns Hopkins timeseries data - Johns Hopkins pulls data regularly to update their dashboard. Once a day, around 8pm EDT, Johns Hopkins adds the counts for all areas they cover to the timeseries file. These counts are snapshots of the latest cumulative counts provided by the source on that day. This can lead to inconsistencies if a source updates their historical data for accuracy, either increasing or decreasing the latest cumulative count. - Johns Hopkins periodically edits their historical timeseries data for accuracy. They provide a file documenting all errors in their timeseries files that they have identified and fixed here

    Attribution

    This data should be credited to Johns Hopkins University COVID-19 tracking project

  9. d

    COVID-19 Outcomes by Vaccination Status - Historical

    • catalog.data.gov
    • data.cityofchicago.org
    • +2more
    Updated May 24, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    data.cityofchicago.org (2024). COVID-19 Outcomes by Vaccination Status - Historical [Dataset]. https://catalog.data.gov/dataset/covid-19-outcomes-by-vaccination-status
    Explore at:
    Dataset updated
    May 24, 2024
    Dataset provided by
    data.cityofchicago.org
    Description

    NOTE: This dataset has been retired and marked as historical-only. Weekly rates of COVID-19 cases, hospitalizations, and deaths among people living in Chicago by vaccination status and age. Rates for fully vaccinated and unvaccinated begin the week ending April 3, 2021 when COVID-19 vaccines became widely available in Chicago. Rates for boosted begin the week ending October 23, 2021 after booster shots were recommended by the Centers for Disease Control and Prevention (CDC) for adults 65+ years old and adults in certain populations and high risk occupational and institutional settings who received Pfizer or Moderna for their primary series or anyone who received the Johnson & Johnson vaccine. Chicago residency is based on home address, as reported in the Illinois Comprehensive Automated Immunization Registry Exchange (I-CARE) and Illinois National Electronic Disease Surveillance System (I-NEDSS). Outcomes: • Cases: People with a positive molecular (PCR) or antigen COVID-19 test result from an FDA-authorized COVID-19 test that was reported into I-NEDSS. A person can become re-infected with SARS-CoV-2 over time and so may be counted more than once in this dataset. Cases are counted by week the test specimen was collected. • Hospitalizations: COVID-19 cases who are hospitalized due to a documented COVID-19 related illness or who are admitted for any reason within 14 days of a positive SARS-CoV-2 test. Hospitalizations are counted by week of hospital admission. • Deaths: COVID-19 cases who died from COVID-19-related health complications as determined by vital records or a public health investigation. Deaths are counted by week of death. Vaccination status: • Fully vaccinated: Completion of primary series of a U.S. Food and Drug Administration (FDA)-authorized or approved COVID-19 vaccine at least 14 days prior to a positive test (with no other positive tests in the previous 45 days). • Boosted: Fully vaccinated with an additional or booster dose of any FDA-authorized or approved COVID-19 vaccine received at least 14 days prior to a positive test (with no other positive tests in the previous 45 days). • Unvaccinated: No evidence of having received a dose of an FDA-authorized or approved vaccine prior to a positive test. CLARIFYING NOTE: Those who started but did not complete all recommended doses of an FDA-authorized or approved vaccine prior to a positive test (i.e., partially vaccinated) are excluded from this dataset. Incidence rates for fully vaccinated but not boosted people (Vaccinated columns) are calculated as total fully vaccinated but not boosted with outcome divided by cumulative fully vaccinated but not boosted at the end of each week. Incidence rates for boosted (Boosted columns) are calculated as total boosted with outcome divided by cumulative boosted at the end of each week. Incidence rates for unvaccinated (Unvaccinated columns) are calculated as total unvaccinated with outcome divided by total population minus cumulative boosted, fully, and partially vaccinated at the end of each week. All rates are multiplied by 100,000. Incidence rate ratios (IRRs) are calculated by dividing the weekly incidence rates among unvaccinated people by those among fully vaccinated but not boosted and boosted people. Overall age-adjusted incidence rates and IRRs are standardized using the 2000 U.S. Census standard population. Population totals are from U.S. Census Bureau American Community Survey 1-year estimates for 2019. All data are provisional and subject to change. Information is updated as additional details are received and it is, in fact, very common for recent dates to be incomplete and to be updated as time goes on. This dataset reflects data known to CDPH at the time when the dataset is updated each week. Numbers in this dataset may differ from other public sources due to when data are reported and how City of Chicago boundaries are defined. For all datasets related to COVID-19, see https://data.cityofchic

  10. COVID-19 Post-Vaccination Infection Data (ARCHIVED)

    • data.chhs.ca.gov
    • data.ca.gov
    • +4more
    csv, xlsx, zip
    Updated Nov 7, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    California Department of Public Health (2025). COVID-19 Post-Vaccination Infection Data (ARCHIVED) [Dataset]. https://data.chhs.ca.gov/dataset/covid-19-post-vaccination-infection-data
    Explore at:
    csv(38212), zip, csv(90508), csv(78921), xlsx(11056)Available download formats
    Dataset updated
    Nov 7, 2025
    Dataset authored and provided by
    California Department of Public Healthhttps://www.cdph.ca.gov/
    Description

    Note: This dataset is no longer being updated due to the end of the COVID-19 Public Health Emergency.

    The California Department of Public Health (CDPH) is identifying vaccination status of COVID-19 cases, hospitalizations, and deaths by analyzing the state immunization registry and registry of confirmed COVID-19 cases. Post-vaccination cases are individuals who have a positive SARS-Cov-2 molecular test (e.g. PCR) at least 14 days after they have completed their primary vaccination series.

    Tracking cases of COVID-19 that occur after vaccination is important for monitoring the impact of immunization campaigns. While COVID-19 vaccines are safe and effective, some cases are still expected in persons who have been vaccinated, as no vaccine is 100% effective. For more information, please see https://www.cdph.ca.gov/Programs/CID/DCDC/Pages/COVID-19/Post-Vaccine-COVID19-Cases.aspx

    Post-vaccination infection data is updated monthly and includes data on cases, hospitalizations, and deaths among the unvaccinated and the vaccinated. Partially vaccinated individuals are excluded. To account for reporting and processing delays, there is at least a one-month lag in provided data (for example data published on 9/9/22 will include data through 7/31/22).

    Notes:

    • On September 9, 2022, the post-vaccination data has been changed to compare unvaccinated with those with at least a primary series completed for persons age 5+. These data will be updated monthly (first Thursday of the month) and include at least a one month lag.

    • On February 2, 2022, the post-vaccination data has been changed to distinguish between vaccination with a primary series only versus vaccinated and boosted. The previous dataset has been uploaded as an archived table. Additionally, the lag on this data has been extended to 14 days.

    • On November 29, 2021, the denominator for calculating vaccine coverage has been changed from age 16+ to age 12+ to reflect new vaccine eligibility criteria. The previous dataset based on age 16+ denominators has been uploaded as an archived table.

  11. New York State Statewide COVID-19 Fatalities by Age Group (Archived)

    • health.data.ny.gov
    • healthdata.gov
    csv, xlsx, xml
    Updated Oct 6, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    New York State Department of Health (2023). New York State Statewide COVID-19 Fatalities by Age Group (Archived) [Dataset]. https://health.data.ny.gov/Health/New-York-State-Statewide-COVID-19-Fatalities-by-Ag/du97-svf7
    Explore at:
    xml, csv, xlsxAvailable download formats
    Dataset updated
    Oct 6, 2023
    Dataset authored and provided by
    New York State Department of Health
    Area covered
    New York
    Description

    Note: Data elements were retired from HERDS on 10/6/23 and this dataset was archived.

    This dataset includes the cumulative number and percent of healthcare facility-reported fatalities for patients with lab-confirmed COVID-19 disease by reporting date and age group. This dataset does not include fatalities related to COVID-19 disease that did not occur at a hospital, nursing home, or adult care facility. The primary goal of publishing this dataset is to provide users with information about healthcare facility fatalities among patients with lab-confirmed COVID-19 disease.

    The information in this dataset is also updated daily on the NYS COVID-19 Tracker at https://www.ny.gov/covid-19tracker.

    The data source for this dataset is the daily COVID-19 survey through the New York State Department of Health (NYSDOH) Health Electronic Response Data System (HERDS). Hospitals, nursing homes, and adult care facilities are required to complete this survey daily. The information from the survey is used for statewide surveillance, planning, resource allocation, and emergency response activities. Hospitals began reporting for the HERDS COVID-19 survey in March 2020, while Nursing Homes and Adult Care Facilities began reporting in April 2020. It is important to note that fatalities related to COVID-19 disease that occurred prior to the first publication dates are also included.

    The fatality numbers in this dataset are calculated by assigning age groups to each patient based on the patient age, then summing the patient fatalities within each age group, as of each reporting date. The statewide total fatality numbers are calculated by summing the number of fatalities across all age groups, by reporting date. The fatality percentages are calculated by dividing the number of fatalities in each age group by the statewide total number of fatalities, by reporting date. The fatality numbers represent the cumulative number of fatalities that have been reported as of each reporting date.

  12. Rates of COVID-19 Cases or Deaths by Age Group and Vaccination Status

    • data.virginia.gov
    • healthdata.gov
    • +1more
    csv, json, rdf, xsl
    Updated Jul 20, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Centers for Disease Control and Prevention (2023). Rates of COVID-19 Cases or Deaths by Age Group and Vaccination Status [Dataset]. https://data.virginia.gov/dataset/rates-of-covid-19-cases-or-deaths-by-age-group-and-vaccination-status
    Explore at:
    xsl, csv, rdf, jsonAvailable download formats
    Dataset updated
    Jul 20, 2023
    Dataset provided by
    Centers for Disease Control and Preventionhttp://www.cdc.gov/
    Description

    Data for CDC’s COVID Data Tracker site on Rates of COVID-19 Cases and Deaths by Vaccination Status. Click 'More' for important dataset description and footnotes

    Dataset and data visualization details: These data were posted on October 21, 2022, archived on November 18, 2022, and revised on February 22, 2023. These data reflect cases among persons with a positive specimen collection date through September 24, 2022, and deaths among persons with a positive specimen collection date through September 3, 2022.

    Vaccination status: A person vaccinated with a primary series had SARS-CoV-2 RNA or antigen detected on a respiratory specimen collected ≥14 days after verifiably completing the primary series of an FDA-authorized or approved COVID-19 vaccine. An unvaccinated person had SARS-CoV-2 RNA or antigen detected on a respiratory specimen and has not been verified to have received COVID-19 vaccine. Excluded were partially vaccinated people who received at least one FDA-authorized vaccine dose but did not complete a primary series ≥14 days before collection of a specimen where SARS-CoV-2 RNA or antigen was detected. Additional or booster dose: A person vaccinated with a primary series and an additional or booster dose had SARS-CoV-2 RNA or antigen detected on a respiratory specimen collected ≥14 days after receipt of an additional or booster dose of any COVID-19 vaccine on or after August 13, 2021. For people ages 18 years and older, data are graphed starting the week including September 24, 2021, when a COVID-19 booster dose was first recommended by CDC for adults 65+ years old and people in certain populations and high risk occupational and institutional settings. For people ages 12-17 years, data are graphed starting the week of December 26, 2021, 2 weeks after the first recommendation for a booster dose for adolescents ages 16-17 years. For people ages 5-11 years, data are included starting the week of June 5, 2022, 2 weeks after the first recommendation for a booster dose for children aged 5-11 years. For people ages 50 years and older, data on second booster doses are graphed starting the week including March 29, 2022, when the recommendation was made for second boosters. Vertical lines represent dates when changes occurred in U.S. policy for COVID-19 vaccination (details provided above). Reporting is by primary series vaccine type rather than additional or booster dose vaccine type. The booster dose vaccine type may be different than the primary series vaccine type. ** Because data on the immune status of cases and associated deaths are unavailable, an additional dose in an immunocompromised person cannot be distinguished from a booster dose. This is a relevant consideration because vaccines can be less effective in this group. Deaths: A COVID-19–associated death occurred in a person with a documented COVID-19 diagnosis who died; health department staff reviewed to make a determination using vital records, public health investigation, or other data sources. Rates of COVID-19 deaths by vaccination status are reported based on when the patient was tested for COVID-19, not the date they died. Deaths usually occur up to 30 days after COVID-19 diagnosis. Participating jurisdictions: Currently, these 31 health departments that regularly link their case surveillance to immunization information system data are included in these incidence rate estimates: Alabama, Arizona, Arkansas, California, Colorado, Connecticut, District of Columbia, Florida, Georgia, Idaho, Indiana, Kansas, Kentucky, Louisiana, Massachusetts, Michigan, Minnesota, Nebraska, New Jersey, New Mexico, New York, New York City (New York), North Carolina, Philadelphia (Pennsylvania), Rhode Island, South Dakota, Tennessee, Texas, Utah, Washington, and West Virginia; 30 jurisdictions also report deaths among vaccinated and unvaccinated people. These jurisdictions represent 72% of the total U.S. population and all ten of the Health and Human Services Regions. Data on cases

  13. Asia Covid 19 Cases

    • kaggle.com
    zip
    Updated Oct 11, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Vivek Chowdhury (2021). Asia Covid 19 Cases [Dataset]. https://www.kaggle.com/datasets/vivek468/asia-covid-19-cases-updated-10-oct-21
    Explore at:
    zip(2174 bytes)Available download formats
    Dataset updated
    Oct 11, 2021
    Authors
    Vivek Chowdhury
    License

    http://opendatacommons.org/licenses/dbcl/1.0/http://opendatacommons.org/licenses/dbcl/1.0/

    Area covered
    Asia
    Description

    About the Data:

    A year ago, when WHO declared COVID-19 outbreak a pandemic, countries in WHO South-East Asia Region were either responding to their first cases of importation or cluster of cases or keeping a strict vigil against importation of the new coronavirus.

    The following months were unprecedented, and for many reasons. Scientists, experts, governments, societies, communities and even individuals responded to the new virus with urgency and measures never witnessed before.

    Metadata:

    ID: Unique Identifier Country: Name of Country TotalCases: Total Number of cases recorded so far TotalDeaths: Total Deaths recorded so far TotalRecovered: How many people survived ActiveCases: Number of people who currently has the virus TotalCasesPerMillion: How many cases are recorded per million individual TotalDeathsPerMillion: How many deaths recorded per million individual TotalTests: Total number of COVID19 tests conducted RTPCR + RAT + any other tests TotalTestsPerMillion: How many tests were conducted per million individual TotalPopulation: Population of the country

    Acknowledgements:

    This dataset was collected from: https://www.worldometers.info/coronavirus/#countries

    Call For Code:

    Fellow Data Scientist and ML engineers, can you identify which countries are doing relatively well and which ones need immediate attention? Your insights can save millions of lives in Asia!

  14. d

    COVID-19 Cases and Deaths by Age Group - ARCHIVE

    • catalog.data.gov
    • data.ct.gov
    • +1more
    Updated Aug 12, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    data.ct.gov (2023). COVID-19 Cases and Deaths by Age Group - ARCHIVE [Dataset]. https://catalog.data.gov/dataset/covid-19-cases-and-deaths-by-age-group
    Explore at:
    Dataset updated
    Aug 12, 2023
    Dataset provided by
    data.ct.gov
    Description

    Note: DPH is updating and streamlining the COVID-19 cases, deaths, and testing data. As of 6/27/2022, the data will be published in four tables instead of twelve. The COVID-19 Cases, Deaths, and Tests by Day dataset contains cases and test data by date of sample submission. The death data are by date of death. This dataset is updated daily and contains information back to the beginning of the pandemic. The data can be found at https://data.ct.gov/Health-and-Human-Services/COVID-19-Cases-Deaths-and-Tests-by-Day/g9vi-2ahj. The COVID-19 State Metrics dataset contains over 93 columns of data. This dataset is updated daily and currently contains information starting June 21, 2022 to the present. The data can be found at https://data.ct.gov/Health-and-Human-Services/COVID-19-State-Level-Data/qmgw-5kp6 . The COVID-19 County Metrics dataset contains 25 columns of data. This dataset is updated daily and currently contains information starting June 16, 2022 to the present. The data can be found at https://data.ct.gov/Health-and-Human-Services/COVID-19-County-Level-Data/ujiq-dy22 . The COVID-19 Town Metrics dataset contains 16 columns of data. This dataset is updated daily and currently contains information starting June 16, 2022 to the present. The data can be found at https://data.ct.gov/Health-and-Human-Services/COVID-19-Town-Level-Data/icxw-cada . To protect confidentiality, if a town has fewer than 5 cases or positive NAAT tests over the past 7 days, those data will be suppressed. COVID-19 cases and associated deaths that have been reported among Connecticut residents, broken out by age group. All data in this report are preliminary; data for previous dates will be updated as new reports are received and data errors are corrected. Deaths reported to the either the Office of the Chief Medical Examiner (OCME) or Department of Public Health (DPH) are included in the daily COVID-19 update. Data are reported daily, with timestamps indicated in the daily briefings posted at: portal.ct.gov/coronavirus. Data are subject to future revision as reporting changes. Starting in July 2020, this dataset will be updated every weekday. Additional notes: A delay in the data pull schedule occurred on 06/23/2020. Data from 06/22/2020 was processed on 06/23/2020 at 3:30 PM. The normal data cycle resumed with the data for 06/23/2020. A network outage on 05/19/2020 resulted in a change in the data pull schedule. Data from 5/19/2020 was processed on 05/20/2020 at 12:00 PM. Data from 5/20/2020 was processed on 5/20/2020 8:30 PM. The normal data cycle resumed on 05/20/2020 with the 8:30 PM data pull. As a result of the network outage, the timestamp on the datasets on the Open Data Portal differ from the timestamp in DPH's daily PDF reports. Starting 5/10/2021, the date field will represent the date this data was updated on data.ct.gov. Previously the date the data was pulled by DPH was listed, which typically coincided with the date before the data was published on data.ct.gov. This change was made to standardize the COVID-19 data sets on data.ct.gov.

  15. o

    Deaths Involving COVID-19 by Fatality Type

    • data.ontario.ca
    • datasets.ai
    • +3more
    csv, xlsx
    Updated Dec 13, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Health (2024). Deaths Involving COVID-19 by Fatality Type [Dataset]. https://data.ontario.ca/dataset/deaths-involving-covid-19-by-fatality-type
    Explore at:
    xlsx(10965), xlsx(11076), csv(34979)Available download formats
    Dataset updated
    Dec 13, 2024
    Dataset authored and provided by
    Health
    License

    https://www.ontario.ca/page/open-government-licence-ontariohttps://www.ontario.ca/page/open-government-licence-ontario

    Time period covered
    Nov 14, 2024
    Area covered
    Ontario
    Description

    This dataset reports the daily reported number of deaths involving COVID-19 by fatality type.

    Learn how the Government of Ontario is helping to keep Ontarians safe during the 2019 Novel Coronavirus outbreak.

    Effective November 14, 2024 this page will no longer be updated. Information about COVID-19 and other respiratory viruses is available on Public Health Ontario’s interactive respiratory virus tool: https://www.publichealthontario.ca/en/Data-and-Analysis/Infectious-Disease/Respiratory-Virus-Tool

    Data includes:

    • Date on which the death occurred
    • Total number of deaths involving COVID-19
    • Number of deaths with “COVID-19 as the underlying cause of death”
    • Number of deaths with “COVID-19 contributed but not underlying cause”
    • Number of deaths where the “Cause of death unknown” or “Cause of death missing”

    Additional Notes

    The method used to count COVID-19 deaths has changed, effective December 1, 2022. Prior to December 1 2022, deaths were counted based on the date the death was updated in the public health unit’s system. Going forward, deaths are counted on the date they occurred.

    On November 30, 2023 the count of COVID-19 deaths was updated to include missing historical deaths from January 15, 2020 to March 31, 2023.

    CCM is a dynamic disease reporting system which allows ongoing update to data previously entered. As a result, data extracted from CCM represents a snapshot at the time of extraction and may differ from previous or subsequent results. Public Health Units continually clean up COVID-19 data, correcting for missing or overcounted cases and deaths. These corrections can result in data spikes and current totals being different from previously reported cases and deaths. Observed trends over time should be interpreted with caution for the most recent period due to reporting and/or data entry lags.

    As of December 1, 2022, data are based on the date on which the death occurred. This reporting method differs from the prior method which is based on net change in COVID-19 deaths reported day over day.

    Data are based on net change in COVID-19 deaths for which COVID-19 caused the death reported day over day. Deaths are not reported by the date on which death happened as reporting may include deaths that happened on previous dates.

    Spikes, negative numbers and other data anomalies: Due to ongoing data entry and data quality assurance activities in Case and Contact Management system (CCM) file, Public Health Units continually clean up COVID-19, correcting for missing or overcounted cases and deaths. These corrections can result in data spikes, negative numbers and current totals being different from previously reported case and death counts.

    Public Health Units report cause of death in the CCM based on information available to them at the time of reporting and in accordance with definitions provided by Public Health Ontario. The medical certificate of death is the official record and the cause of death could be different.

    Deaths are defined per the outcome field in CCM marked as “Fatal”. Deaths in COVID-19 cases identified as unrelated to COVID-19 are not included in the number of deaths involving COVID-19 reported.

    "_Cause of death unknown_" is the category of death for COVID-19 positive individuals with cause of death still under investigation, or for which the public health unit was unable to determine cause of death. The category may change later when the cause of death is confirmed either as “COVID-19 as the underlying cause of death”, “COVID-19 contributed but not underlying cause,” or “COVID-19 unrelated”.

    "_Cause of death missing_" is the category of death for COVID-19 positive individuals with the cause of death missing in CCM.

    Rates for the most recent days are subject to reporting lags

    All data reflects totals from 8 p.m. the previous day.

    This dataset is subject to change.

  16. Rates of COVID-19 Cases or Deaths by Age Group and Vaccination Status and...

    • healthdata.gov
    • odgavaprod.ogopendata.com
    • +1more
    csv, xlsx, xml
    Updated Jun 16, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    data.cdc.gov (2023). Rates of COVID-19 Cases or Deaths by Age Group and Vaccination Status and Second Booster Dose [Dataset]. https://healthdata.gov/CDC/Rates-of-COVID-19-Cases-or-Deaths-by-Age-Group-and/4tut-jeki
    Explore at:
    xlsx, csv, xmlAvailable download formats
    Dataset updated
    Jun 16, 2023
    Dataset provided by
    data.cdc.gov
    Description

    Data for CDC’s COVID Data Tracker site on Rates of COVID-19 Cases and Deaths by Vaccination Status. Click 'More' for important dataset description and footnotes

    Dataset and data visualization details: These data were posted on October 21, 2022, archived on November 18, 2022, and revised on February 22, 2023. These data reflect cases among persons with a positive specimen collection date through September 24, 2022, and deaths among persons with a positive specimen collection date through September 3, 2022.

    Vaccination status: A person vaccinated with a primary series had SARS-CoV-2 RNA or antigen detected on a respiratory specimen collected ≥14 days after verifiably completing the primary series of an FDA-authorized or approved COVID-19 vaccine. An unvaccinated person had SARS-CoV-2 RNA or antigen detected on a respiratory specimen and has not been verified to have received COVID-19 vaccine. Excluded were partially vaccinated people who received at least one FDA-authorized vaccine dose but did not complete a primary series ≥14 days before collection of a specimen where SARS-CoV-2 RNA or antigen was detected. Additional or booster dose: A person vaccinated with a primary series and an additional or booster dose had SARS-CoV-2 RNA or antigen detected on a respiratory specimen collected ≥14 days after receipt of an additional or booster dose of any COVID-19 vaccine on or after August 13, 2021. For people ages 18 years and older, data are graphed starting the week including September 24, 2021, when a COVID-19 booster dose was first recommended by CDC for adults 65+ years old and people in certain populations and high risk occupational and institutional settings. For people ages 12-17 years, data are graphed starting the week of December 26, 2021, 2 weeks after the first recommendation for a booster dose for adolescents ages 16-17 years. For people ages 5-11 years, data are included starting the week of June 5, 2022, 2 weeks after the first recommendation for a booster dose for children aged 5-11 years. For people ages 50 years and older, data on second booster doses are graphed starting the week including March 29, 2022, when the recommendation was made for second boosters. Vertical lines represent dates when changes occurred in U.S. policy for COVID-19 vaccination (details provided above). Reporting is by primary series vaccine type rather than additional or booster dose vaccine type. The booster dose vaccine type may be different than the primary series vaccine type. ** Because data on the immune status of cases and associated deaths are unavailable, an additional dose in an immunocompromised person cannot be distinguished from a booster dose. This is a relevant consideration because vaccines can be less effective in this group. Deaths: A COVID-19–associated death occurred in a person with a documented COVID-19 diagnosis who died; health department staff reviewed to make a determination using vital records, public health investigation, or other data sources. Rates of COVID-19 deaths by vaccination status are reported based on when the patient was tested for COVID-19, not the date they died. Deaths usually occur up to 30 days after COVID-19 diagnosis. Participating jurisdictions: Currently, these 31 health departments that regularly link their case surveillance to immunization information system data are included in these incidence rate estimates: Alabama, Arizona, Arkansas, California, Colorado, Connecticut, District of Columbia, Florida, Georgia, Idaho, Indiana, Kansas, Kentucky, Louisiana, Massachusetts, Michigan, Minnesota, Nebraska, New Jersey, New Mexico, New York, New York City (New York), North Carolina, Philadelphia (Pennsylvania), Rhode Island, South Dakota, Tennessee, Texas, Utah, Washington, and West Virginia; 30 jurisdictions also report deaths among vaccinated and unvaccinated people. These jurisdictions represent 72% of the total U.S. population and all ten of the Health and Human Services Regions. Data on cases

  17. T

    CORONAVIRUS DEATHS by Country Dataset

    • tradingeconomics.com
    csv, excel, json, xml
    Updated Mar 4, 2020
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    TRADING ECONOMICS (2020). CORONAVIRUS DEATHS by Country Dataset [Dataset]. https://tradingeconomics.com/country-list/coronavirus-deaths
    Explore at:
    csv, excel, xml, jsonAvailable download formats
    Dataset updated
    Mar 4, 2020
    Dataset authored and provided by
    TRADING ECONOMICS
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    2025
    Area covered
    World
    Description

    This dataset provides values for CORONAVIRUS DEATHS reported in several countries. The data includes current values, previous releases, historical highs and record lows, release frequency, reported unit and currency.

  18. Deaths Involving COVID-19 by Vaccination Status

    • open.canada.ca
    • gimi9.com
    • +1more
    csv, docx, html, xlsx
    Updated Nov 12, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Government of Ontario (2025). Deaths Involving COVID-19 by Vaccination Status [Dataset]. https://open.canada.ca/data/dataset/1375bb00-6454-4d3e-a723-4ae9e849d655
    Explore at:
    docx, csv, html, xlsxAvailable download formats
    Dataset updated
    Nov 12, 2025
    Dataset provided by
    Government of Ontariohttps://www.ontario.ca/
    License

    Open Government Licence - Canada 2.0https://open.canada.ca/en/open-government-licence-canada
    License information was derived automatically

    Time period covered
    Mar 1, 2021 - Nov 12, 2024
    Description

    This dataset reports the daily reported number of the 7-day moving average rates of Deaths involving COVID-19 by vaccination status and by age group. Learn how the Government of Ontario is helping to keep Ontarians safe during the 2019 Novel Coronavirus outbreak. Effective November 14, 2024 this page will no longer be updated. Information about COVID-19 and other respiratory viruses is available on Public Health Ontario’s interactive respiratory virus tool: https://www.publichealthontario.ca/en/Data-and-Analysis/Infectious-Disease/Respiratory-Virus-Tool Data includes: * Date on which the death occurred * Age group * 7-day moving average of the last seven days of the death rate per 100,000 for those not fully vaccinated * 7-day moving average of the last seven days of the death rate per 100,000 for those fully vaccinated * 7-day moving average of the last seven days of the death rate per 100,000 for those vaccinated with at least one booster ##Additional notes As of June 16, all COVID-19 datasets will be updated weekly on Thursdays by 2pm. As of January 12, 2024, data from the date of January 1, 2024 onwards reflect updated population estimates. This update specifically impacts data for the 'not fully vaccinated' category. On November 30, 2023 the count of COVID-19 deaths was updated to include missing historical deaths from January 15, 2020 to March 31, 2023. CCM is a dynamic disease reporting system which allows ongoing update to data previously entered. As a result, data extracted from CCM represents a snapshot at the time of extraction and may differ from previous or subsequent results. Public Health Units continually clean up COVID-19 data, correcting for missing or overcounted cases and deaths. These corrections can result in data spikes and current totals being different from previously reported cases and deaths. Observed trends over time should be interpreted with caution for the most recent period due to reporting and/or data entry lags. The data does not include vaccination data for people who did not provide consent for vaccination records to be entered into the provincial COVaxON system. This includes individual records as well as records from some Indigenous communities where those communities have not consented to including vaccination information in COVaxON. “Not fully vaccinated” category includes people with no vaccine and one dose of double-dose vaccine. “People with one dose of double-dose vaccine” category has a small and constantly changing number. The combination will stabilize the results. Spikes, negative numbers and other data anomalies: Due to ongoing data entry and data quality assurance activities in Case and Contact Management system (CCM) file, Public Health Units continually clean up COVID-19, correcting for missing or overcounted cases and deaths. These corrections can result in data spikes, negative numbers and current totals being different from previously reported case and death counts. Public Health Units report cause of death in the CCM based on information available to them at the time of reporting and in accordance with definitions provided by Public Health Ontario. The medical certificate of death is the official record and the cause of death could be different. Deaths are defined per the outcome field in CCM marked as “Fatal”. Deaths in COVID-19 cases identified as unrelated to COVID-19 are not included in the Deaths involving COVID-19 reported. Rates for the most recent days are subject to reporting lags All data reflects totals from 8 p.m. the previous day. This dataset is subject to change.

  19. d

    COVID-19 Daily Rolling Average Case, Death, and Hospitalization Rates -...

    • catalog.data.gov
    • data.cityofchicago.org
    • +1more
    Updated May 24, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    data.cityofchicago.org (2024). COVID-19 Daily Rolling Average Case, Death, and Hospitalization Rates - Historical [Dataset]. https://catalog.data.gov/dataset/covid-19-daily-rolling-average-case-and-death-rates
    Explore at:
    Dataset updated
    May 24, 2024
    Dataset provided by
    data.cityofchicago.org
    Description

    NOTE: This dataset has been retired and marked as historical-only. This dataset is a companion to the COVID-19 Daily Cases and Deaths dataset (https://data.cityofchicago.org/d/naz8-j4nc). The major difference in this dataset is that the case, death, and hospitalization corresponding rates per 100,000 population are not those for the single date indicated. They are rolling averages for the seven-day period ending on that date. This rolling average is used to account for fluctuations that may occur in the data, such as fewer cases being reported on weekends, and small numbers. The intent is to give a more representative view of the ongoing COVID-19 experience, less affected by what is essentially noise in the data. All rates are per 100,000 population in the indicated group, or Chicago, as a whole, for “Total” columns. Only Chicago residents are included based on the home address as provided by the medical provider. Cases with a positive molecular (PCR) or antigen test are included in this dataset. Cases are counted based on the date the test specimen was collected. Deaths among cases are aggregated by day of death. Hospitalizations are reported by date of first hospital admission. Demographic data are based on what is reported by medical providers or collected by CDPH during follow-up investigation. Denominators are from the U.S. Census Bureau American Community Survey 1-year estimate for 2018 and can be seen in the Citywide, 2018 row of the Chicago Population Counts dataset (https://data.cityofchicago.org/d/85cm-7uqa). All data are provisional and subject to change. Information is updated as additional details are received and it is, in fact, very common for recent dates to be incomplete and to be updated as time goes on. At any given time, this dataset reflects cases and deaths currently known to CDPH. Numbers in this dataset may differ from other public sources due to definitions of COVID-19-related cases and deaths, sources used, how cases and deaths are associated to a specific date, and similar factors. Data Source: Illinois National Electronic Disease Surveillance System, Cook County Medical Examiner’s Office, U.S. Census Bureau American Community Survey

  20. Single year of age and average age of death of people whose death was due to...

    • ons.gov.uk
    xlsx
    Updated Aug 23, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Office for National Statistics (2023). Single year of age and average age of death of people whose death was due to or involved coronavirus (COVID-19) [Dataset]. https://www.ons.gov.uk/peoplepopulationandcommunity/birthsdeathsandmarriages/deaths/datasets/singleyearofageandaverageageofdeathofpeoplewhosedeathwasduetoorinvolvedcovid19
    Explore at:
    xlsxAvailable download formats
    Dataset updated
    Aug 23, 2023
    Dataset provided by
    Office for National Statisticshttp://www.ons.gov.uk/
    License

    Open Government Licence 3.0http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
    License information was derived automatically

    Description

    Provisional deaths registration data for single year of age and average age of death (median and mean) of persons whose death involved coronavirus (COVID-19), England and Wales. Includes deaths due to COVID-19 and breakdowns by sex.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Massock Batalong Maurice Blaise (2025). Covid-19 variants survival data [Dataset]. https://www.kaggle.com/datasets/lumierebatalong/covid-19-variants-survival-data
Organization logo

Covid-19 variants survival data

SARS-CoV-2 Variants and Epidemic Duration: A Global Survival Analysis Dataset

Explore at:
zip(216589 bytes)Available download formats
Dataset updated
Jan 2, 2025
Authors
Massock Batalong Maurice Blaise
License

Apache License, v2.0https://www.apache.org/licenses/LICENSE-2.0
License information was derived automatically

Description

Overview:

This dataset provides a unique resource for researchers and data scientists interested in the global dynamics of the COVID-19 pandemic. It focuses on the impact of different SARS-CoV-2 variants and mutations on the duration of local epidemics. By combining variant information with epidemiological data, this dataset allows for a comprehensive analysis of factors influencing the trajectory of the pandemic.

Key Features:

  • Global Coverage: Includes data from multiple countries.
  • Variant-Specific Information: Detailed records for various SARS-CoV-2 variants.
  • Epidemic Duration: Data on the duration of local epidemics, accounting for right-censoring.
  • Epidemiological Variables: Includes mortality rates, a proxy for R0, transmission proxies, and other pertinent variables.
  • Geographical characteristics: Include a continent variable for exploring geographical patterns
  • Time varying variables: Include the number of waves and the number of variants in the different countries for more in-depth exploration.

Data Source: The data combines information from the Johns Hopkins University COVID-19 dataset (confirmed_cases.csv and deaths_cases.csv) and the covariants.org dataset (variants.csv). The dataset you see here is the combination of two datasets from Johns Hopkins University and covariants.org.

Questions to Inspire Users:

This dataset is designed for a diverse set of analytical questions. Here are some ideas to inspire the Kaggle community:

Survival Analysis:

  1. How do different SARS-CoV-2 variants influence the duration of local epidemics?
  2. Which factors (mortality, R0, etc.) are most strongly associated with shorter or longer epidemic durations?
  3. Does the type of variant/mutation (mutation,S, Omicron, Delta, Other) have a significant impact on epidemic duration?
  4. Is there a geographical pattern to the duration of epidemics?

Epidemiological Analysis:

  1. How do local transmission rates (represented by our proxy of R0) affect the duration of an epidemic?
  2. Do countries with higher mortality rates have different patterns of epidemic progression?
  3. How can we predict the duration of an epidemic based on its initial characteristics?
  4. How does the number of epidemic waves impact the duration of an epidemic?
  5. Does the number of variants in a country affect the duration of an épidémie?

Data Science/Machine Learning:

  1. Can we develop a machine learning model to predict the duration of an epidemic?
  2. What features have the best predictive power ?
  3. Can we identify clusters of variants/regions with similar epidemic patterns?
  4. Are there interactions between variables that can explain the non-linearities that we have identified ?
Search
Clear search
Close search
Google apps
Main menu