Facebook
TwitterDon't forget to upvote, comment, and follow if you are using this dataset. If you have any questions about the dataset I uploaded, feel free to leave them in the comments. Thank you! :)
Jangan lupa untuk upvote, comment, follow jika anda menggunakan dataset ini, dan jika ada pertanyaan mengenai dataset yang saya upload, silahkan tinggalkan di comment. Terima kasih :)
Column Descriptions (English) 1. reviewId: A unique ID for each user review. 2. userName: The name of the user who submitted the review. 3. userImage: The URL of the user's profile picture. 4. content: The text content of the review provided by the user. 5. score: The review score given by the user, typically on a scale of 1-5. 6. thumbsUpCount: The number of likes (thumbs up) received by the review. 7. reviewCreatedVersion: The app version used by the user when creating the review (not always available). 8. at: The date and time when the review was submitted. 9. replyContent: The developer's response to the review (no data available in this column). 10. repliedAt: The date and time when the developer's response was submitted (no data available in this column). 11. appVersion: The app version used by the user when submitting the review (not always available).
Deskripsi Kolom (Bahasa Indonesia) 1. reviewId: ID unik untuk setiap ulasan yang diberikan pengguna. 2. userName: Nama pengguna yang memberikan ulasan. 3. userImage: URL gambar profil pengguna yang memberikan ulasan. 4. content: Isi teks ulasan yang diberikan oleh pengguna. 5. score: Skor ulasan yang diberikan pengguna, biasanya dalam skala 1-5. 6. thumbsUpCount: Jumlah suka (thumbs up) yang diterima oleh ulasan tersebut. 7. reviewCreatedVersion: Versi aplikasi yang digunakan pengguna saat membuat ulasan (tidak selalu tersedia). 8. at: Tanggal dan waktu saat ulasan dibuat. 9. replyContent: Isi balasan dari pengembang aplikasi terhadap ulasan (tidak ada data dalam kolom ini). 10. repliedAt: Tanggal dan waktu saat balasan dari pengembang diberikan (tidak ada data dalam kolom ini). 11. appVersion: Versi aplikasi yang digunakan pengguna saat memberikan ulasan (tidak selalu tersedia).
Facebook
TwitterDon't forget to upvote, comment, and follow if you are using this dataset. If you have any questions about the dataset I uploaded, feel free to leave them in the comments. Thank you! :)
Jangan lupa untuk upvote, comment, follow jika anda menggunakan dataset ini, dan jika ada pertanyaan mengenai dataset yang saya upload, silahkan tinggalkan di comment. Terima kasih :)
Column Descriptions (English) 1. reviewId: A unique ID for each user review. 2. userName: The name of the user who submitted the review. 3. userImage: The URL of the user's profile picture. 4. content: The text content of the review provided by the user. 5. score: The review score given by the user, typically on a scale of 1-5. 6. thumbsUpCount: The number of likes (thumbs up) received by the review. 7. reviewCreatedVersion: The app version used by the user when creating the review (not always available). 8. at: The date and time when the review was submitted. 9. replyContent: The developer's response to the review (no data available in this column). 10. repliedAt: The date and time when the developer's response was submitted (no data available in this column). 11. appVersion: The app version used by the user when submitting the review (not always available).
Deskripsi Kolom (Bahasa Indonesia) 1. reviewId: ID unik untuk setiap ulasan yang diberikan pengguna. 2. userName: Nama pengguna yang memberikan ulasan. 3. userImage: URL gambar profil pengguna yang memberikan ulasan. 4. content: Isi teks ulasan yang diberikan oleh pengguna. 5. score: Skor ulasan yang diberikan pengguna, biasanya dalam skala 1-5. 6. thumbsUpCount: Jumlah suka (thumbs up) yang diterima oleh ulasan tersebut. 7. reviewCreatedVersion: Versi aplikasi yang digunakan pengguna saat membuat ulasan (tidak selalu tersedia). 8. at: Tanggal dan waktu saat ulasan dibuat. 9. replyContent: Isi balasan dari pengembang aplikasi terhadap ulasan (tidak ada data dalam kolom ini). 10. repliedAt: Tanggal dan waktu saat balasan dari pengembang diberikan (tidak ada data dalam kolom ini). 11. appVersion: Versi aplikasi yang digunakan pengguna saat memberikan ulasan (tidak selalu tersedia).
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Data that is collected at the individual-level from mobile phones is typically aggregated to the population-level for privacy reasons. If we are interested in answering questions regarding the mean, or working with groups appropriately modeled by a continuum, then this data is immediately informative. However, coupling such data regarding a population to a model that requires information at the individual-level raises a number of complexities. This is the case if we aim to characterize human mobility and simulate the spatial and geographical spread of a disease by dealing in discrete, absolute numbers. In this work, we highlight the hurdles faced and outline how they can be overcome to effectively leverage the specific dataset: Google COVID-19 Aggregated Mobility Research Dataset (GAMRD). Using a case study of Western Australia, which has many sparsely populated regions with incomplete data, we firstly demonstrate how to overcome these challenges to approximate absolute flow of people around a transport network from the aggregated data. Overlaying this evolving mobility network with a compartmental model for disease that incorporated vaccination status we run simulations and draw meaningful conclusions about the spread of COVID-19 throughout the state without de-anonymizing the data. We can see that towns in the Pilbara region are highly vulnerable to an outbreak originating in Perth. Further, we show that regional restrictions on travel are not enough to stop the spread of the virus from reaching regional Western Australia. The methods explained in this paper can be therefore used to analyze disease outbreaks in similarly sparse populations. We demonstrate that using this data appropriately can be used to inform public health policies and have an impact in pandemic responses.
Facebook
TwitterIntroduction: I have chosen to complete a data analysis project for the second course option, Bellabeats, Inc., using a locally hosted database program, Excel for both my data analysis and visualizations. This choice was made primarily because I live in a remote area and have limited bandwidth and inconsistent internet access. Therefore, completing a capstone project using web-based programs such as R Studio, SQL Workbench, or Google Sheets was not a feasible choice. I was further limited in which option to choose as the datasets for the ride-share project option were larger than my version of Excel would accept. In the scenario provided, I will be acting as a Junior Data Analyst in support of the Bellabeats, Inc. executive team and data analytics team. This combined team has decided to use an existing public dataset in hopes that the findings from that dataset might reveal insights which will assist in Bellabeat's marketing strategies for future growth. My task is to provide data driven insights to business tasks provided by the Bellabeats, Inc.'s executive and data analysis team. In order to accomplish this task, I will complete all parts of the Data Analysis Process (Ask, Prepare, Process, Analyze, Share, Act). In addition, I will break each part of the Data Analysis Process down into three sections to provide clarity and accountability. Those three sections are: Guiding Questions, Key Tasks, and Deliverables. For the sake of space and to avoid repetition, I will record the deliverables for each Key Task directly under the numbered Key Task using an asterisk (*) as an identifier.
Section 1 - Ask:
A. Guiding Questions:
1. Who are the key stakeholders and what are their goals for the data analysis project?
2. What is the business task that this data analysis project is attempting to solve?
B. Key Tasks: 1. Identify key stakeholders and their goals for the data analysis project *The key stakeholders for this project are as follows: -Urška Sršen and Sando Mur - co-founders of Bellabeats, Inc. -Bellabeats marketing analytics team. I am a member of this team.
Section 2 - Prepare:
A. Guiding Questions: 1. Where is the data stored and organized? 2. Are there any problems with the data? 3. How does the data help answer the business question?
B. Key Tasks:
Research and communicate the source of the data, and how it is stored/organized to stakeholders.
*The data source used for our case study is FitBit Fitness Tracker Data. This dataset is stored in Kaggle and was made available through user Mobius in an open-source format. Therefore, the data is public and available to be copied, modified, and distributed, all without asking the user for permission. These datasets were generated by respondents to a distributed survey via Amazon Mechanical Turk reportedly (see credibility section directly below) between 03/12/2016 thru 05/12/2016.
*Reportedly (see credibility section directly below), thirty eligible Fitbit users consented to the submission of personal tracker data, including output related to steps taken, calories burned, time spent sleeping, heart rate, and distance traveled. This data was broken down into minute, hour, and day level totals. This data is stored in 18 CSV documents. I downloaded all 18 documents into my local laptop and decided to use 2 documents for the purposes of this project as they were files which had merged activity and sleep data from the other documents. All unused documents were permanently deleted from the laptop. The 2 files used were:
-sleepDay_merged.csv
-dailyActivity_merged.csv
Identify and communicate to stakeholders any problems found with the data related to credibility and bias. *As will be more specifically presented in the Process section, the data seems to have credibility issues related to the reported time frame of the data collected. The metadata seems to indicate that the data collected covered roughly 2 months of FitBit tracking. However, upon my initial data processing, I found that only 1 month of data was reported. *As will be more specifically presented in the Process section, the data has credibility issues related to the number of individuals who reported FitBit data. Specifically, the metadata communicates that 30 individual users agreed to report their tracking data. My initial data processing uncovered 33 individual ...
Facebook
Twitterhttps://brightdata.com/licensehttps://brightdata.com/license
The Google Maps dataset is ideal for getting extensive information on businesses anywhere in the world. Easily filter by location, business type, and other factors to get the exact data you need. The Google Maps dataset includes all major data points: timestamp, name, category, address, description, open website, phone number, open_hours, open_hours_updated, reviews_count, rating, main_image, reviews, url, lat, lon, place_id, country, and more.
Facebook
TwitterThis public dataset was created by the Social Security Administration and contains all names from Social Security card applications for births that occurred in the United States after 1879. Note that many people born before 1937 never applied for a Social Security card, so their names are not included in this data. For others who did apply, records may not show the place of birth, and again their names are not included in the data. All data are from a 100% sample of records on Social Security card applications as of the end of February 2015. To safeguard privacy, the Social Security Administration restricts names to those with at least 5 occurrences. This public dataset is hosted in Google BigQuery and is included in BigQuery's 1TB/mo of free tier processing. This means that each user receives 1TB of free BigQuery processing every month, which can be used to run queries on this public dataset. Watch this short video to learn how to get started quickly using BigQuery to access public datasets. What is BigQuery .
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This is the second version of the Google Landmarks dataset (GLDv2), which contains images annotated with labels representing human-made and natural landmarks. The dataset can be used for landmark recognition and retrieval experiments. This version of the dataset contains approximately 5 million images, split into 3 sets of images: train, index and test. The dataset was presented in our CVPR'20 paper. In this repository, we present download links for all dataset files and relevant code for metric computation. This dataset was associated to two Kaggle challenges, on landmark recognition and landmark retrieval. Results were discussed as part of a CVPR'19 workshop. In this repository, we also provide scores for the top 10 teams in the challenges, based on the latest ground-truth version. Please visit the challenge and workshop webpages for more details on the data, tasks and technical solutions from top teams.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Introduction
There are several works based on Natural Language Processing on newspaper reports. Mining opinions from headlines [ 1 ] using Standford NLP and SVM by Rameshbhaiet. Al.compared several algorithms on a small and large dataset. Rubinet. al., in their paper [ 2 ], created a mechanism to differentiate fake news from real ones by building a set of characteristics of news according to their types. The purpose was to contribute to the low resource data available for training machine learning algorithms. Doumitet. al.in [ 3 ] have implemented LDA, a topic modeling approach to study bias present in online news media.
However, there are not many NLP research invested in studying COVID-19. Most applications include classification of chest X-rays and CT-scans to detect presence of pneumonia in lungs [ 4 ], a consequence of the virus. Other research areas include studying the genome sequence of the virus[ 5 ][ 6 ][ 7 ] and replicating its structure to fight and find a vaccine. This research is crucial in battling the pandemic. The few NLP based research publications are sentiment classification of online tweets by Samuel et el [ 8 ] to understand fear persisting in people due to the virus. Similar work has been done using the LSTM network to classify sentiments from online discussion forums by Jelodaret. al.[ 9 ]. NKK dataset is the first study on a comparatively larger dataset of a newspaper report on COVID-19, which contributed to the virus’s awareness to the best of our knowledge.
2 Data-set Introduction
2.1 Data Collection
We accumulated 1000 online newspaper report from United States of America (USA) on COVID-19. The newspaper includes The Washington Post (USA) and StarTribune (USA). We have named it as “Covid-News-USA-NNK”. We also accumulated 50 online newspaper report from Bangladesh on the issue and named it “Covid-News-BD-NNK”. The newspaper includes The Daily Star (BD) and Prothom Alo (BD). All these newspapers are from the top provider and top read in the respective countries. The collection was done manually by 10 human data-collectors of age group 23- with university degrees. This approach was suitable compared to automation to ensure the news were highly relevant to the subject. The newspaper online sites had dynamic content with advertisements in no particular order. Therefore there were high chances of online scrappers to collect inaccurate news reports. One of the challenges while collecting the data is the requirement of subscription. Each newspaper required $1 per subscriptions. Some criteria in collecting the news reports provided as guideline to the human data-collectors were as follows:
The headline must have one or more words directly or indirectly related to COVID-19.
The content of each news must have 5 or more keywords directly or indirectly related to COVID-19.
The genre of the news can be anything as long as it is relevant to the topic. Political, social, economical genres are to be more prioritized.
Avoid taking duplicate reports.
Maintain a time frame for the above mentioned newspapers.
To collect these data we used a google form for USA and BD. We have two human editor to go through each entry to check any spam or troll entry.
2.2 Data Pre-processing and Statistics
Some pre-processing steps performed on the newspaper report dataset are as follows:
Remove hyperlinks.
Remove non-English alphanumeric characters.
Remove stop words.
Lemmatize text.
While more pre-processing could have been applied, we tried to keep the data as much unchanged as possible since changing sentence structures could result us in valuable information loss. While this was done with help of a script, we also assigned same human collectors to cross check for any presence of the above mentioned criteria.
The primary data statistics of the two dataset are shown in Table 1 and 2.
Table 1: Covid-News-USA-NNK data statistics
No of words per headline
7 to 20
No of words per body content
150 to 2100
Table 2: Covid-News-BD-NNK data statistics No of words per headline
10 to 20
No of words per body content
100 to 1500
2.3 Dataset Repository
We used GitHub as our primary data repository in account name NKK^1. Here, we created two repositories USA-NKK^2 and BD-NNK^3. The dataset is available in both CSV and JSON format. We are regularly updating the CSV files and regenerating JSON using a py script. We provided a python script file for essential operation. We welcome all outside collaboration to enrich the dataset.
3 Literature Review
Natural Language Processing (NLP) deals with text (also known as categorical) data in computer science, utilizing numerous diverse methods like one-hot encoding, word embedding, etc., that transform text to machine language, which can be fed to multiple machine learning and deep learning algorithms.
Some well-known applications of NLP includes fraud detection on online media sites[ 10 ], using authorship attribution in fallback authentication systems[ 11 ], intelligent conversational agents or chatbots[ 12 ] and machine translations used by Google Translate[ 13 ]. While these are all downstream tasks, several exciting developments have been made in the algorithm solely for Natural Language Processing tasks. The two most trending ones are BERT[ 14 ], which uses bidirectional encoder-decoder architecture to create the transformer model, that can do near-perfect classification tasks and next-word predictions for next generations, and GPT-3 models released by OpenAI[ 15 ] that can generate texts almost human-like. However, these are all pre-trained models since they carry huge computation cost. Information Extraction is a generalized concept of retrieving information from a dataset. Information extraction from an image could be retrieving vital feature spaces or targeted portions of an image; information extraction from speech could be retrieving information about names, places, etc[ 16 ]. Information extraction in texts could be identifying named entities and locations or essential data. Topic modeling is a sub-task of NLP and also a process of information extraction. It clusters words and phrases of the same context together into groups. Topic modeling is an unsupervised learning method that gives us a brief idea about a set of text. One commonly used topic modeling is Latent Dirichlet Allocation or LDA[17].
Keyword extraction is a process of information extraction and sub-task of NLP to extract essential words and phrases from a text. TextRank [ 18 ] is an efficient keyword extraction technique that uses graphs to calculate the weight of each word and pick the words with more weight to it.
Word clouds are a great visualization technique to understand the overall ’talk of the topic’. The clustered words give us a quick understanding of the content.
4 Our experiments and Result analysis
We used the wordcloud library^4 to create the word clouds. Figure 1 and 3 presents the word cloud of Covid-News-USA- NNK dataset by month from February to May. From the figures 1,2,3, we can point few information:
In February, both the news paper have talked about China and source of the outbreak.
StarTribune emphasized on Minnesota as the most concerned state. In April, it seemed to have been concerned more.
Both the newspaper talked about the virus impacting the economy, i.e, bank, elections, administrations, markets.
Washington Post discussed global issues more than StarTribune.
StarTribune in February mentioned the first precautionary measurement: wearing masks, and the uncontrollable spread of the virus throughout the nation.
While both the newspaper mentioned the outbreak in China in February, the weight of the spread in the United States are more highlighted through out March till May, displaying the critical impact caused by the virus.
We used a script to extract all numbers related to certain keywords like ’Deaths’, ’Infected’, ’Died’ , ’Infections’, ’Quarantined’, Lock-down’, ’Diagnosed’ etc from the news reports and created a number of cases for both the newspaper. Figure 4 shows the statistics of this series. From this extraction technique, we can observe that April was the peak month for the covid cases as it gradually rose from February. Both the newspaper clearly shows us that the rise in covid cases from February to March was slower than the rise from March to April. This is an important indicator of possible recklessness in preparations to battle the virus. However, the steep fall from April to May also shows the positive response against the attack. We used Vader Sentiment Analysis to extract sentiment of the headlines and the body. On average, the sentiments were from -0.5 to -0.9. Vader Sentiment scale ranges from -1(highly negative to 1(highly positive). There were some cases
where the sentiment scores of the headline and body contradicted each other,i.e., the sentiment of the headline was negative but the sentiment of the body was slightly positive. Overall, sentiment analysis can assist us sort the most concerning (most negative) news from the positive ones, from which we can learn more about the indicators related to COVID-19 and the serious impact caused by it. Moreover, sentiment analysis can also provide us information about how a state or country is reacting to the pandemic. We used PageRank algorithm to extract keywords from headlines as well as the body content. PageRank efficiently highlights important relevant keywords in the text. Some frequently occurring important keywords extracted from both the datasets are: ’China’, Government’, ’Masks’, ’Economy’, ’Crisis’, ’Theft’ , ’Stock market’ , ’Jobs’ , ’Election’, ’Missteps’, ’Health’, ’Response’. Keywords extraction acts as a filter allowing quick searches for indicators in case of locating situations of the economy,
Facebook
TwitterAttribution-NonCommercial-ShareAlike 4.0 (CC BY-NC-SA 4.0)https://creativecommons.org/licenses/by-nc-sa/4.0/
License information was derived automatically
AOL Dataset for Browsing History and Topics of Interest
This record provides the datasets of the paper The Privacy-Utility Trade-off in the Topics API (DOI: 10.1145/3658644.3670368; arXiv: 2406.15309).
The datasets generating code and the experimental results can be found in 10.5281/zenodo.11229402 (github.com/nunesgh/topics-api-analysis).
Files
AOL-treated.csv: This dataset can be used for analyses of browsing history vulnerability and utility, as enabled by third-party cookies. It contains singletons (individuals with only one domain in their browsing histories) and one outlier (one user with 150.802 domain visits in three months) that are dropped in some analyses.AOL-treated-unique-domains.csv: Auxiliary dataset containing all the unique domains from AOL-treated.csv.Citizen-Lab-Classification.csv: Auxiliary dataset containing the Citizen Lab Classification data, as of commit ebd0ee8, treated for inconsistencies and filtered according to Mozilla's Public Suffix List, as of commit 5e6ac3a, extended by the discontinued TLDs: .bg.ac.yu, .ac.yu, .cg.yu, .co.yu, .edu.yu, .gov.yu, .net.yu, .org.yu, .yu, .or.tp, .tp, and .an.AOL-treated-Citizen-Lab-Classification-domain-match.csv: Auxiliary dataset containing domains matched from AOL-treated-unique-domains.csv with domains and respective topics from Citizen-Lab-Classification.csv.Google-Topics-Classification-v1.txt: Auxiliary dataset containing the Google Topics API taxonomy v1 data as provided by Google with the Chrome browser.AOL-treated-Google-Topics-Classification-v1-domain-match.csv: Auxiliary dataset containing domains matched from AOL-treated-unique-domains.csv with domains and respective topics from Google-Topics-Classification-v1.txt.AOL-reduced-Citizen-Lab-Classification.csv: This dataset can be used for analyses of browsing history vulnerability and utility, as enabled by third-party cookies, and for analyses of topics of interest vulnerability and utility, as enabled by the Topics API. It contains singletons and the outlier that are dropped in some analyses.AOL-reduced-Google-Topics-Classification-v1.csv: This dataset can be used for analyses of browsing history vulnerability and utility, as enabled by third-party cookies, and for analyses of topics of interest vulnerability and utility, as enabled by the Topics API. It contains singletons and the outlier that are dropped in some analyses.AOL-experimental.csv: This dataset can be used to empirically verify code correctness for 10.5281/zenodo.11229402. All privacy and utility results are expected to remain the same with each run of the analyses over this dataset.AOL-experimental-Citizen-Lab-Classification.csv: This dataset can be used to empirically verify code correctness for 10.5281/zenodo.11229402. All privacy and utility results are expected to remain the same with each run of the analyses over this dataset.AOL-experimental-Google-Topics-Classification-v1.csv: This dataset can be used to empirically verify code correctness for 10.5281/zenodo.11229402. All privacy and utility results are expected to remain the same with each run of the analyses over this dataset.License
Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International.
Facebook
Twitterhttps://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
DataSF seeks to transform the way that the City of San Francisco works -- through the use of data.
This dataset contains the following tables: ['311_service_requests', 'bikeshare_stations', 'bikeshare_status', 'bikeshare_trips', 'film_locations', 'sffd_service_calls', 'sfpd_incidents', 'street_trees']
This dataset is deprecated and not being updated.
Fork this kernel to get started with this dataset.
Dataset Source: SF OpenData. This dataset is publicly available for anyone to use under the following terms provided by the Dataset Source - http://sfgov.org/ - and is provided "AS IS" without any warranty, express or implied, from Google. Google disclaims all liability for any damages, direct or indirect, resulting from the use of the dataset.
Banner Photo by @meric from Unplash.
Which neighborhoods have the highest proportion of offensive graffiti?
Which complaint is most likely to be made using Twitter and in which neighborhood?
What are the most complained about Muni stops in San Francisco?
What are the top 10 incident types that the San Francisco Fire Department responds to?
How many medical incidents and structure fires are there in each neighborhood?
What’s the average response time for each type of dispatched vehicle?
Which category of police incidents have historically been the most common in San Francisco?
What were the most common police incidents in the category of LARCENY/THEFT in 2016?
Which non-criminal incidents saw the biggest reporting change from 2015 to 2016?
What is the average tree diameter?
What is the highest number of a particular species of tree planted in a single year?
Which San Francisco locations feature the largest number of trees?
Facebook
TwitterGitHub is how people build software and is home to the largest community of open source developers in the world, with over 12 million people contributing to 31 million projects on GitHub since 2008. This 3TB+ dataset comprises the largest released source of GitHub activity to date. It contains a full snapshot of the content of more than 2.8 million open source GitHub repositories including more than 145 million unique commits, over 2 billion different file paths, and the contents of the latest revision for 163 million files, all of which are searchable with regular expressions. This public dataset is hosted in Google BigQuery and is included in BigQuery's 1TB/mo of free tier processing. This means that each user receives 1TB of free BigQuery processing every month, which can be used to run queries on this public dataset. Watch this short video to learn how to get started quickly using BigQuery to access public datasets. What is BigQuery .
Facebook
TwitterOpen Data Commons Attribution License (ODC-By) v1.0https://www.opendatacommons.org/licenses/by/1.0/
License information was derived automatically
Covid19Kerala.info-Data is a consolidated multi-source open dataset of metadata from the COVID-19 outbreak in the Indian state of Kerala. It is created and maintained by volunteers of ‘Collective for Open Data Distribution-Keralam’ (CODD-K), a nonprofit consortium of individuals formed for the distribution and longevity of open-datasets. Covid19Kerala.info-Data covers a set of correlated temporal and spatial metadata of SARS-CoV-2 infections and prevention measures in Kerala. Static releases of this dataset snapshots are manually produced from a live database maintained as a set of publicly accessible Google sheets. This dataset is made available under the Open Data Commons Attribution License v1.0 (ODC-BY 1.0).
Schema and data package Datapackage with schema definition is accessible at https://codd-k.github.io/covid19kerala.info-data/datapackage.json. Provided datapackage and schema are based on Frictionless data Data Package specification.
Temporal and Spatial Coverage
This dataset covers COVID-19 outbreak and related data from the state of Kerala, India, from January 31, 2020 till the date of the publication of this snapshot. The dataset shall be maintained throughout the entirety of the COVID-19 outbreak.
The spatial coverage of the data lies within the geographical boundaries of the Kerala state which includes its 14 administrative subdivisions. The state is further divided into Local Self Governing (LSG) Bodies. Reference to this spatial information is included on appropriate data facets. Available spatial information on regions outside Kerala was mentioned, but it is limited as a reference to the possible origins of the infection clusters or movement of the individuals.
Longevity and Provenance
The dataset snapshot releases are published and maintained in a designated GitHub repository maintained by CODD-K team. Periodic snapshots from the live database will be released at regular intervals. The GitHub commit logs for the repository will be maintained as a record of provenance, and archived repository will be maintained at the end of the project lifecycle for the longevity of the dataset.
Data Stewardship
CODD-K expects all administrators, managers, and users of its datasets to manage, access, and utilize them in a manner that is consistent with the consortium’s need for security and confidentiality and relevant legal frameworks within all geographies, especially Kerala and India. As a responsible steward to maintain and make this dataset accessible— CODD-K absolves from all liabilities of the damages, if any caused by inaccuracies in the dataset.
License
This dataset is made available by the CODD-K consortium under ODC-BY 1.0 license. The Open Data Commons Attribution License (ODC-By) v1.0 ensures that users of this dataset are free to copy, distribute and use the dataset to produce works and even to modify, transform and build upon the database, as long as they attribute the public use of the database or works produced from the same, as mentioned in the citation below.
Disclaimer
Covid19Kerala.info-Data is provided under the ODC-BY 1.0 license as-is. Though every attempt is taken to ensure that the data is error-free and up to date, the CODD-K consortium do not bear any responsibilities for inaccuracies in the dataset or any losses—monetary or otherwise—that users of this dataset may incur.
Facebook
TwitterThe American Community Survey (ACS) is an ongoing survey that provides vital information on a yearly basis about our nation and its people by contacting over 3.5 million households across the country. The resulting data provides incredibly detailed demographic information across the US aggregated at various geographic levels which helps determine how more than $675 billion in federal and state funding are distributed each year. Businesses use ACS data to inform strategic decision-making. ACS data can be used as a component of market research, provide information about concentrations of potential employees with a specific education or occupation, and which communities could be good places to build offices or facilities. For example, someone scouting a new location for an assisted-living center might look for an area with a large proportion of seniors and a large proportion of people employed in nursing occupations. Through the ACS, we know more about jobs and occupations, educational attainment, veterans, whether people own or rent their homes, and other topics. Public officials, planners, and entrepreneurs use this information to assess the past and plan the future. For more information, see the Census Bureau's ACS Information Guide . This public dataset is hosted in Google BigQuery as part of the Google Cloud Public Datasets Program , with Carto providing cleaning and onboarding support. It is included in BigQuery's 1TB/mo of free tier processing. This means that each user receives 1TB of free BigQuery processing every month, which can be used to run queries on this public dataset. Watch this short video to learn how to get started quickly using BigQuery to access public datasets. What is BigQuery .
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
so if you have to have a G+ account (for YouTube, location services, or other reasons) - here's how you can make it totally private! No one will be able to add you, send you spammy links, or otherwise annoy you. You need to visit the "Audience Settings" page - https://plus.google.com/u/0/settings/audience You can then set a "custom audience" - usually you would use this to restrict your account to people from a specific geographic location, or within a specific age range. In this case, we're going to choose a custom audience of "No-one" Check the box and hit save. Now, when people try to visit your Google+ profile - they'll see this "restricted" message. You can visit my G+ Profile if you want to see this working. (https://plus.google.com/114725651137252000986) If you are not able to understand you can follow this website : http://www.livehuntz.com/google-plus/support-phone-number
Facebook
TwitterWho's On First is a gazetteer of all the places in the world, from continents to neighbourhoods and venues. If you’ve never heard the term “gazetteer” before it’s basically just a big phone book, but a phone book of places rather than people. Who’s On First is not a carefully selected list of important or relevant places. It is not meant to act as the threshold by which places are measured. Who’s On First, instead, is meant to provide the raw material with which a multiplicity of thresholds might be created. From Who’s On First’s perspective the point is not that one place is more important or relevant than any other . The point is not that a place may or may not exist anymore or that its legitimacy as a place is disputed. The point is, critically, that people believe them to exist or to have existed. This is why we often refer to Who’s On First as “a gazetteer of consensual hallucinations” . Who's On First is an open-source effort built and maintained by Mapzen . Mapzen is a Linux Foundation Project. Learn more here . This public dataset is hosted in Google BigQuery, with cleaning and onboarding support from CARTO , and is included in BigQuery's 1TB/mo of free tier processing. This means that each user receives 1TB of free BigQuery processing every month, which can be used to run queries on this public dataset. Watch this short video to learn how to get started quickly using BigQuery to access public datasets. What is BigQuery .
Facebook
TwitterInternet Archive eBook data includes the complete full text of all Internet Archive books published 1800-1922 and all books in the American Libraries collection for which English-language full text was available using the search “collection:(americana)”. These collections have been processed using the GDELT Global Knowledge Graph and are available in Google BigQuery. More than a billion pages stretching back 215 years have been examined to compile a list of all people, organizations, and other names, fulltext geocoded to render them fully mappable, and more than 4,500 emotions and themes compiled. All of this computed metadata is combined with all available book-level metadata, including title, author, publisher, and subject tags as provided by the contributing libraries. HathiTrust data includes all English language public domain books 1800-2015. They were provided as part of a special research extract and only public domain volumes are included. This public dataset is hosted in Google BigQuery and is included in BigQuery's 1TB/mo of free tier processing. This means that each user receives 1TB of free BigQuery processing every month, which can be used to run queries on this public dataset. Watch this short video to learn how to get started quickly using BigQuery to access public datasets. What is BigQuery .
Facebook
TwitterPublic comments for the Oregon Draft Data Strategy. Phase 2 extends from October 26, 202 - December 15, 2020. Comments are received through a google form (https://forms.gle/suhzPoMpWZfhPTHs6) and synced daily at 5pm PST. Individuals who submitted files (pdf, word) to the Oregon.DATA@oregon.gov email address in lieu of using the google form will have their comments posted directly to the Oregon Data Strategy Website at https://www.oregon.gov/das/OSCIO/Pages/DataStrategy.aspx
Facebook
TwitterDon't forget to upvote, comment, and follow if you are using this dataset. If you have any questions about the dataset I uploaded, feel free to leave them in the comments. Thank you! :)
Jangan lupa untuk upvote, comment, follow jika anda menggunakan dataset ini, dan jika ada pertanyaan mengenai dataset yang saya upload, silahkan tinggalkan di comment. Terima kasih :)
Column Descriptions (English) 1. reviewId: A unique ID for each user review. 2. userName: The name of the user who submitted the review. 3. userImage: The URL of the user's profile picture. 4. content: The text content of the review provided by the user. 5. score: The review score given by the user, typically on a scale of 1-5. 6. thumbsUpCount: The number of likes (thumbs up) received by the review. 7. reviewCreatedVersion: The app version used by the user when creating the review (not always available). 8. at: The date and time when the review was submitted. 9. replyContent: The developer's response to the review (no data available in this column). 10. repliedAt: The date and time when the developer's response was submitted (no data available in this column). 11. appVersion: The app version used by the user when submitting the review (not always available).
Deskripsi Kolom (Bahasa Indonesia) 1. reviewId: ID unik untuk setiap ulasan yang diberikan pengguna. 2. userName: Nama pengguna yang memberikan ulasan. 3. userImage: URL gambar profil pengguna yang memberikan ulasan. 4. content: Isi teks ulasan yang diberikan oleh pengguna. 5. score: Skor ulasan yang diberikan pengguna, biasanya dalam skala 1-5. 6. thumbsUpCount: Jumlah suka (thumbs up) yang diterima oleh ulasan tersebut. 7. reviewCreatedVersion: Versi aplikasi yang digunakan pengguna saat membuat ulasan (tidak selalu tersedia). 8. at: Tanggal dan waktu saat ulasan dibuat. 9. replyContent: Isi balasan dari pengembang aplikasi terhadap ulasan (tidak ada data dalam kolom ini). 10. repliedAt: Tanggal dan waktu saat balasan dari pengembang diberikan (tidak ada data dalam kolom ini). 11. appVersion: Versi aplikasi yang digunakan pengguna saat memberikan ulasan (tidak selalu tersedia).
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Here are a few use cases for this project:
Emotion Recognition Applications: The "Facial Features" model could be utilized for sentiment analysis where emotions of individuals are identified based on their facial expressions. This system could be used in customer support, counseling platforms, or online education systems to assess user satisfaction and engagement.
Facial Authentication System: Leveraging this model, developers could design and improve facial recognition/authentication systems by distinguishing between different facial features, enhancing security systems, mobile phone unlocks, and access controls at sensitive locations.
Human-Computer Interaction: The model can be deployed into advanced AI systems to interact more realistically with users by detecting and interpreting human facial expressions, leading to enhancement in customer service bots, gaming experience, or virtual reality applications.
Monitoring Driver's Alertness: The model can be used in smart vehicles to monitor the alertness of the driver by examining whether the driver's eyes are open or closed or if they frequently open their mouths (potentially indicating yawning), serving as a safety measure to prevent accidents due to drowsiness.
Medical Care and Therapy: The "Facial Features" model could have an application in medical fields such as teletherapy, where a therapist can examine a patient’s facial response to certain treatment or exercises, providing better insights to help in diagnosis and treatment.
Facebook
TwitterDon't forget to upvote, comment, and follow if you are using this dataset. If you have any questions about the dataset I uploaded, feel free to leave them in the comments. Thank you! :)
Jangan lupa untuk upvote, comment, follow jika anda menggunakan dataset ini, dan jika ada pertanyaan mengenai dataset yang saya upload, silahkan tinggalkan di comment. Terima kasih :)
Column Descriptions (English) 1. reviewId: A unique ID for each user review. 2. userName: The name of the user who submitted the review. 3. userImage: The URL of the user's profile picture. 4. content: The text content of the review provided by the user. 5. score: The review score given by the user, typically on a scale of 1-5. 6. thumbsUpCount: The number of likes (thumbs up) received by the review. 7. reviewCreatedVersion: The app version used by the user when creating the review (not always available). 8. at: The date and time when the review was submitted. 9. replyContent: The developer's response to the review (no data available in this column). 10. repliedAt: The date and time when the developer's response was submitted (no data available in this column). 11. appVersion: The app version used by the user when submitting the review (not always available).
Deskripsi Kolom (Bahasa Indonesia) 1. reviewId: ID unik untuk setiap ulasan yang diberikan pengguna. 2. userName: Nama pengguna yang memberikan ulasan. 3. userImage: URL gambar profil pengguna yang memberikan ulasan. 4. content: Isi teks ulasan yang diberikan oleh pengguna. 5. score: Skor ulasan yang diberikan pengguna, biasanya dalam skala 1-5. 6. thumbsUpCount: Jumlah suka (thumbs up) yang diterima oleh ulasan tersebut. 7. reviewCreatedVersion: Versi aplikasi yang digunakan pengguna saat membuat ulasan (tidak selalu tersedia). 8. at: Tanggal dan waktu saat ulasan dibuat. 9. replyContent: Isi balasan dari pengembang aplikasi terhadap ulasan (tidak ada data dalam kolom ini). 10. repliedAt: Tanggal dan waktu saat balasan dari pengembang diberikan (tidak ada data dalam kolom ini). 11. appVersion: Versi aplikasi yang digunakan pengguna saat memberikan ulasan (tidak selalu tersedia).
Facebook
TwitterDon't forget to upvote, comment, and follow if you are using this dataset. If you have any questions about the dataset I uploaded, feel free to leave them in the comments. Thank you! :)
Jangan lupa untuk upvote, comment, follow jika anda menggunakan dataset ini, dan jika ada pertanyaan mengenai dataset yang saya upload, silahkan tinggalkan di comment. Terima kasih :)
Column Descriptions (English) 1. reviewId: A unique ID for each user review. 2. userName: The name of the user who submitted the review. 3. userImage: The URL of the user's profile picture. 4. content: The text content of the review provided by the user. 5. score: The review score given by the user, typically on a scale of 1-5. 6. thumbsUpCount: The number of likes (thumbs up) received by the review. 7. reviewCreatedVersion: The app version used by the user when creating the review (not always available). 8. at: The date and time when the review was submitted. 9. replyContent: The developer's response to the review (no data available in this column). 10. repliedAt: The date and time when the developer's response was submitted (no data available in this column). 11. appVersion: The app version used by the user when submitting the review (not always available).
Deskripsi Kolom (Bahasa Indonesia) 1. reviewId: ID unik untuk setiap ulasan yang diberikan pengguna. 2. userName: Nama pengguna yang memberikan ulasan. 3. userImage: URL gambar profil pengguna yang memberikan ulasan. 4. content: Isi teks ulasan yang diberikan oleh pengguna. 5. score: Skor ulasan yang diberikan pengguna, biasanya dalam skala 1-5. 6. thumbsUpCount: Jumlah suka (thumbs up) yang diterima oleh ulasan tersebut. 7. reviewCreatedVersion: Versi aplikasi yang digunakan pengguna saat membuat ulasan (tidak selalu tersedia). 8. at: Tanggal dan waktu saat ulasan dibuat. 9. replyContent: Isi balasan dari pengembang aplikasi terhadap ulasan (tidak ada data dalam kolom ini). 10. repliedAt: Tanggal dan waktu saat balasan dari pengembang diberikan (tidak ada data dalam kolom ini). 11. appVersion: Versi aplikasi yang digunakan pengguna saat memberikan ulasan (tidak selalu tersedia).