CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
Yearly statewide and by-Continuum of Care total counts of individuals receiving homeless response services by age group, race, gender, veteran status, and disability status.
This data comes from the Homelessness Data Integration System (HDIS), a statewide data warehouse which compiles and processes data from all 44 California Continuums of Care (CoC)—regional homelessness service coordination and planning bodies. Each CoC collects data about the people it serves through its programs, such as homelessness prevention services, street outreach services, permanent housing interventions and a range of other strategies aligned with California’s Housing First objectives.
The dataset uploaded reflects the 2024 HUD Data Standard Changes. Previously, Race and Ethnicity were separate files but are now combined.
Information updated as of 7/29/2025.
Updated every Thursday People experiencing homelessness are at risk for infection through community spread of COVID-19. The data below describes impacts of COVID-19 on individuals who are experiencing homelessness, whether they are able to access a congregate shelter or unsheltered (sleeping outside or in places not meant for human habitation).
For COVID-19 investigation purposes, people experiencing homelessness are defined as those who have lived on the streets or stayed in a shelter, vehicle, abandoned building, encampment, tiny house village/tent city, or supportive housing program (transitional or permanent supportive) at any time during the 12 months prior to COVID-19 testing, without evidence that they were otherwise permanently housed. Public Health, the Department of Community and Human Services, homeless service providers, healthcare providers, and the City of Seattle have partnered for increased testing in this community.
INTRODUCTION: As California’s homeless population continues to grow at an alarming rate, large metropolitan regions like the San Francisco Bay Area face unique challenges in coordinating efforts to track and improve homelessness. As an interconnected region of nine counties with diverse community needs, identifying homeless population trends across San Francisco Bay Area counties can help direct efforts more effectively throughout the region, and inform initiatives to improve homelessness at the city, county, and metropolitan level. OBJECTIVES: The primary objective of this research is to compare the annual Point-in-Time (PIT) counts of homelessness across San Francisco Bay Area counties between the years 2018-2022. The secondary objective of this research is to compare the annual Point-in-Time (PIT) counts of homelessness among different age groups in each of the nine San Francisco Bay Area counties between the years 2018-2022. METHODS: Two datasets were used to conduct research. The first dataset (Dataset 1) contains Point-in-Time (PIT) homeless counts published by the U.S. Department of Housing and Urban Development. Dataset 1 was cleaned using Microsoft Excel and uploaded to Tableau Desktop Public Edition 2022.4.1 as a CSV file. The second dataset (Dataset 2) was published by Data SF and contains shapefiles of geographic boundaries of San Francisco Bay Area counties. Both datasets were joined in Tableau Desktop Public Edition 2022.4 and all data analysis was conducted using Tableau visualizations in the form of bar charts, highlight tables, and maps. RESULTS: Alameda, San Francisco, and Santa Clara counties consistently reported the highest annual count of people experiencing homelessness across all 5 years between 2018-2022. Alameda, Napa, and San Mateo counties showed the largest increase in homelessness between 2018 and 2022. Alameda County showed a significant increase in homeless individuals under the age of 18. CONCLUSIONS: Results from this research reveal both stark and fluctuating differences in homeless counts among San Francisco Bay Area Counties over time, suggesting that a regional approach that focuses on collaboration across counties and coordination of services could prove beneficial for improving homelessness throughout the region. Results suggest that more immediate efforts to improve homelessness should focus on the counties of Alameda, San Francisco, Santa Clara, and San Mateo. Changes in homelessness during the COVID-19 pandemic years of 2020-2022 point to an urgent need to support Contra Costa County.
https://assets.publishing.service.gov.uk/media/687a5fc49b1337e9a7726bb4/StatHomeless_202503.ods">Statutory homelessness England level time series "live tables" (ODS, 314 KB)
For quarterly local authority-level tables prior to the latest financial year, see the Statutory homelessness release pages.
<p class="gem-c-attachment_metadata"><span class="gem-c-attachment_attribute"><abbr title="OpenDocument Spreadsheet" class="gem-c-attachment_abbr">ODS</abbr></span>, <span class="gem-c-attachment_attribute">1.2 MB</span></p>
<p class="gem-c-attachment_metadata">
This file is in an <a href="https://www.gov.uk/guidance/using-open-document-formats-odf-in-your-organisation" target="_self" class="govuk-link">OpenDocument</a> format
This file may not be suitable for users of assistive technology.
Request an accessible format. If you use assistive technology (such as a screen reader) and need a version of this document in a more accessible format, please email <a href="mailto:alternativeformats@communities.gov.uk" target="_blank" class="govuk-link">alternativeformats@communities.gov.uk</a>. Please tell us what format you need. It will help us if you say what assistive technology you use.
When analyzing the ratio of homelessness to state population, New York, Vermont, and Oregon had the highest rates in 2023. However, Washington, D.C. had an estimated ** homeless individuals per 10,000 people, which was significantly higher than any of the 50 states. Homeless people by race The U.S. Department of Housing and Urban Development performs homeless counts at the end of January each year, which includes people in both sheltered and unsheltered locations. The estimated number of homeless people increased to ******* in 2023 – the highest level since 2007. However, the true figure is likely to be much higher, as some individuals prefer to stay with family or friends - making it challenging to count the actual number of homeless people living in the country. In 2023, nearly half of the people experiencing homelessness were white, while the number of Black homeless people exceeded *******. How many veterans are homeless in America? The number of homeless veterans in the United States has halved since 2010. The state of California, which is currently suffering a homeless crisis, accounted for the highest number of homeless veterans in 2022. There are many causes of homelessness among veterans of the U.S. military, including post-traumatic stress disorder (PTSD), substance abuse problems, and a lack of affordable housing.
Attribution-ShareAlike 4.0 (CC BY-SA 4.0)https://creativecommons.org/licenses/by-sa/4.0/
License information was derived automatically
The graph displays the top 15 states by an estimated number of homeless people in the United States for the year 2025. The x-axis represents U.S. states, while the y-axis shows the number of homeless individuals in each state. California has the highest homeless population with 187,084 individuals, followed by New York with 158,019, while Hawaii places last in this dataset with 11,637. This bar graph highlights significant differences across states, with some states like California and New York showing notably higher counts compared to others, indicating regional disparities in homelessness levels across the country.
This dataset provides estimates for the total number of people experiencing homelessness as the sum of the sheltered population (the total number of people staying in emergency shelter, transitional housing, or safe haven programs on the night of the point-in-time count) and the unsheltered population (the total number of people counted by volunteers and the estimated number of people sleeping in the dwellings counted by volunteers) per census tract in 2019. Information like this may be useful for studying homeless populations.(1) The total number of people experiencing homelessness who slept in an emergency shelter, transitional housing, or safe haven program was reported to LAHSA by each provider and assigned to a census tract. For shelter programs with multiple scattered sites in the LA CoC, an administrative address is used for locating the sheltered population in this dashboard. Shelters that serve persons fleeing domestic or intimate partner violence are excluded due to confidentiality concerns. Persons receiving motel vouchers are excluded in this dashboard because the location of the motel is unknown. (2) The total number of people experiencing homelessness who slept on the street or in a dwelling not meant for human habitation were counted by volunteers on January 22nd, 23rd, or 24th. 3,873 demographic survey interviews were conducted with persons experiencing unsheltered homelessness from December 2018 to March 2019 to describe the population’s demographics and approximate the number of people in each dwelling. The total persons in uninhabitable dwellings was estimated for each type (car, van, camper/RV, tent, or makeshift shelter) and was estimated at the SPA-level for individual and for family households and can be found on our website. Estimates of the people inside these dwellings was rounded to whole numbers for the purposes of this dashboard.Spatial Extent: Los Angeles CountySpatial Unit: Census TractCreated: 2019Updated: n/aSource: Los Angeles Homeless Services AuthorityContact Telephone: 213-683-3333Contact Email: datasupport@lahsa.orgSource Link:https://www.lahsa.orgAPI Source Link: https://geohub.lacity.org/datasets/homeless-count-los-angeles-county-2019?geometry=-120.792%2C33.011%2C-115.783%2C34.609
Data Prepared by Los Angeles Homeless Services AuthorityJune 26, 2019Homeless Count 2019 Dashboard MethodologyTotal number of people experiencing homelessness is the sum of (1) the sheltered population (the total number of people staying in emergency shelter, transitional housing, or safe haven programs on the night of the point-in-time count) and (2) the unsheltered population (the total number of people counted by volunteers and the estimated number of people sleeping in the dwellings counted by volunteers).
(1) The total number of people experiencing homelessness who slept in an emergency shelter, transitional housing, or safe haven program was reported to LAHSA by each provider and assigned to a census tract. For shelter programs with multiple scattered sites in the LA CoC, an administrative address is used for locating the sheltered population in this dashboard. Shelters that serve persons fleeing domestic or intimate partner violence are excluded due to confidentiality concerns. Persons receiving motel vouchers are excluded in this dashboard because the location of the motel is unknown.
(2) The total number of people experiencing homelessness who slept on the street or in a dwelling not meant for human habitation were counted by volunteers on January 22nd, 23rd, or 24th. 3,873 demographic survey interviews were conducted with persons experiencing unsheltered homelessness from December 2018 to March 2019 to describe the population’s demographics and approximate the number of people in each dwelling. The total persons in uninhabitable dwellings was estimated for each type (car, van, camper/RV, tent, or makeshift shelter) and was estimated at the SPA-level for individual and for family households and can be found on our website. Estimates of the people inside these dwellings was rounded to whole numbers for the purposes of this dashboard.Density ScoringThere are 4 columns seen in the data that represent the density of homeless Individuals per square mile. The 4 column labeled RFP-Scoring is based on the data range between the min and max of homeless calculated of LA County's Homeless Individual numbers. For break down the data is given a specific score based on the density. Below are the ranges:0=01= 1-32= 4-73= 8-114= 12-185= 19-276= 28-427= 43-638= 64-999= 100-17910= 180-5341The breakdown of the data used was quantitative statistical range for 11 categories, 0 being one of the ranges.
This dataset provides information on individuals experiencing sheltered or unsheltered homelessness in the Austin/Travis County Continuum of Care (CoC) on a single night in January when the Point in Time (PIT) Count occurs. "Sheltered" homelessness refers to individuals residing in emergency shelter, safe haven, or transitional housing project types. Unsheltered homelessness refers to individuals with a primary nighttime residence that is a public or private place not designed for or ordinarily used as a regular sleeping accommodation for human beings, including a car, park, abandoned building, bus or train station, airport, or camping ground on the night designated for the count. This measure overlaps, but is different from, the annual count of sheltered homelessness in HMIS (SD23 Measure EOA.E.1b). Data Source: The data for this measure was reported to the City of Austin by the Ending Community Homelessness Coalition (ECHO). Each year, ECHO, as the homeless Continuum of Care Lead Agency (CoC Lead), aggregates and reports community wide data (including this measure) to the Department of Housing and Urban Development (HUD). This data is referred to as System Performance Measures as they are designed to examine how well a community is responding to homelessness at a system level. View more details and insights related to this data set on the story page: https://data.austintexas.gov/stories/s/hjiv-t2tm Last Updated December 2020 with data for 2020 PIT Count.
Open Government Licence 3.0http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
License information was derived automatically
The number of deaths of homeless people in England and Wales, by sex, five-year age group and underlying cause of death, 2013 to 2021 registrations. Experimental Statistics.
According to U.S. Department of Housing and Urban Development's definition, homelessness includes individuals and families who lack a fixed, regular, and adequate nighttime residence. A homeless count provides a "snapshot in time" to quantify the size of the homeless population at a specific point during the year. Regardless of how successful outreach efforts are, an undercount of people experiencing homelessness is possible. Counts includes persons experiencing unsheltered and sheltered homelessness. Greater Los Angeles Homeless Count occurred in the nights of February 22, 23 and 24, 2022. Glendale's count occurred in the morning and evening of February 25, 2022. Long Beach's count occurred in the early morning of February 24, 2022. Pasadena's count occurred in the evening of February 22, 2022 and morning of February 23, 2022. Data not available for Los Angeles City neighborhoods and unincorporated Los Angeles County; LAHSA does not recommend aggregating census tract-level data to calculate numbers for other geographic levels.Housing affordability is a major concern for many Los Angeles County residents. Housing burden can increase the risk for homelessness. Individuals experiencing homelessness experience disproportionately higher rates of certain health conditions, such as tuberculosis, HIV infection, alcohol and drug abuse, and mental illness. Barriers to accessing care and limited access to resources contribute greatly to these observed disparities.For more information about the Community Health Profiles Data Initiative, please see the initiative homepage.
This dataset provides information on individuals experiencing sheltered homelessness in the Austin/Travis County Continuum of Care (CoC) in a given fiscal year. "Sheltered" homelessness refers to individuals residing in emergency shelter, safe haven, or transitional housing project types. This measure overlaps, but is different from, the Point in Time (PIT) Count (SD23 Measure EOA.E.1a), which is a snapshot of both sheltered and unsheltered homelessness on one night in January. Data Source: The data for this measure was reported to the City of Austin by the Ending Community Homelessness Coalition (ECHO). Each year, ECHO, as the homeless Continuum of Care Lead Agency (CoC Lead), aggregates and reports community wide data (including this measure) to the Department of Housing and Urban Development (HUD). This data is referred to as System Performance Measures as they are designed to examine how well a community is responding to homelessness at a system level. View more details and insights related to this data set on the story page: https://data.austintexas.gov/stories/s/2ejn-hrh2
Attribution-ShareAlike 4.0 (CC BY-SA 4.0)https://creativecommons.org/licenses/by-sa/4.0/
License information was derived automatically
Homelessness data Official homelessness data is produced by local authorities through the Pathway Accommodation and Support System (PASS). PASS was rolled-out nationally during the course of 2013. The Department’s official homelessness statistics are published on a monthly basis and refer to the number of homeless persons accommodated in emergency accommodation funded and overseen by housing authorities during a specific count week, typically the last full week of the month. The reports are produced through the Pathway Accommodation & Support System (PASS), collated on a regional basis and compiled and published by the Department. Homelessness reporting commenced in this format in 2014. The format of the data may change or vary over time due to administrative and/or technology changes and improvements. The administration of homeless services is organised across nine administrative regions, with one local authority in each of the regions, “the lead authority”, having overall responsibility for the disbursement of Exchequer funding. In each region a Joint Homelessness Consultative Forum exists which includes representation from the relevant State and non-governmental organisations involved in the delivery of homeless services in a particular region. Delegated arrangements are governed by an annually agreed protocol between the Department and the lead authority in each region. These protocols set out the arrangements, responsibilities and financial/performance data reporting requirements for the delegation of funding from the Department. Under Sections 38 and 39 of the Housing (Miscellaneous Provisions) Act 2009 a statutory Management Group exists for each regional forum. This is comprised of representatives from the relevant housing authorities and the Health Service Executive, and it is the responsibility of the Management Group to consider issues around the need for homeless services and to plan for the implementation, funding and co-ordination of such services. In relation to the terms used in the report for the accommodation types see explanation below: PEA - Private Emergency Accommodation: this may include hotels, B&Bs and other residential facilities that are used on an emergency basis. Supports are provided to services users on a visiting supports basis. STA - Supported Temporary Accommodation: accommodation, including family hubs, hostels, with onsite professional support. TEA - Temporary Emergency Accommodation: emergency accommodation with no (or minimal) support.
This database contains the data reported in the Annual Homeless Assessment Report to Congress (AHAR). It represents a point-In-time count (PIT) of homeless individuals, as well as a housing inventory count (HIC) conducted annually.
The data represent the most comprehensive national-level assessment of homelessness in America, including PIT and HIC estimates of homelessness, as well as estimates of chronically homeless persons, homeless veterans, and homeless children and youth.
These data can be trended over time and correlated with other metrics of housing availability and affordability, in order to better understand the particular type of housing resources that may be needed from a social determinants of health perspective.
HUD captures these data annually through the Continuum of Care (CoC) program. CoC-level reporting data have been crosswalked to county levels for purposes of analysis of this dataset.
You can use the BigQuery Python client library to query tables in this dataset in Kernels. Note that methods available in Kernels are limited to querying data. Tables are at bigquery-public-data.sdoh_hud_pit_homelessness
What has been the change in the number of homeless veterans in the state of New York’s CoC Regions since 2012? Determine how the patterns of homeless veterans have changes across the state of New York
homeless_2018 AS (
SELECT Homeless_Veterans AS Vet18, CoC_Name
FROM bigquery-public-data.sdoh_hud_pit_homelessness.hud_pit_by_coc
WHERE SUBSTR(CoC_Number,0,2) = "NY" AND Count_Year = 2018
),
veterans_change AS ( SELECT homeless_2012.COC_Name, Vet12, Vet18, Vet18 - Vet12 AS VetChange FROM homeless_2018 JOIN homeless_2012 ON homeless_2018.CoC_Name = homeless_2012.CoC_Name )
SELECT * FROM veterans_change
The DC Metropolitan Area Drug Study (DCMADS) was conducted in 1991, and included special analyses of homeless and transient populations and of women delivering live births in the DC hospitals. DCMADS was undertaken to assess the full extent of the drug problem in one metropolitan area. The study was comprised of 16 separate studies that focused on different sub-groups, many of which are typically not included or are underrepresented in household surveys. The Homeless and Transient Population study examines the prevalence of illicit drug, alcohol, and tobacco use among members of the homeless and transient population aged 12 and older in the Washington, DC, Metropolitan Statistical Area (DC MSA). The sample frame included respondents from shelters, soup kitchens and food banks, major cluster encampments, and literally homeless people. Data from the questionnaires include history of homelessness, living arrangements and population movement, tobacco, drug, and alcohol use, consequences of use, treatment history, illegal behavior and arrest, emergency room treatment and hospital stays, physical and mental health, pregnancy, insurance, employment and finances, and demographics. Drug specific data include age at first use, route of administration, needle use, withdrawal symptoms, polysubstance use, and perceived risk.This study has 1 Data Set.
This dataset comes from Pierce County's Homeless Management Information System (HMIS). HMIS is a local information technology system used to collect client-level data and data on the provision of housing and services to homeless individuals and families and persons at risk of homelessness.
Federal and State funders require any Continuum of Care receiving federal and state homeless funds use a locally-administered data system to record and analyze homeless information. To comply with this requirement Pierce County has contracted with Bowman Systems L.L.C. for the use of the ServicePoint HMIS database.
https://ottawa.ca/en/city-hall/get-know-your-city/open-data#open-data-licence-version-2-0https://ottawa.ca/en/city-hall/get-know-your-city/open-data#open-data-licence-version-2-0
City staff and community partners work together to survey people experiencing homelessness in Ottawa. So far, the City has led two counts:April 2018October 2021Oct 2024The survey is conducted to gather information about people experiencing homelessness. The goal of this work is to guide new approaches to address homelessness at a local level and help in the planning and delivery of services.Date created: 28 April 2022Update frequency: As needed.Accuracy: Convenience sampling was used to recruit survey respondents. This method of recruiting respondents to answer the survey does not rely on a random selection process. Instead, surveyors approach potential respondents if they are close by at the time the surveyor is delivering the questionnaire. Many factors could determine participation in the survey including:Number of community partners involved in the PiT countLocation of surveyors and their physical proximity to potential respondentsNumber of engagement eventsSeason the survey was conductedDifferences in results between PiT count years may be due to changes within the homeless population and shifts in methodology. For comparisons of emergency shelter use over time, visit the Temporary Emergency Accommodations Dashboard. An analysis of factors related to housing and homelessness during COVID-19 provides context for unique housing market conditions during the pandemic.Results shown in the Survey results: Point-in-Time count dashboard are presented by sector. The name and definition of each sector are below:All: All respondents who answered the surveySingle adult: Respondents aged 25 years or older and not accompanied by anyoneUnaccompanied youth: Respondents under 25 years old and not accompanied by anyoneFamily: Respondents accompanied by children under 18 years oldAttributes:Question: The question that was asked in the surveyTopic: The classification of the survey question by themSector: Refers to the population (total, family, unaccompanied youth, single adults)Period: Month the Point-in-Time count was conductedResponse: Response category of the survey questionNumeratorDenominatorPercentage Author: Housing ServicesAuthor email: pitcount_denombrementponctuel@ottawa.ca
Attribution 2.5 (CC BY 2.5)https://creativecommons.org/licenses/by/2.5/
License information was derived automatically
This dataset contains estimates of the prevalence of homelessness on Census night 2016, derived from the Census of Population and Housing using the Australian Bureau of Statistics (ABS) definition of homelessness. Prevalence is an estimate of how many people experienced homelessness at a particular point-in-time. The ABS uses six homeless operational groups to present the estimates of homelessness. Estimates are also presented for selected groups of people who may be marginally housed and whose living arrangements are close to the statistical boundary of homelessness and who may be at risk of homelessness. Data is by SA4 2016 boundaries. Periodicity: 5 yearly. For more information visit the Australian Bureau of Statistics.
U.S. Government Workshttps://www.usa.gov/government-works
License information was derived automatically
This dataset provides information on individuals who exit homelessness to permanent housing destinations and then return to homelessness within 2 years from their exit in the Austin/Travis County Continuum of Care (CoC) in a given fiscal year.
Data Source: The data for this measure was reported to the City of Austin by the Ending Community Homelessness Coalition (ECHO). Each year, ECHO, as the homeless Continuum of Care Lead Agency (CoC Lead), aggregates and reports community wide data (including this measure) to the Department of Housing and Urban Development (HUD). This data is referred to as System Performance Measures as they are designed to examine how well a community is responding to homelessness at a system level.
View more details and insights related to this data set on the story page: https://data.austintexas.gov/stories/s/cutp-y8m4
Data on number of homeless individuals, sheltered and unsheltered. Data is from the 2013 San Mateo County Homelessness Census and Survey (final report, May 2013), table on page 4
CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
Yearly statewide and by-Continuum of Care total counts of individuals receiving homeless response services by age group, race, gender, veteran status, and disability status.
This data comes from the Homelessness Data Integration System (HDIS), a statewide data warehouse which compiles and processes data from all 44 California Continuums of Care (CoC)—regional homelessness service coordination and planning bodies. Each CoC collects data about the people it serves through its programs, such as homelessness prevention services, street outreach services, permanent housing interventions and a range of other strategies aligned with California’s Housing First objectives.
The dataset uploaded reflects the 2024 HUD Data Standard Changes. Previously, Race and Ethnicity were separate files but are now combined.
Information updated as of 7/29/2025.