Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The average Twitter user spends 5.1 hours per month on the platform.
Social network X/Twitter is particularly popular in the United States, and as of February 2025, the microblogging service had an audience reach of 103.9 million users in the country. Japan and the India were ranked second and third with more than 70 million and 25 million users respectively. Global Twitter usage As of the second quarter of 2021, X/Twitter had 206 million monetizable daily active users worldwide. The most-followed Twitter accounts include figures such as Elon Musk, Justin Bieber and former U.S. president Barack Obama. X/Twitter and politics X/Twitter has become an increasingly relevant tool in domestic and international politics. The platform has become a way to promote policies and interact with citizens and other officials, and most world leaders and foreign ministries have an official Twitter account. Former U.S. president Donald Trump used to be a prolific Twitter user before the platform permanently suspended his account in January 2021. During an August 2018 survey, 61 percent of respondents stated that Trump's use of Twitter as President of the United States was inappropriate.
CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
Twitter is an online Social Media Platform where people share their their though as tweets. It is observed that some people misuse it to tweet hateful content. Twitter is trying to tackle this problem and we shall help it by creating a strong NLP based-classifier model to distinguish the negative tweets & block such tweets. Can you build a strong classifier model to predict the same?
Each row contains the text of a tweet and a sentiment label. In the training set you are provided with a word or phrase drawn from the tweet (selected_text) that encapsulates the provided sentiment.
Make sure, when parsing the CSV, to remove the beginning / ending quotes from the text field, to ensure that you don't include them in your training.
You're attempting to predict the word or phrase from the tweet that exemplifies the provided sentiment. The word or phrase should include all characters within that span (i.e. including commas, spaces, etc.)
Columns:
textID - unique ID for each piece of text
text - the text of the tweet
sentiment - the general sentiment of the tweet
Acknowledgement:
The dataset is download from Kaggle Competetions:
https://www.kaggle.com/c/tweet-sentiment-extraction/data?select=train.csv
Objective: Understand the Dataset & cleanup (if required). Build classification models to predict the twitter sentiments. Compare the evaluation metrics of vaious classification algorithms.
Original Data Source: Twitter Tweets Sentiment Dataset
The number of Twitter users in the United States was forecast to continuously increase between 2024 and 2028 by in total 4.3 million users (+5.32 percent). After the ninth consecutive increasing year, the Twitter user base is estimated to reach 85.08 million users and therefore a new peak in 2028. Notably, the number of Twitter users of was continuously increasing over the past years.User figures, shown here regarding the platform twitter, have been estimated by taking into account company filings or press material, secondary research, app downloads and traffic data. They refer to the average monthly active users over the period.The shown data are an excerpt of Statista's Key Market Indicators (KMI). The KMI are a collection of primary and secondary indicators on the macro-economic, demographic and technological environment in up to 150 countries and regions worldwide. All indicators are sourced from international and national statistical offices, trade associations and the trade press and they are processed to generate comparable data sets (see supplementary notes under details for more information).Find more key insights for the number of Twitter users in countries like Canada and Mexico.
The number of Twitter users in the United Kingdom was forecast to continuously increase between 2024 and 2028 by in total 0.9 million users (+5.1 percent). After the ninth consecutive increasing year, the Twitter user base is estimated to reach 18.55 million users and therefore a new peak in 2028. Notably, the number of Twitter users of was continuously increasing over the past years.User figures, shown here regarding the platform twitter, have been estimated by taking into account company filings or press material, secondary research, app downloads and traffic data. They refer to the average monthly active users over the period.The shown data are an excerpt of Statista's Key Market Indicators (KMI). The KMI are a collection of primary and secondary indicators on the macro-economic, demographic and technological environment in up to 150 countries and regions worldwide. All indicators are sourced from international and national statistical offices, trade associations and the trade press and they are processed to generate comparable data sets (see supplementary notes under details for more information).
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Advertising makes up 89% of its total revenue and data licensing makes up about 11%.
The number of Twitter users in Brazil was forecast to continuously increase between 2024 and 2028 by in total *** million users (+***** percent). After the ninth consecutive increasing year, the Twitter user base is estimated to reach ***** million users and therefore a new peak in 2028. Notably, the number of Twitter users of was continuously increasing over the past years.User figures, shown here regarding the platform twitter, have been estimated by taking into account company filings or press material, secondary research, app downloads and traffic data. They refer to the average monthly active users over the period.The shown data are an excerpt of Statista's Key Market Indicators (KMI). The KMI are a collection of primary and secondary indicators on the macro-economic, demographic and technological environment in up to *** countries and regions worldwide. All indicators are sourced from international and national statistical offices, trade associations and the trade press and they are processed to generate comparable data sets (see supplementary notes under details for more information).
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
These are the key Twitter user statistics that you need to know.
http://opendatacommons.org/licenses/dbcl/1.0/http://opendatacommons.org/licenses/dbcl/1.0/
The following information can also be found at https://www.kaggle.com/davidwallach/financial-tweets. Out of curosity, I just cleaned the .csv files to perform a sentiment analysis. So both the .csv files in this dataset are created by me.
Anything you read in the description is written by David Wallach and using all this information, I happen to perform my first ever sentiment analysis.
"I have been interested in using public sentiment and journalism to gather sentiment profiles on publicly traded companies. I first developed a Python package (https://github.com/dwallach1/Stocker) that scrapes the web for articles written about companies, and then noticed the abundance of overlap with Twitter. I then developed a NodeJS project that I have been running on my RaspberryPi to monitor Twitter for all tweets coming from those mentioned in the content section. If one of them tweeted about a company in the stocks_cleaned.csv file, then it would write the tweet to the database. Currently, the file is only from earlier today, but after about a month or two, I plan to update the tweets.csv file (hopefully closer to 50,000 entries.
I am not quite sure how this dataset will be relevant, but I hope to use these tweets and try to generate some sense of public sentiment score."
This dataset has all the publicly traded companies (tickers and company names) that were used as input to fill the tweets.csv. The influencers whose tweets were monitored were: ['MarketWatch', 'business', 'YahooFinance', 'TechCrunch', 'WSJ', 'Forbes', 'FT', 'TheEconomist', 'nytimes', 'Reuters', 'GerberKawasaki', 'jimcramer', 'TheStreet', 'TheStalwart', 'TruthGundlach', 'Carl_C_Icahn', 'ReformedBroker', 'benbernanke', 'bespokeinvest', 'BespokeCrypto', 'stlouisfed', 'federalreserve', 'GoldmanSachs', 'ianbremmer', 'MorganStanley', 'AswathDamodaran', 'mcuban', 'muddywatersre', 'StockTwits', 'SeanaNSmith'
The data used here is gathered from a project I developed : https://github.com/dwallach1/StockerBot
I hope to develop a financial sentiment text classifier that would be able to track Twitter's (and the entire public's) feelings about any publicly traded company (and cryptocurrency)
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The US has historically been the target country for Twitter since its launch in 2006. This is the full breakdown of Twitter users by country.
As of December 2022, X/Twitter's audience accounted for over *** million monthly active users worldwide. This figure was projected to ******** to approximately *** million by 2024, a ******* of around **** percent compared to 2022.
CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
-This Dataset was gathered by crawling Twitter's REST API using the Python library tweepy 3. This dataset contains the tweets of the 20 most popular twitter users (with the most followers) whereby retweets are neglected. These accounts belong to public people, such as Katy Perry and Barack Obama, platforms, YouTube, Instagram, and television channels shows, e.g., CNN Breaking News and The Ellen Show. -Consequently, the dataset contains a mix of relatively structured tweets, tweets written in a formal and informative manner, and completely unstructured tweets written in a colloquial style. Unfortunately, the geocoordinates were not available for those tweets. - H -This Dataset has been used to generate reserach paper under title "Machine Learning Techniques for Anomalies Detection in Post Arrays". -Crawled attributes are: Author (Twitter User), Content (Tweet), Date_Time, id (Twitter User ID), language (Tweet Langugage), Number_of_Likes, Number_of_Shares. Overall: 52543 tweets of top 20 users in twitter Screen_Name #Tweets Time span (in days) TheEllenShow 3,147 - 662 jimmyfallon 3,123 - 1231 ArianaGrande 3,104 - 613 YouTube 3,077 - 411 KimKardashian 2,939 - 603 katyperry 2,924 - 1,598 selenagomez 2,913 - 2,266 rihanna 2,877 - 1,557 BarackObama 2,863 - 849 britneyspears 2,776 - 1,548 instagram 2,577 - 456 shakira 2,530 - 1,850 Cristiano 2,507 - 2,407 jtimberlake 2,478 - 2,491 ladygaga 2,329 - 894 Twitter 2,290 - 2,593 ddlovato 2,217 - 741 taylorswift13 2,029 - 2,091 justinbieber 2,000 - 664 cnnbrk 1,842 - 183
CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
This dataset focuses on Twitter engagement metrics related to the Coronavirus disease (COVID-19), an infectious disease caused by the SARS-CoV-2 virus [1]. It provides a detailed collection of tweets, including their text content, the accounts that posted them, any hashtags used, and the geographical locations associated with the accounts [1]. The dataset is valuable for understanding public discourse, information dissemination, and engagement patterns on Twitter concerning COVID-19, particularly for analysing how people experience mild to moderate symptoms and recover, or require medical attention [1].
The dataset is structured with daily tweet counts and covers a period from 10 January 2020 to 28 February 2020 [2, 6, 7]. It includes approximately 179,040 daily tweet entries during this timeframe, derived from the sum of daily counts and tweet ID counts [2, 3, 6-11]. Tweet activity shows distinct peaks, with notable increases in late January (e.g., 6,091 tweets between 23-24 January 2020) [2] and a significant surge in late February, reaching 47,643 tweets between 26-27 February 2020, followed by 42,289 and 44,824 in subsequent days [7, 10, 11]. The distribution of certain tweet engagement metrics, such as replies or retweets, indicates that a substantial majority of tweets (over 152,500 records) fall within lower engagement ranges (e.g., 0-43 or 0-1628.96), with fewer tweets showing very high engagement (e.g., only 1 record between 79819.04-81448.00) [4, 5]. The data file would typically be in CSV format [12].
This dataset is ideal for: * Data Science and Analytics projects focused on social media [1]. * Visualization of tweet trends and engagement over time. * Exploratory data analysis to uncover patterns in COVID-19 related discussions [1]. * Natural Language Processing (NLP) tasks, such as sentiment analysis or topic modelling on tweet content [1]. * Data cleaning and preparation exercises for social media data [1].
The dataset has a global geographic scope [13]. It covers tweet data from 10 January 2020 to 28 February 2020 [2, 6, 7]. The content is specific to the Coronavirus disease (COVID-19) [1].
CC0
This dataset is particularly useful for: * Data scientists and analysts interested in social media trends and public health discourse [1]. * Researchers studying information spread and public sentiment during health crises. * Developers building AI and LLM data solutions [13]. * Individuals interested in exploratory analysis and data visualization of real-world social media data [1].
Original Data Source: Covid_19 Tweets Dataset
Apache License, v2.0https://www.apache.org/licenses/LICENSE-2.0
License information was derived automatically
The dataset is about public conversation on Twitter surrounding the COVID-19 pandemic. They annotated seventeen latent semantic attributes for each public tweet using natural language processing techniques and machine-learning based algorithms. The latent semantic attributes include: 1) ten attributes indicating the tweet’s relevance to ten detected topics, 2) five quantitative attributes indicating the degree of intensity in the valence (i.e., unpleasantness/pleasantness) and emotional intensities across four primary emotions of fear, anger, sadness and joy, and 3) two qualitative attributes indicating the sentiment category and the most dominant emotion category, respectively. Data is accessible to people who have an OPEN ICPSR account.
https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
By [source]
This dataset contains 862,231 labeled tweets and associated stock returns, providing a comprehensive look into the impact of social media on company-level stock market performance. For each tweet, researchers have extracted data such as the date of the tweet and its associated stock symbol, along with metrics such as last price and various returns (1-day return, 2-day return, 3-day return, 7-day return). Also recorded are volatility scores for both 10 day intervals and 30 day intervals. Finally, sentiment scores from both Long Short - Term Memory (LSTM) and TextBlob models have been included to quantify the overall tone in which these messages were delivered. With this dataset you will be able to explore how tweets can affect a company's share prices both short term and long term by leveraging all of these data points for analysis!
For more datasets, click here.
- 🚨 Your notebook can be here! 🚨!
In order to use this dataset, users can utilize descriptive statistics such as histograms or regression techniques to establish relationships between tweet content & sentiment with corresponding stock return data points such as 1-day & 7-day returns measurements.
The primary fields used for analysis include Tweet Text (TWEET), Stock symbol (STOCK), Date (DATE), Closing Price at the time of Tweet (LAST_PRICE) a range of Volatility measures 10 day Volatility(VOLATILITY_10D)and 30 day Volatility(VOLATILITY_30D ) for each Stock which capture changes in market fluctuation during different periods around when Twitter reactions occur. Additionally Sentiment Polarity analysis undertaken via two Machine learning algorithms LSTM Polarity(LSTM_POLARITY)and Textblob polarity provide insight into whether people are expressing positive or negative sentiments about each company at given times which again could influence thereby potentially influence Stock Prices over shorter term periods like 1-Day Returns(1_DAY_RETURN),2-Day Returns(2_DAY_RETURN)or longer term horizon like 7 Day Returns*7DAY RETURNS*.Finally MENTION field indicates if names/acronyms associated with Companies were specifically mentioned in each Tweet or not which gives extra insight into whether company specific contexts were present within individual Tweets aka “Company Relevancy”
- Analyzing the degree to which tweets can influence stock prices. By analyzing relationships between variables such as tweet sentiment and stock returns, correlations can be identified that could be used to inform investment decisions.
- Exploring natural language processing (NLP) models for predicting future market trends based on textual data such as tweets. Through testing and evaluating different text-based models using this dataset, better predictive models may emerge that can give investors advance warning of upcoming market shifts due to news or other events.
- Investigating the impact of different types of tweets (positive/negative, factual/opinionated) on stock prices over specific time frames. By studying correlations between the sentiment or nature of a tweet and its effect on stocks, insights may be gained into what sort of news or events have a greater impact on markets in general
If you use this dataset in your research, please credit the original authors. Data Source
License: CC0 1.0 Universal (CC0 1.0) - Public Domain Dedication No Copyright - You can copy, modify, distribute and perform the work, even for commercial purposes, all without asking permission. See Other Information.
File: reduced_dataset-release.csv | Column name | Description | |:----------------------|:-------------------------------------------------------------------------------------------------------| | TWEET | Text of the tweet. (String) | | STOCK | Company's stock mentioned in the tweet. (String) | | DATE | Date the tweet was posted. (Date) | | LAST_PRICE | Company's last price at the time of tweeting. (Float) ...
http://rightsstatements.org/vocab/InC/1.0/http://rightsstatements.org/vocab/InC/1.0/
This dataset comprises a set of Twitter accounts in Singapore that are used for social bot profiling research conducted by the Living Analytics Research Centre (LARC) at Singapore Management University (SMU). Here a bot is defined as a Twitter account that generates contents and/or interacts with other users automatically (at least according to human judgment). In this research, Twitter bots have been categorized into three major types:
Broadcast bot. This bot aims at disseminating information to general audience by providing, e.g., benign links to news, blogs or sites. Such bot is often managed by an organization or a group of people (e.g., bloggers). Consumption bot. The main purpose of this bot is to aggregate contents from various sources and/or provide update services (e.g., horoscope reading, weather update) for personal consumption or use. Spam bot. This type of bots posts malicious contents (e.g., to trick people by hijacking certain account or redirecting them to malicious sites), or promotes harmless but invalid/irrelevant contents aggressively.
This categorization is general enough to cater for new, emerging types of bot (e.g., chatbots can be viewed as a special type of broadcast bots). The dataset was collected from 1 January to 30 April 2014 via the Twitter REST and streaming APIs. Starting from popular seed users (i.e., users having many followers), their follow, retweet, and user mention links were crawled. The data collection proceeds by adding those followers/followees, retweet sources, and mentioned users who state Singapore in their profile location. Using this procedure, a total of 159,724 accounts have been collected. To identify bots, the first step is to check active accounts who tweeted at least 15 times within the month of April 2014. These accounts were then manually checked and labelled, of which 589 bots were found. As many more human users are expected in the Twitter population, the remaining accounts were randomly sampled and manually checked. With this, 1,024 human accounts were identified. In total, this results in 1,613 labelled accounts. Related Publication: R. J. Oentaryo, A. Murdopo, P. K. Prasetyo, and E.-P. Lim. (2016). On profiling bots in social media. Proceedings of the International Conference on Social Informatics (SocInfo’16), 92-109. Bellevue, WA. https://doi.org/10.1007/978-3-319-47880-7_6
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
One of the biggest advantages of Twitter is the speed at which information can be passed around. People use Twitter primarily to get news and for entertainment. This is the breakdown of why people use Twitter today.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Right now we see that depression is one of the most common problems in our society. Most of the time people are committed suicide only cause of depression. And till now there is no proper lab test way for detecting depression. Generally, doctors are detecting depression by asking some knowledge-base questions. On the other hand, there are a good number of people using social media platforms right now, where they are sharing their daily experiences, emotion, and other activity with their friends. Twitter is one of the common social platforms and also popular for data collection. I was collecting these datasets from twitter based on some depressive words. I hope that this twitter datasets will help researchers to detect depression more precisely.
Raw data from twitter
Chowdhury, Sawrav (2020), “Raw Twitter Datasets Based on Depressive Words”, Mendeley Data, V1, doi: 10.17632/4rd637tddf.1
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Dengue is a mosquito-borne viral disease which infects millions of people every year, specially in developing countries. Some of the main challenges facing the disease are reporting risk indicators and rapidly detecting outbreaks. Traditional surveillance systems rely on passive reporting from health-care facilities, often ignoring human mobility and locating each individual by their home address. Yet, geolocated data are becoming commonplace in social media, which is widely used as means to discuss a large variety of health topics, including the users' health status. In this dataset paper, we make available two large collections of dengue related labeled Twitter data. One is a set of tweets available through the Streaming API using the keywords dengue and aedes from 2010 to 2016. The other is the set of all geolocated tweets in Brazil during the year of 2015 (available also through the Streaming API). We detail the process of collecting and labeling each tweet containing keywords related to dengue in one of 5 categories: personal experience, information, opinion, campaign, and joke. This dataset can be useful for the development of models for spatial disease surveillance, but also scenarios such as understanding health-related content in a language other than English, and studying human mobility.
Governments may have the capacity to flood social media with fake news, but little is known about the use of flooding by ordinary voters. In this work, we identify 2107 registered US voters that account for 80% of the fake news shared on Twitter during the 2020 US presidential election by an entire panel of 664,391 voters. We find that supersharers are important members of the network, reaching a sizable 5.2% of registered voters on the platform. Supersharers have a significant overrepresentation of women, older adults, and registered Republicans. Supersharers' massive volume does not seem automated but is rather generated through manual and persistent retweeting. These findings highlight a vulnerability of social media for democracy, where a small group of people distort the political reality for many., This dataset contains aggregated information necessary to replicate the results reported in our work on Supersharers of Fake News on Twitter while respecting and preserving the privacy expectations of individuals included in the analysis. No individual-level data is provided as part of this dataset. The data collection process that enabled the creation of this dataset leveraged a large-scale panel of registered U.S. voters matched to Twitter accounts. We examined the activity of 664,391 panel members who were active on Twitter during the months of the 2020 U.S. presidential election (August to November 2020, inclusive), and identified a subset of 2,107 supersharers, which are the most prolific sharers of fake news in the panel that together account for 80% of fake news content shared on the platform. We rely on a source-level definition of fake news, that uses the manually-labeled list of fake news sites by Grinberg et al. 2019 and an updated list based on NewsGuard ratings (commercial..., , # Supersharers of Fake News on Twitter
This repository contains data and code for replication of the results presented in the paper.
The folders are mostly organized by research questions as detailed below. Each folder contains the code and publicly available data necessary for the replication of results. Importantly, no individual-level data is provided as part of this repository. De-identified individual-level data can be attained for IRB-approved uses under the terms and conditions specified in the paper. Once access is granted, the restricted-access data is expected to be located under ./restricted_data
.
The folders in this repository are the following:
Code under the preprocessing
folder contains the following:
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The average Twitter user spends 5.1 hours per month on the platform.