35 datasets found
  1. w

    Afrobarometer Survey 1 1999-2000, Merged 7 Country - Botswana, Lesotho,...

    • microdata.worldbank.org
    • catalog.ihsn.org
    • +1more
    Updated Apr 27, 2021
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Institute for Democracy in South Africa (IDASA) (2021). Afrobarometer Survey 1 1999-2000, Merged 7 Country - Botswana, Lesotho, Malawi, Namibia, South Africa, Zambia, Zimbabwe [Dataset]. https://microdata.worldbank.org/index.php/catalog/889
    Explore at:
    Dataset updated
    Apr 27, 2021
    Dataset provided by
    Michigan State University (MSU)
    Institute for Democracy in South Africa (IDASA)
    Ghana Centre for Democratic Development (CDD-Ghana)
    Time period covered
    1999 - 2000
    Area covered
    Botswana, Zimbabwe, Zambia, Malawi, South Africa, Namibia, Lesotho, Africa
    Description

    Abstract

    Round 1 of the Afrobarometer survey was conducted from July 1999 through June 2001 in 12 African countries, to solicit public opinion on democracy, governance, markets, and national identity. The full 12 country dataset released was pieced together out of different projects, Round 1 of the Afrobarometer survey,the old Southern African Democracy Barometer, and similar surveys done in West and East Africa.

    The 7 country dataset is a subset of the Round 1 survey dataset, and consists of a combined dataset for the 7 Southern African countries surveyed with other African countries in Round 1, 1999-2000 (Botswana, Lesotho, Malawi, Namibia, South Africa, Zambia and Zimbabwe). It is a useful dataset because, in contrast to the full 12 country Round 1 dataset, all countries in this dataset were surveyed with the identical questionnaire

    Geographic coverage

    Botswana Lesotho Malawi Namibia South Africa Zambia Zimbabwe

    Analysis unit

    Basic units of analysis that the study investigates include: individuals and groups

    Kind of data

    Sample survey data [ssd]

    Sampling procedure

    A new sample has to be drawn for each round of Afrobarometer surveys. Whereas the standard sample size for Round 3 surveys will be 1200 cases, a larger sample size will be required in societies that are extremely heterogeneous (such as South Africa and Nigeria), where the sample size will be increased to 2400. Other adaptations may be necessary within some countries to account for the varying quality of the census data or the availability of census maps.

    The sample is designed as a representative cross-section of all citizens of voting age in a given country. The goal is to give every adult citizen an equal and known chance of selection for interview. We strive to reach this objective by (a) strictly applying random selection methods at every stage of sampling and by (b) applying sampling with probability proportionate to population size wherever possible. A randomly selected sample of 1200 cases allows inferences to national adult populations with a margin of sampling error of no more than plus or minus 2.5 percent with a confidence level of 95 percent. If the sample size is increased to 2400, the confidence interval shrinks to plus or minus 2 percent.

    Sample Universe

    The sample universe for Afrobarometer surveys includes all citizens of voting age within the country. In other words, we exclude anyone who is not a citizen and anyone who has not attained this age (usually 18 years) on the day of the survey. Also excluded are areas determined to be either inaccessible or not relevant to the study, such as those experiencing armed conflict or natural disasters, as well as national parks and game reserves. As a matter of practice, we have also excluded people living in institutionalized settings, such as students in dormitories and persons in prisons or nursing homes.

    What to do about areas experiencing political unrest? On the one hand we want to include them because they are politically important. On the other hand, we want to avoid stretching out the fieldwork over many months while we wait for the situation to settle down. It was agreed at the 2002 Cape Town Planning Workshop that it is difficult to come up with a general rule that will fit all imaginable circumstances. We will therefore make judgments on a case-by-case basis on whether or not to proceed with fieldwork or to exclude or substitute areas of conflict. National Partners are requested to consult Core Partners on any major delays, exclusions or substitutions of this sort.

    Sample Design

    The sample design is a clustered, stratified, multi-stage, area probability sample.

    To repeat the main sampling principle, the objective of the design is to give every sample element (i.e. adult citizen) an equal and known chance of being chosen for inclusion in the sample. We strive to reach this objective by (a) strictly applying random selection methods at every stage of sampling and by (b) applying sampling with probability proportionate to population size wherever possible.

    In a series of stages, geographically defined sampling units of decreasing size are selected. To ensure that the sample is representative, the probability of selection at various stages is adjusted as follows:

    The sample is stratified by key social characteristics in the population such as sub-national area (e.g. region/province) and residential locality (urban or rural). The area stratification reduces the likelihood that distinctive ethnic or language groups are left out of the sample. And the urban/rural stratification is a means to make sure that these localities are represented in their correct proportions. Wherever possible, and always in the first stage of sampling, random sampling is conducted with probability proportionate to population size (PPPS). The purpose is to guarantee that larger (i.e., more populated) geographical units have a proportionally greater probability of being chosen into the sample. The sampling design has four stages

    A first-stage to stratify and randomly select primary sampling units;

    A second-stage to randomly select sampling start-points;

    A third stage to randomly choose households;

    A final-stage involving the random selection of individual respondents

    We shall deal with each of these stages in turn.

    STAGE ONE: Selection of Primary Sampling Units (PSUs)

    The primary sampling units (PSU's) are the smallest, well-defined geographic units for which reliable population data are available. In most countries, these will be Census Enumeration Areas (or EAs). Most national census data and maps are broken down to the EA level. In the text that follows we will use the acronyms PSU and EA interchangeably because, when census data are employed, they refer to the same unit.

    We strongly recommend that NIs use official national census data as the sampling frame for Afrobarometer surveys. Where recent or reliable census data are not available, NIs are asked to inform the relevant Core Partner before they substitute any other demographic data. Where the census is out of date, NIs should consult a demographer to obtain the best possible estimates of population growth rates. These should be applied to the outdated census data in order to make projections of population figures for the year of the survey. It is important to bear in mind that population growth rates vary by area (region) and (especially) between rural and urban localities. Therefore, any projected census data should include adjustments to take such variations into account.

    Indeed, we urge NIs to establish collegial working relationships within professionals in the national census bureau, not only to obtain the most recent census data, projections, and maps, but to gain access to sampling expertise. NIs may even commission a census statistician to draw the sample to Afrobarometer specifications, provided that provision for this service has been made in the survey budget.

    Regardless of who draws the sample, the NIs should thoroughly acquaint themselves with the strengths and weaknesses of the available census data and the availability and quality of EA maps. The country and methodology reports should cite the exact census data used, its known shortcomings, if any, and any projections made from the data. At minimum, the NI must know the size of the population and the urban/rural population divide in each region in order to specify how to distribute population and PSU's in the first stage of sampling. National investigators should obtain this written data before they attempt to stratify the sample.

    Once this data is obtained, the sample population (either 1200 or 2400) should be stratified, first by area (region/province) and then by residential locality (urban or rural). In each case, the proportion of the sample in each locality in each region should be the same as its proportion in the national population as indicated by the updated census figures.

    Having stratified the sample, it is then possible to determine how many PSU's should be selected for the country as a whole, for each region, and for each urban or rural locality.

    The total number of PSU's to be selected for the whole country is determined by calculating the maximum degree of clustering of interviews one can accept in any PSU. Because PSUs (which are usually geographically small EAs) tend to be socially homogenous we do not want to select too many people in any one place. Thus, the Afrobarometer has established a standard of no more than 8 interviews per PSU. For a sample size of 1200, the sample must therefore contain 150 PSUs/EAs (1200 divided by 8). For a sample size of 2400, there must be 300 PSUs/EAs.

    These PSUs should then be allocated proportionally to the urban and rural localities within each regional stratum of the sample. Let's take a couple of examples from a country with a sample size of 1200. If the urban locality of Region X in this country constitutes 10 percent of the current national population, then the sample for this stratum should be 15 PSUs (calculated as 10 percent of 150 PSUs). If the rural population of Region Y constitutes 4 percent of the current national population, then the sample for this stratum should be 6 PSU's.

    The next step is to select particular PSUs/EAs using random methods. Using the above example of the rural localities in Region Y, let us say that you need to pick 6 sample EAs out of a census list that contains a total of 240 rural EAs in Region Y. But which 6? If the EAs created by the national census bureau are of equal or roughly equal population size, then selection is relatively straightforward. Just number all EAs consecutively, then make six selections using a table of random numbers. This procedure, known as simple random sampling (SRS), will

  2. w

    Afrobarometer Survey 2002-2004, Merged Round 2 Data (16 Countries) -...

    • microdata.worldbank.org
    • catalog.ihsn.org
    • +1more
    Updated Apr 27, 2021
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Institute for Democracy in South Africa (IDASA) (2021). Afrobarometer Survey 2002-2004, Merged Round 2 Data (16 Countries) - Botswana, Cabo Verde, Ghana, Kenya, Lesotho, Mali, Mozambique, Malawi, Namibia, Nigeria, Senegal, Tanzania, Uganda, South Africa, Zambia, Zimbabwe [Dataset]. https://microdata.worldbank.org/index.php/catalog/886
    Explore at:
    Dataset updated
    Apr 27, 2021
    Dataset provided by
    Michigan State University (MSU)
    Institute for Democracy in South Africa (IDASA)
    Ghana Centre for Democratic Development (CDD-Ghana)
    Time period covered
    2002 - 2004
    Area covered
    Namibia, Nigeria, Senegal, Mali, Malawi, Mozambique, Botswana, Ghana, Lesotho, Cabo Verde
    Description

    Abstract

    The Afrobarometer project assesses attitudes and public opinion on democracy, markets, and civil society in several sub-Saharan African.This dataset was compiled from the studies in Round 2 of the Afrobarometer, conducted from 2002-2004 in 16 countries, including Botswana, Cape Verde, Ghana, Kenya, Lesotho, Malawi, Mali, Mozambique, Namibia, Nigeria, Senegal, South Africa, Tanzania, Uganda, Zambia, and Zimbabwe

    Geographic coverage

    The Round 2 Afrobarometer surveys have national coverage for the following countries: Botswana, Ghana, Kenya, Lesotho, Malawi, Mali, Mozambique, Namibia, Nigeria, Republic of Cabo Verde, Senegal, South Africa, Tanzania, Uganda, Zambia, Zimbabwe.

    Analysis unit

    Individuals

    Universe

    The sample universe for Afrobarometer surveys includes all citizens of voting age within the country. In other words, we exclude anyone who is not a citizen and anyone who has not attained this age (usually 18 years) on the day of the survey. Also excluded are areas determined to be either inaccessible or not relevant to the study, such as those experiencing armed conflict or natural disasters, as well as national parks and game reserves. As a matter of practice, we have also excluded people living in institutionalized settings, such as students in dormitories and persons in prisons or nursing homes.

    What to do about areas experiencing political unrest? On the one hand we want to include them because they are politically important. On the other hand, we want to avoid stretching out the fieldwork over many months while we wait for the situation to settle down. It was agreed at the 2002 Cape Town Planning Workshop that it is difficult to come up with a general rule that will fit all imaginable circumstances. We will therefore make judgments on a case-by-case basis on whether or not to proceed with fieldwork or to exclude or substitute areas of conflict. National Partners are requested to consult Core Partners on any major delays, exclusions or substitutions of this sort.

    Kind of data

    Sample survey data [ssd]

    Sampling procedure

    Afrobarometer uses national probability samples designed to meet the following criteria. Samples are designed to generate a sample that is a representative cross-section of all citizens of voting age in a given country. The goal is to give every adult citizen an equal and known chance of being selected for an interview. They achieve this by:

    • using random selection methods at every stage of sampling; • sampling at all stages with probability proportionate to population size wherever possible to ensure that larger (i.e., more populated) geographic units have a proportionally greater probability of being chosen into the sample.

    The sampling universe normally includes all citizens age 18 and older. As a standard practice, we exclude people living in institutionalized settings, such as students in dormitories, patients in hospitals, and persons in prisons or nursing homes. Occasionally, we must also exclude people living in areas determined to be inaccessible due to conflict or insecurity. Any such exclusion is noted in the technical information report (TIR) that accompanies each data set.

    Sample size and design Samples usually include either 1,200 or 2,400 cases. A randomly selected sample of n=1200 cases allows inferences to national adult populations with a margin of sampling error of no more than +/-2.8% with a confidence level of 95 percent. With a sample size of n=2400, the margin of error decreases to +/-2.0% at 95 percent confidence level.

    The sample design is a clustered, stratified, multi-stage, area probability sample. Specifically, we first stratify the sample according to the main sub-national unit of government (state, province, region, etc.) and by urban or rural location.

    Area stratification reduces the likelihood that distinctive ethnic or language groups are left out of the sample. Afrobarometer occasionally purposely oversamples certain populations that are politically significant within a country to ensure that the size of the sub-sample is large enough to be analysed. Any oversamples is noted in the TIR.

    Sample stages Samples are drawn in either four or five stages:

    Stage 1: In rural areas only, the first stage is to draw secondary sampling units (SSUs). SSUs are not used in urban areas, and in some countries they are not used in rural areas. See the TIR that accompanies each data set for specific details on the sample in any given country. Stage 2: We randomly select primary sampling units (PSU). Stage 3: We then randomly select sampling start points. Stage 4: Interviewers then randomly select households. Stage 5: Within the household, the interviewer randomly selects an individual respondent. Each interviewer alternates in each household between interviewing a man and interviewing a woman to ensure gender balance in the sample.

    To keep the costs and logistics of fieldwork within manageable limits, eight interviews are clustered within each selected PSU.

    Data weights For some national surveys, data are weighted to correct for over or under-sampling or for household size. "Withinwt" should be turned on for all national -level descriptive statistics in countries that contain this weighting variable. It is included as the last variable in the data set, with details described in the codebook. For merged data sets, "Combinwt" should be turned on for cross-national comparisons of descriptive statistics. Note: this weighting variable standardizes each national sample as if it were equal in size.

    Further information on sampling protocols, including full details of the methodologies used for each stage of sample selection, can be found at https://afrobarometer.org/surveys-and-methods/sampling-principles

    Mode of data collection

    Face-to-face [f2f]

    Research instrument

    Certain questions in the questionnaires for the Afrobarometer 2 survey addressed country-specific issues, but many of the same questions were asked across surveys. Citizens of the 16 countries were asked questions about their economic and social situations, and their opinions were elicited on recent political and economic changes within their country.

  3. Afrobarometer Survey 2022 - South Africa

    • microdata.worldbank.org
    Updated Jun 11, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Institute for Empirical Research in Political Economy (IREEP) (2025). Afrobarometer Survey 2022 - South Africa [Dataset]. https://microdata.worldbank.org/index.php/catalog/6751
    Explore at:
    Dataset updated
    Jun 11, 2025
    Dataset provided by
    Institute for Justice and Reconciliationhttp://www.ijr.org.za/
    Ghana Centre for Democratic Development (CDD)
    Institute for Empirical Research in Political Economy (IREEP)
    University of Cape Town (UCT, South Africa)
    Institute for Development Studies (IDS)
    Michigan State University (MSU)
    Time period covered
    2022
    Area covered
    South Africa
    Description

    Abstract

    The Afrobarometer is a comparative series of public attitude surveys that assess African citizen's attitudes to democracy and governance, markets, and civil society, among other topics. The surveys have been undertaken at periodic intervals since 1999. The Afrobarometer's coverage has increased over time. Round 1 (1999-2001) initially covered 7 countries and was later extended to 12 countries. Round 2 (2002-2004) surveyed citizens in 16 countries. Round 3 (2005-2006) 18 countries, Round 4 (2008) 20 countries, Round 5 (2011-2013) 34 countries, Round 6 (2014-2015) 36 countries, Round 7 (2016-2018) 34 countries, and Round 8 (2019-2021). The survey covered 39 countries in Round 9 (2021-2023).

    Geographic coverage

    National coverage

    Analysis unit

    Individual

    Universe

    Citizens of South Africa who are 18 years and older

    Kind of data

    Sample survey data [ssd]

    Sampling procedure

    Afrobarometer uses national probability samples designed to meet the following criteria. Samples are designed to generate a sample that is a representative cross-section of all citizens of voting age in a given country. The goal is to give every adult citizen an equal and known chance of being selected for an interview. They achieve this by:

    • using random selection methods at every stage of sampling; • sampling at all stages with probability proportionate to population size wherever possible to ensure that larger (i.e., more populated) geographic units have a proportionally greater probability of being chosen into the sample.

    The sampling universe normally includes all citizens age 18 and older. As a standard practice, we exclude people living in institutionalized settings, such as students in dormitories, patients in hospitals, and persons in prisons or nursing homes. Occasionally, we must also exclude people living in areas determined to be inaccessible due to conflict or insecurity. Any such exclusion is noted in the technical information report (TIR) that accompanies each data set.

    Sample size and design Samples usually include either 1,200 or 2,400 cases. A randomly selected sample of n=1200 cases allows inferences to national adult populations with a margin of sampling error of no more than +/-2.8% with a confidence level of 95 percent. With a sample size of n=2400, the margin of error decreases to +/-2.0% at 95 percent confidence level.

    The sample design is a clustered, stratified, multi-stage, area probability sample. Specifically, we first stratify the sample according to the main sub-national unit of government (state, province, region, etc.) and by urban or rural location.

    Area stratification reduces the likelihood that distinctive ethnic or language groups are left out of the sample. Afrobarometer occasionally purposely oversamples certain populations that are politically significant within a country to ensure that the size of the sub-sample is large enough to be analysed. Any oversamples is noted in the TIR.

    Sample stages Samples are drawn in either four or five stages:

    Stage 1: In rural areas only, the first stage is to draw secondary sampling units (SSUs). SSUs are not used in urban areas, and in some countries they are not used in rural areas. See the TIR that accompanies each data set for specific details on the sample in any given country. Stage 2: We randomly select primary sampling units (PSU). Stage 3: We then randomly select sampling start points. Stage 4: Interviewers then randomly select households. Stage 5: Within the household, the interviewer randomly selects an individual respondent. Each interviewer alternates in each household between interviewing a man and interviewing a woman to ensure gender balance in the sample.

    South Africa - Sample size: 1,582 - Sample design: Nationally representative, random, clustered, stratified, multi-stage area probability sample - Stratification: Region and urban-rural location - Stages: PSUs (from strata), start points, households, respondents - PSU selection: Probability Proportionate to Population Size (PPPS) - Cluster size: 8 households per PSU - Household selection: Randomly selected start points, followed by walk pattern using 5/10 interval - Respondent selection: Gender quota filled by alternating interviews between men and women; respondents of appropriate gender listed, after which computer randomly selects individual - Weighting: Weighted to account for individual selection probabilities

    Mode of data collection

    Face-to-face [f2f]

    Research instrument

    The Round 9 questionnaire has been developed by the Questionnaire Committee after reviewing the findings and feedback obtained in previous Rounds, and securing input on preferred new topics from a host of donors, analysts, and users of the data.

    The questionnaire consists of three parts: 1. Part 1 captures the steps for selecting households and respondents, and includes the introduction to the respondent and (pp.1-4). This section should be filled in by the Fieldworker. 2. Part 2 covers the core attitudinal and demographic questions that are asked by the Fieldworker and answered by the Respondent (Q1 – Q100). 3. Part 3 includes contextual questions about the setting and atmosphere of the interview, and collects information on the Fieldworker. This section is completed by the Fieldworker (Q101 – Q123).

    Response rate

    Response rate was 85%.

    Sampling error estimates

    The sample size yields country-level results with a margin of error of +/-2.5 percentage points at a 95% confidence level.

  4. Afrobarometer Survey 2019-2021, Merged 34 Country - Africa

    • datafirst.uct.ac.za
    Updated Oct 9, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Michigan State University (MSU) (2024). Afrobarometer Survey 2019-2021, Merged 34 Country - Africa [Dataset]. https://www.datafirst.uct.ac.za/dataportal/index.php/catalog/991
    Explore at:
    Dataset updated
    Oct 9, 2024
    Dataset provided by
    Institute for Justice and Reconciliationhttp://www.ijr.org.za/
    Institute for Development Studies (IDS)
    University of Cape Town (UCT)
    Ghana Centre for Democratic Development (CDD)
    Institute for Empirical Research in Political Economy (IREEP)
    Michigan State University (MSU)
    Time period covered
    2019 - 2021
    Area covered
    Africa
    Description

    Abstract

    The Afrobarometer is a comparative series of public attitude surveys that assess African citizen's attitudes to democracy and governance, markets, and civil society, among other topics. The surveys have been undertaken at periodic intervals since 1999. The Afrobarometer's coverage has increased over time. Round 1 (1999-2001) initially covered 7 countires and was later extended to 12 countries. Round 2 (2002-2004) surveyed citizens in 16 countries. Round 3 (2005-2006) 18 countries, and Round 4 (2008) 20 countries.The survey covered 34 countries in Round 5 (2011-2013), 36 countries in Round 6 (2014-2015), and 34 countries in Round 7 (2016-2018). Round 8 covered 34 African countries. The 34 countries covered in Round 8 (2019-2021) are:

    Angola, Benin, Botswana, Burkina Faso, Cabo Verde, Cameroon, Côte d'Ivoire, eSwatini, Ethiopia, Gabon, Gambia, Ghana, Guinea, Kenya, Lesotho, Liberia, Malawi, Mali, Mauritius, Morocco, Mozambique, Namibia, Niger, Nigeria, Senegal, Sierra Leone, South Africa, Sudan, Tanzania, Togo, Tunisia, Uganda, Zambia and Zimbabwe.

    Geographic coverage

    The survey has national coverage in the following 34 African countries: Angola, Benin, Botswana, Burkina Faso, Cabo Verde, Cameroon, Côte d'Ivoire, eSwatini, Ethiopia, Gabon, Gambia, Ghana, Guinea, Kenya, Lesotho, Liberia, Malawi, Mali, Mauritius, Morocco, Mozambique, Namibia, Niger, Nigeria, Senegal, Sierra Leone, South Africa, Sudan, Tanzania, Togo, Tunisia, Uganda, Zambia and Zimbabwe.

    Analysis unit

    Households and individuals

    Universe

    The sample universe for Afrobarometer surveys includes all citizens of voting age within the country. In other words, we exclude anyone who is not a citizen and anyone who has not attained this age (usually 18 years) on the day of the survey. Also excluded are areas determined to be either inaccessible or not relevant to the study, such as those experiencing armed conflict or natural disasters, as well as national parks and game reserves. As a matter of practice, we have also excluded people living in institutionalized settings, such as students in dormitories and persons in prisons or nursing homes.

    Kind of data

    Sample survey data

    Sampling procedure

    Afrobarometer uses national probability samples designed to meet the following criteria. Samples are designed to generate a sample that is a representative cross-section of all citizens of voting age in a given country. The goal is to give every adult citizen an equal and known chance of being selected for an interview. They achieve this by:

    • using random selection methods at every stage of sampling; • sampling at all stages with probability proportionate to population size wherever possible to ensure that larger (i.e., more populated) geographic units have a proportionally greater probability of being chosen into the sample.

    The sampling universe normally includes all citizens age 18 and older. As a standard practice, we exclude people living in institutionalised settings, such as students in dormitories, patients in hospitals, and persons in prisons or nursing homes. Occasionally, we must also exclude people living in areas determined to be inaccessible due to conflict or insecurity. Any such exclusion is noted in the technical information report (TIR) that accompanies each data set.

    Sample size and design Samples usually include either 1,200 or 2,400 cases. A randomly selected sample of n=1200 cases allows inferences to national adult populations with a margin of sampling error of no more than +/-2.8% with a confidence level of 95 percent. With a sample size of n=2400, the margin of error decreases to +/-2.0% at 95 percent confidence level.

    The sample design is a clustered, stratified, multi-stage, area probability sample. Specifically, we first stratify the sample according to the main sub-national unit of government (state, province, region, etc.) and by urban or rural location.

    Area stratification reduces the likelihood that distinctive ethnic or language groups are left out of the sample. Afrobarometer occasionally purposely oversamples certain populations that are politically significant within a country to ensure that the size of the sub-sample is large enough to be analysed. Any oversamples is noted in the TIR.

    Sample stages Samples are drawn in either four or five stages:

    Stage 1: In rural areas only, the first stage is to draw secondary sampling units (SSUs). SSUs are not used in urban areas, and in some countries they are not used in rural areas. See the TIR that accompanies each data set for specific details on the sample in any given country. Stage 2: We randomly select primary sampling units (PSU). Stage 3: We then randomly select sampling start points. Stage 4: Interviewers then randomly select households. Stage 5: Within the household, the interviewer randomly selects an individual respondent. Each interviewers alternates in each household between interviewing a man and interviewing a woman to ensure gender balance in the sample.

    To keep the costs and logistics of fieldwork within manageable limits, eight interviews are clustered within each selected PSU.

    Data weights For some national surveys, data are weighted to correct for over or under-sampling or for household size. "Withinwt" should be turned on for all national -level descriptive statistics in countries that contain this weighting variable. It is included as the last variable in the data set, with details described in the codebook. For merged data sets, "Combinwt" should be turned on for cross-national comparisons of descriptive statistics. Note: this weighting variable standardizes each national sample as if it were equal in size.

    Further information on sampling protocols, including full details of the methodologies used for each stage of sample selection, can be found in Section 5 of the Afrobarometer Round 5 Survey Manual

    Mode of data collection

    Face-to-face

    Research instrument

    The questionnaire for Round 3 addressed country-specific issues, but many of the same questions were asked across surveys. The survey instruments were not standardized across all countries and the following features should be noted:

    • In the seven countries that originally formed the Southern Africa Barometer (SAB) - Botswana, Lesotho, Malawi, Namibia, South Africa, Zambia and Zimbabwe - a standardized questionnaire was used, so question wording and response categories are the generally the same for all of these countries. The questionnaires in Mali and Tanzania were also essentially identical (in the original English version). Ghana, Uganda and Nigeria each had distinct questionnaires.

    • This merged dataset combines, into a single variable, responses from across these different countries where either identical or very similar questions were used, or where conceptually equivalent questions can be found in at least nine of the different countries. For each variable, the exact question text from each of the countries or groups of countries ("SAB" refers to the Southern Africa Barometer countries) is listed.

    • Response options also varied on some questions, and where applicable, these differences are also noted.

  5. w

    Afrobarometer Survey 1999-2000, Merged Round 1 Data (12 Countries) -...

    • microdata.worldbank.org
    • catalog.ihsn.org
    • +1more
    Updated Apr 27, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Institute for Democracy in South Africa (IDASA) (2021). Afrobarometer Survey 1999-2000, Merged Round 1 Data (12 Countries) - Botswana, Ghana, Lesotho, Mali, Malawi, Namibia, Nigeria, Tanzania, Uganda, South Africa, Zambia, Zimbabwe [Dataset]. https://microdata.worldbank.org/index.php/catalog/885
    Explore at:
    Dataset updated
    Apr 27, 2021
    Dataset provided by
    Institute for Democracy in South Africa (IDASA)
    Ghana Centre for Democratic Development (CDD-Ghana)
    Michigan State University (MSU)
    Time period covered
    1999 - 2001
    Area covered
    Nigeria, Namibia, Malawi, Botswana, Zimbabwe, Ghana, Mali, Uganda, Lesotho, Tanzania
    Description

    Abstract

    The Afrobarometer is a comparative series of public attitude surveys that assess African citizen's attitudes to democracy and governance, markets, and civil society, among other topics.

    The 12 country datasetis a combined dataset for the 12 African countries surveyed during round 1 of the survey, conducted between 1999-2000 (Botswana, Ghana, Lesotho, Mali, Malawi, Namibia, Nigeria South Africa, Tanzania, Uganda, Zambia and Zimbabwe), plus data from the old Southern African Democracy Barometer, and similar surveys done in West and East Africa.

    Geographic coverage

    The Round 1 Afrobarometer surveys have national coverage for the following countries: Botswana, Ghana, Lesotho, Malawi, Mali, Namibia, Nigeria, South Africa, Tanzania, Uganda, Zambia, Zimbabwe.

    Analysis unit

    Individuals

    Universe

    The sample universe for Afrobarometer surveys includes all citizens of voting age within the country. In other words, we exclude anyone who is not a citizen and anyone who has not attained this age (usually 18 years) on the day of the survey. Also excluded are areas determined to be either inaccessible or not relevant to the study, such as those experiencing armed conflict or natural disasters, as well as national parks and game reserves. As a matter of practice, we have also excluded people living in institutionalized settings, such as students in dormitories and persons in prisons or nursing homes.

    What to do about areas experiencing political unrest? On the one hand we want to include them because they are politically important. On the other hand, we want to avoid stretching out the fieldwork over many months while we wait for the situation to settle down. It was agreed at the 2002 Cape Town Planning Workshop that it is difficult to come up with a general rule that will fit all imaginable circumstances. We will therefore make judgments on a case-by-case basis on whether or not to proceed with fieldwork or to exclude or substitute areas of conflict. National Partners are requested to consult Core Partners on any major delays, exclusions or substitutions of this sort.

    Kind of data

    Sample survey data [ssd]

    Sampling procedure

    Afrobarometer uses national probability samples designed to meet the following criteria. Samples are designed to generate a sample that is a representative cross-section of all citizens of voting age in a given country. The goal is to give every adult citizen an equal and known chance of being selected for an interview. They achieve this by:

    • using random selection methods at every stage of sampling; • sampling at all stages with probability proportionate to population size wherever possible to ensure that larger (i.e., more populated) geographic units have a proportionally greater probability of being chosen into the sample.

    The sampling universe normally includes all citizens age 18 and older. As a standard practice, we exclude people living in institutionalized settings, such as students in dormitories, patients in hospitals, and persons in prisons or nursing homes. Occasionally, we must also exclude people living in areas determined to be inaccessible due to conflict or insecurity. Any such exclusion is noted in the technical information report (TIR) that accompanies each data set.

    Sample size and design Samples usually include either 1,200 or 2,400 cases. A randomly selected sample of n=1200 cases allows inferences to national adult populations with a margin of sampling error of no more than +/-2.8% with a confidence level of 95 percent. With a sample size of n=2400, the margin of error decreases to +/-2.0% at 95 percent confidence level.

    The sample design is a clustered, stratified, multi-stage, area probability sample. Specifically, we first stratify the sample according to the main sub-national unit of government (state, province, region, etc.) and by urban or rural location.

    Area stratification reduces the likelihood that distinctive ethnic or language groups are left out of the sample. Afrobarometer occasionally purposely oversamples certain populations that are politically significant within a country to ensure that the size of the sub-sample is large enough to be analysed. Any oversamples is noted in the TIR.

    Sample stages Samples are drawn in either four or five stages:

    Stage 1: In rural areas only, the first stage is to draw secondary sampling units (SSUs). SSUs are not used in urban areas, and in some countries they are not used in rural areas. See the TIR that accompanies each data set for specific details on the sample in any given country. Stage 2: We randomly select primary sampling units (PSU). Stage 3: We then randomly select sampling start points. Stage 4: Interviewers then randomly select households. Stage 5: Within the household, the interviewer randomly selects an individual respondent. Each interviewer alternates in each household between interviewing a man and interviewing a woman to ensure gender balance in the sample.

    To keep the costs and logistics of fieldwork within manageable limits, eight interviews are clustered within each selected PSU.

    Data weights For some national surveys, data are weighted to correct for over or under-sampling or for household size. "Withinwt" should be turned on for all national -level descriptive statistics in countries that contain this weighting variable. It is included as the last variable in the data set, with details described in the codebook. For merged data sets, "Combinwt" should be turned on for cross-national comparisons of descriptive statistics. Note: this weighting variable standardizes each national sample as if it were equal in size.

    Further information on sampling protocols, including full details of the methodologies used for each stage of sample selection, can be found at https://afrobarometer.org/surveys-and-methods/sampling-principles

    Mode of data collection

    Face-to-face [f2f]

    Research instrument

    Because Afrobarometer Round 1 emerged out of several different survey research efforts, survey instruments were not standardized across all countries, there are a number of features of the questionnaires that should be noted, as follows: • In most cases, the data set only includes those questions/variables that were asked in nine or more countries. Complete Round 1 data sets for each individual country have already been released, and are available from ICPSR or from the Afrobarometer website at www.afrobarometer.org. • In the seven countries that originally formed the Southern Africa Barometer (SAB) - Botswana, Lesotho, Malawi, Namibia, South Africa, Zambia and Zimbabwe - a standardized questionnaire was used, so question wording and response categories are the generally the same for all of these countries. The questionnaires in Mali and Tanzania were also essentially identical (in the original English version). Ghana, Uganda and Nigeria each had distinct questionnaires. • This merged dataset combines, into a single variable, responses from across these different countries where either identical or very similar questions were used, or where conceptually equivalent questions can be found in at least nine of the different countries. For each variable, the exact question text from each of the countries or groups of countries ("SAB" refers to the Southern Africa Barometer countries) is listed. • Response options also varied on some questions, and where applicable, these differences are also noted.

  6. Instagram users in Africa 2019-2028

    • statista.com
    Updated Feb 15, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista Research Department (2025). Instagram users in Africa 2019-2028 [Dataset]. https://www.statista.com/topics/9813/internet-usage-in-africa/
    Explore at:
    Dataset updated
    Feb 15, 2025
    Dataset provided by
    Statistahttp://statista.com/
    Authors
    Statista Research Department
    Area covered
    Africa
    Description

    The number of Instagram users in Africa was forecast to continuously increase between 2024 and 2028 by in total 39.1 million users (+57.16 percent). After the sixth consecutive increasing year, the Instagram user base is estimated to reach 107.54 million users and therefore a new peak in 2028. User figures, shown here with regards to the platform instagram, have been estimated by taking into account company filings or press material, secondary research, app downloads and traffic data. They refer to the average monthly active users over the period and count multiple accounts by persons only once.The shown data are an excerpt of Statista's Key Market Indicators (KMI). The KMI are a collection of primary and secondary indicators on the macro-economic, demographic and technological environment in up to 150 countries and regions worldwide. All indicators are sourced from international and national statistical offices, trade associations and the trade press and they are processed to generate comparable data sets (see supplementary notes under details for more information).Find more key insights for the number of Instagram users in countries like Europe and Caribbean.

  7. i

    Afrobarometer Survey 2008 - Africa

    • dev.ihsn.org
    Updated Apr 25, 2019
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Institute for Democracy in South Africa (IDASA) (2019). Afrobarometer Survey 2008 - Africa [Dataset]. https://dev.ihsn.org/nada/catalog/study/AFR_2008_AFB-20_v01_M
    Explore at:
    Dataset updated
    Apr 25, 2019
    Dataset provided by
    Michigan State University (MSU)
    Institute for Democracy in South Africa (IDASA)
    Ghana Centre for Democratic Development (CDD-Ghana)
    Time period covered
    2008
    Area covered
    Africa
    Description

    Abstract

    The Afrobarometer project assesses attitudes and public opinion on democracy, markets, and civil society in several sub-Saharan African.This dataset was compiled from the studies in Round 4 of the Afrobarometer survey, conducted in 2008 in 20 African countries (Benin, Botswana, Burkina Faso, Cape Verde, Ghana, Kenya, Lesotho, Liberia, Madagascar, Malawi, Mali, Mozambique, Namibia, Nigeria, Senegal, South Africa, Tanzania, Uganda, Zambia, and Zimbabwe).

    Geographic coverage

    The Afrobarometer surveys have national coverage

    Botswana Lesotho Malawi Namibia South Africa Zambia Zimbabwe Ghana Mali Nigeria Tanzania Uganda Cape Verde Mozambique Senegal Kenya Benin Madagascar Burkina Faso Liberia

    Analysis unit

    Basic units of analysis that the study investigates include: individuals and groups

    Universe

    The sample universe for Afrobarometer surveys includes all citizens of voting age within the country. In other words, we exclude anyone who is not a citizen and anyone who has not attained this age (usually 18 years) on the day of the survey. Also excluded are areas determined to be either inaccessible or not relevant to the study, such as those experiencing armed conflict or natural disasters, as well as national parks and game reserves. As a matter of practice, we have also excluded people living in institutionalized settings, such as students in dormitories and persons in prisons or nursing homes.

    What to do about areas experiencing political unrest? On the one hand we want to include them because they are politically important. On the other hand, we want to avoid stretching out the fieldwork over many months while we wait for the situation to settle down. It was agreed at the 2002 Cape Town Planning Workshop that it is difficult to come up with a general rule that will fit all imaginable circumstances. We will therefore make judgments on a case-by-case basis on whether or not to proceed with fieldwork or to exclude or substitute areas of conflict. National Partners are requested to consult Core Partners on any major delays, exclusions or substitutions of this sort.

    Kind of data

    Sample survey data [ssd]

    Sampling procedure

    A new sample has to be drawn for each round of Afrobarometer surveys. Whereas the standard sample size for Round 3 surveys will be 1200 cases, a larger sample size will be required in societies that are extremely heterogeneous (such as South Africa and Nigeria), where the sample size will be increased to 2400. Other adaptations may be necessary within some countries to account for the varying quality of the census data or the availability of census maps.

    The sample is designed as a representative cross-section of all citizens of voting age in a given country. The goal is to give every adult citizen an equal and known chance of selection for interview. We strive to reach this objective by (a) strictly applying random selection methods at every stage of sampling and by (b) applying sampling with probability proportionate to population size wherever possible. A randomly selected sample of 1200 cases allows inferences to national adult populations with a margin of sampling error of no more than plus or minus 2.5 percent with a confidence level of 95 percent. If the sample size is increased to 2400, the confidence interval shrinks to plus or minus 2 percent.

    Sample Universe

    The sample universe for Afrobarometer surveys includes all citizens of voting age within the country. In other words, we exclude anyone who is not a citizen and anyone who has not attained this age (usually 18 years) on the day of the survey. Also excluded are areas determined to be either inaccessible or not relevant to the study, such as those experiencing armed conflict or natural disasters, as well as national parks and game reserves. As a matter of practice, we have also excluded people living in institutionalized settings, such as students in dormitories and persons in prisons or nursing homes.

    What to do about areas experiencing political unrest? On the one hand we want to include them because they are politically important. On the other hand, we want to avoid stretching out the fieldwork over many months while we wait for the situation to settle down. It was agreed at the 2002 Cape Town Planning Workshop that it is difficult to come up with a general rule that will fit all imaginable circumstances. We will therefore make judgments on a case-by-case basis on whether or not to proceed with fieldwork or to exclude or substitute areas of conflict. National Partners are requested to consult Core Partners on any major delays, exclusions or substitutions of this sort.

    Sample Design

    The sample design is a clustered, stratified, multi-stage, area probability sample.

    To repeat the main sampling principle, the objective of the design is to give every sample element (i.e. adult citizen) an equal and known chance of being chosen for inclusion in the sample. We strive to reach this objective by (a) strictly applying random selection methods at every stage of sampling and by (b) applying sampling with probability proportionate to population size wherever possible.

    In a series of stages, geographically defined sampling units of decreasing size are selected. To ensure that the sample is representative, the probability of selection at various stages is adjusted as follows:

    The sample is stratified by key social characteristics in the population such as sub-national area (e.g. region/province) and residential locality (urban or rural). The area stratification reduces the likelihood that distinctive ethnic or language groups are left out of the sample. And the urban/rural stratification is a means to make sure that these localities are represented in their correct proportions. Wherever possible, and always in the first stage of sampling, random sampling is conducted with probability proportionate to population size (PPPS). The purpose is to guarantee that larger (i.e., more populated) geographical units have a proportionally greater probability of being chosen into the sample. The sampling design has four stages

    A first-stage to stratify and randomly select primary sampling units;

    A second-stage to randomly select sampling start-points;

    A third stage to randomly choose households;

    A final-stage involving the random selection of individual respondents

    We shall deal with each of these stages in turn.

    STAGE ONE: Selection of Primary Sampling Units (PSUs)

    The primary sampling units (PSU's) are the smallest, well-defined geographic units for which reliable population data are available. In most countries, these will be Census Enumeration Areas (or EAs). Most national census data and maps are broken down to the EA level. In the text that follows we will use the acronyms PSU and EA interchangeably because, when census data are employed, they refer to the same unit.

    We strongly recommend that NIs use official national census data as the sampling frame for Afrobarometer surveys. Where recent or reliable census data are not available, NIs are asked to inform the relevant Core Partner before they substitute any other demographic data. Where the census is out of date, NIs should consult a demographer to obtain the best possible estimates of population growth rates. These should be applied to the outdated census data in order to make projections of population figures for the year of the survey. It is important to bear in mind that population growth rates vary by area (region) and (especially) between rural and urban localities. Therefore, any projected census data should include adjustments to take such variations into account.

    Indeed, we urge NIs to establish collegial working relationships within professionals in the national census bureau, not only to obtain the most recent census data, projections, and maps, but to gain access to sampling expertise. NIs may even commission a census statistician to draw the sample to Afrobarometer specifications, provided that provision for this service has been made in the survey budget.

    Regardless of who draws the sample, the NIs should thoroughly acquaint themselves with the strengths and weaknesses of the available census data and the availability and quality of EA maps. The country and methodology reports should cite the exact census data used, its known shortcomings, if any, and any projections made from the data. At minimum, the NI must know the size of the population and the urban/rural population divide in each region in order to specify how to distribute population and PSU's in the first stage of sampling. National investigators should obtain this written data before they attempt to stratify the sample.

    Once this data is obtained, the sample population (either 1200 or 2400) should be stratified, first by area (region/province) and then by residential locality (urban or rural). In each case, the proportion of the sample in each locality in each region should be the same as its proportion in the national population as indicated by the updated census figures.

    Having stratified the sample, it is then possible to determine how many PSU's should be selected for the country as a whole, for each region, and for each urban or rural locality.

    The total number of PSU's to be selected for the whole country is determined by calculating the maximum degree of clustering of interviews one can accept in any PSU. Because PSUs (which are usually geographically small EAs) tend to be socially homogenous we do not want to select too many people in any one place. Thus, the Afrobarometer has established a standard of no more than 8 interviews per PSU. For a sample size of 1200, the sample must therefore contain 150 PSUs/EAs (1200 divided by 8). For a sample size of 2400, there must be 300

  8. F

    African Facial Images Dataset | Selfie & ID Card Images

    • futurebeeai.com
    wav
    Updated Aug 1, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    FutureBee AI (2022). African Facial Images Dataset | Selfie & ID Card Images [Dataset]. https://www.futurebeeai.com/dataset/image-dataset/facial-images-selfie-id-african
    Explore at:
    wavAvailable download formats
    Dataset updated
    Aug 1, 2022
    Dataset provided by
    FutureBeeAI
    Authors
    FutureBee AI
    License

    https://www.futurebeeai.com/policies/ai-data-license-agreementhttps://www.futurebeeai.com/policies/ai-data-license-agreement

    Dataset funded by
    FutureBeeAI
    Description

    Introduction

    Welcome to the African Human Facial Images Dataset, meticulously curated to enhance face recognition models and support the development of advanced biometric identification systems, KYC models, and other facial recognition technologies.

    Facial Image Data

    This dataset comprises over 2,000 African individual facial image sets, with each set including:

    Selfie Images: 5 different high-quality selfie images per individual.
    ID Card Images: 2 high-quality images of the individual’s face from different ID cards.

    Diversity and Representation

    The dataset includes contributions from a diverse network of individuals across African countries.

    Geographical Representation: Participants from African countries, including Kenya, Malawi, Nigeria, Ethiopia, Benin, Somalia, Uganda, and more.
    Participant Profile: Participants range from 18 to 70 years old, representing both males and females in a 60:40 ratio, respectively.
    File Format: The dataset contains images in JPEG and HEIC file format.

    Quality and Conditions

    To ensure high utility and robustness, all images are captured under varying conditions:

    Lighting Conditions: Images are taken in different lighting environments to ensure variability and realism.
    Backgrounds: A variety of backgrounds are available to enhance model generalization.
    Device Quality: Photos are taken using the latest mobile devices to ensure high resolution and clarity.

    Metadata

    Each facial image set is accompanied by detailed metadata for each participant, including:

    Unique Identifier
    File Name
    Age
    Gender
    Country
    Demographic Information
    File Format

    This metadata is essential for training models that can accurately recognize and identify faces across different demographics and conditions.

    Usage and Applications

    This facial image dataset is ideal for various applications in the field of computer vision, including but not limited to:

    Facial Recognition Models: Improving the accuracy and reliability of facial recognition systems.
    KYC Models: Streamlining the identity verification processes for financial and other services.
    Biometric Identity Systems: Developing robust facial biometric identification solutions.
    Age Prediction Models: Training models to accurately predict the age of individuals based on facial features.
    Generative AI Models: Training generative AI models to create realistic and diverse synthetic facial images.

    Secure and Ethical Collection

    Data was securely stored and processed within our platform, ensuring data security and confidentiality.
    The biometric data collection process adhered to strict ethical guidelines, ensuring the privacy and consent of all participants.
    All participants were informed of the purpose of collection and potential use of the data, as agreed through written consent. Also, demographic-related regulations are kept in mind.

    Updates and Customization

    We understand the evolving nature of AI and machine learning requirements. Therefore, we continuously add more assets with diverse conditions to this off-the-shelf facial image dataset.

    <span

  9. Afrobarometer Survey 2016-2018, Merged Round 7 Data (34 Countries) - Benin,...

    • microdata.worldbank.org
    • catalog.ihsn.org
    Updated Apr 27, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Institute for Empirical Research in Political Economy (IREEP) (2021). Afrobarometer Survey 2016-2018, Merged Round 7 Data (34 Countries) - Benin, Burkina Faso, Botswana, Côte d'Ivoire, Cameroon, Cabo Verde, Gabon, Ghana, Guinea, Gambia, The, Kenya, Liberia, Lesotho, Morocco, Madagas... [Dataset]. https://microdata.worldbank.org/index.php/catalog/3805
    Explore at:
    Dataset updated
    Apr 27, 2021
    Dataset provided by
    Institute for Justice and Reconciliationhttp://www.ijr.org.za/
    Ghana Centre for Democratic Development (CDD)
    Institute for Empirical Research in Political Economy (IREEP)
    Michigan State University (MSU)
    University of Cape Town (UCT, South Africa)
    Institute for Development Studies (IDS)
    Time period covered
    2016 - 2018
    Area covered
    Guinea, Botswana, Liberia, Benin, Burkina Faso, Ghana, Lesotho, Cabo Verde, Cameroon, Gabon
    Description

    Abstract

    The Afrobarometer is a comparative series of public attitude surveys that assess African citizen's attitudes to democracy and governance, markets, and civil society, among other topics. The surveys have been undertaken at periodic intervals since 1999. The Afrobarometer's coverage has increased over time. Round 1 (1999-2001) initially covered 7 countries and was later extended to 12 countries. Round 2 (2002-2004) surveyed citizens in 16 countries. Round 3 (2005-2006) 18 countries, Round 4 (2008) 20 countries, Round 5 (2011-2013) 34 countries, and Round 6 (2014-2015) 36 countries. The survey covered 34 countries in Round 7 (2016-2018).

    Geographic coverage

    The survey has national coverage in the following 34 African countries: Benin, Botswana, Burkina Faso, Cabo Verde, Cameroon, Côte d'Ivoire, eSwatini, Gabon, Gambia, Ghana, Guinea, Kenya, Lesotho, Liberia, Madagascar, Malawi, Mali, Mauritius, Morocco, Mozambique, Namibia, Niger, Nigeria, São Tomé and Príncipe, Senegal, Sierra Leone, South Africa, Sudan, Tanzania, Togo, Tunisia, Uganda, Zambia and Zimbabwe.

    Analysis unit

    Individuals

    Universe

    The sample universe for Afrobarometer surveys includes all citizens of voting age within the country. In other words, we exclude anyone who is not a citizen and anyone who has not attained this age (usually 18 years) on the day of the survey. Also excluded are areas determined to be either inaccessible or not relevant to the study, such as those experiencing armed conflict or natural disasters, as well as national parks and game reserves. As a matter of practice, we have also excluded people living in institutionalized settings, such as students in dormitories and persons in prisons or nursing homes.

    Kind of data

    Sample survey data [ssd]

    Sampling procedure

    Afrobarometer uses national probability samples designed to meet the following criteria. Samples are designed to generate a sample that is a representative cross-section of all citizens of voting age in a given country. The goal is to give every adult citizen an equal and known chance of being selected for an interview. They achieve this by:

    • using random selection methods at every stage of sampling; • sampling at all stages with probability proportionate to population size wherever possible to ensure that larger (i.e., more populated) geographic units have a proportionally greater probability of being chosen into the sample.

    The sampling universe normally includes all citizens age 18 and older. As a standard practice, we exclude people living in institutionalized settings, such as students in dormitories, patients in hospitals, and persons in prisons or nursing homes. Occasionally, we must also exclude people living in areas determined to be inaccessible due to conflict or insecurity. Any such exclusion is noted in the technical information report (TIR) that accompanies each data set.

    Sample size and design Samples usually include either 1,200 or 2,400 cases. A randomly selected sample of n=1200 cases allows inferences to national adult populations with a margin of sampling error of no more than +/-2.8% with a confidence level of 95 percent. With a sample size of n=2400, the margin of error decreases to +/-2.0% at 95 percent confidence level.

    The sample design is a clustered, stratified, multi-stage, area probability sample. Specifically, we first stratify the sample according to the main sub-national unit of government (state, province, region, etc.) and by urban or rural location.

    Area stratification reduces the likelihood that distinctive ethnic or language groups are left out of the sample. Afrobarometer occasionally purposely oversamples certain populations that are politically significant within a country to ensure that the size of the sub-sample is large enough to be analysed. Any oversamples is noted in the TIR.

    Sample stages Samples are drawn in either four or five stages:

    Stage 1: In rural areas only, the first stage is to draw secondary sampling units (SSUs). SSUs are not used in urban areas, and in some countries they are not used in rural areas. See the TIR that accompanies each data set for specific details on the sample in any given country. Stage 2: We randomly select primary sampling units (PSU). Stage 3: We then randomly select sampling start points. Stage 4: Interviewers then randomly select households. Stage 5: Within the household, the interviewer randomly selects an individual respondent. Each interviewer alternates in each household between interviewing a man and interviewing a woman to ensure gender balance in the sample.

    To keep the costs and logistics of fieldwork within manageable limits, eight interviews are clustered within each selected PSU.

    Data weights For some national surveys, data are weighted to correct for over or under-sampling or for household size. "Withinwt" should be turned on for all national -level descriptive statistics in countries that contain this weighting variable. It is included as the last variable in the data set, with details described in the codebook. For merged data sets, "Combinwt" should be turned on for cross-national comparisons of descriptive statistics. Note: this weighting variable standardizes each national sample as if it were equal in size.

    Further information on sampling protocols, including full details of the methodologies used for each stage of sample selection, can be found at https://afrobarometer.org/surveys-and-methods/sampling-principles

    Mode of data collection

    Face-to-face [f2f]

    Research instrument

    The questionnaire for Round 7 addressed country-specific issues, but many of the same questions were asked across surveys. The survey instruments were not standardized across all countries and the following features should be noted:

    • In the seven countries that originally formed the Southern Africa Barometer (SAB) - Botswana, Lesotho, Malawi, Namibia, South Africa, Zambia and Zimbabwe - a standardized questionnaire was used, so question wording and response categories are the generally the same for all of these countries. The questionnaires in Mali and Tanzania were also essentially identical (in the original English version). Ghana, Uganda and Nigeria each had distinct questionnaires.

    • This merged dataset combines, into a single variable, responses from across these different countries where either identical or very similar questions were used, or where conceptually equivalent questions can be found in at least nine of the different countries. For each variable, the exact question text from each of the countries or groups of countries ("SAB" refers to the Southern Africa Barometer countries) is listed.

    • Response options also varied on some questions, and where applicable, these differences are also noted.

  10. F

    African Facial Timeline Dataset | Facial Images from Past

    • futurebeeai.com
    wav
    Updated Aug 1, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    FutureBee AI (2022). African Facial Timeline Dataset | Facial Images from Past [Dataset]. https://www.futurebeeai.com/dataset/image-dataset/facial-images-historical-african
    Explore at:
    wavAvailable download formats
    Dataset updated
    Aug 1, 2022
    Dataset provided by
    FutureBeeAI
    Authors
    FutureBee AI
    License

    https://www.futurebeeai.com/policies/ai-data-license-agreementhttps://www.futurebeeai.com/policies/ai-data-license-agreement

    Dataset funded by
    FutureBeeAI
    Description

    Introduction

    Welcome to the African Facial Images from Past Dataset, meticulously curated to enhance face recognition models and support the development of advanced biometric identification systems, KYC models, and other facial recognition technologies.

    Facial Image Data

    This dataset comprises over 10,000+ images, divided into participant-wise sets with each set including:

    Historical Images: 22 different high-quality historical images per individual from the timeline of 10 years.
    Enrollment Image: One modern high-quality image for reference.

    Diversity and Representation

    The dataset includes contributions from a diverse network of individuals across African countries:

    Geographical Representation: Participants from countries including Kenya, Malawi, Nigeria, Ethiopia, Benin, Somalia, Uganda, and more.
    Demographics: Participants range from 18 to 70 years old, representing both males and females in 60:40 ratio, respectively.
    File Format: The dataset contains images in JPEG and HEIC file format.

    Quality and Conditions

    To ensure high utility and robustness, all images are captured under varying conditions:

    Lighting Conditions: Images are taken in different lighting environments to ensure variability and realism.
    Backgrounds: A variety of backgrounds are available to enhance model generalization.
    Device Quality: Photos are taken using the latest mobile devices to ensure high resolution and clarity.

    Metadata

    Each image set is accompanied by detailed metadata for each participant, including:

    Participant Identifier
    File Name
    Age at the time of capture
    Gender
    Country
    Demographic Information
    File Format

    This metadata is essential for training models that can accurately recognize and identify African faces across different demographics and conditions.

    Usage and Applications

    This facial image dataset is ideal for various applications in the field of computer vision, including but not limited to:

    Facial Recognition Models: Improving the accuracy and reliability of facial recognition systems.
    KYC Models: Streamlining the identity verification processes for financial and other services.
    Biometric Identity Systems: Developing robust biometric identification solutions.
    Age Prediction Models: Training models to accurately predict the age of individuals based on facial features.
    Generative AI Models: Training generative AI models to create realistic and diverse synthetic facial images.

    Secure and Ethical Collection

    Data Security: Data was securely stored and processed within our platform, ensuring data security and confidentiality.
    Ethical Guidelines: The biometric data collection process adhered to strict ethical guidelines, ensuring the privacy and consent of all participants.
    Participant Consent: All participants were informed of the purpose of collection and potential use of the data, as agreed through written consent.
    <h3

  11. h

    insufficient-physical-activity-among-adults-aged-18-plus-africa

    • huggingface.co
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Electric Sheep, insufficient-physical-activity-among-adults-aged-18-plus-africa [Dataset]. https://huggingface.co/datasets/electricsheepafrica/insufficient-physical-activity-among-adults-aged-18-plus-africa
    Explore at:
    Dataset authored and provided by
    Electric Sheep
    Description

    Insufficient physical activity among adults aged 18+ years (crude estimate) (%)

      Dataset Description
    

    This dataset provides information on 'Insufficient physical activity among adults aged 18+ years' for countries in the WHO African Region. The data is disaggregated by the 'Sex' dimension, allowing for analysis of health inequalities across different population subgroups. Units: crude estimate

      Dimensions and Subgroups
    

    Dimension: Sex Available Subgroups: Female… See the full description on the dataset page: https://huggingface.co/datasets/electricsheepafrica/insufficient-physical-activity-among-adults-aged-18-plus-africa.

  12. u

    South African Social Giving Survey 2003 - South Africa

    • datafirst.uct.ac.za
    Updated May 23, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Southern African Grantmakers’ Association (SAGA) (2020). South African Social Giving Survey 2003 - South Africa [Dataset]. https://www.datafirst.uct.ac.za/dataportal/index.php/catalog/329
    Explore at:
    Dataset updated
    May 23, 2020
    Dataset provided by
    National Development Agency (NDA)
    Southern African Grantmakers’ Association (SAGA)
    Centre for Civil Society (CCS)
    Time period covered
    2003
    Area covered
    South Africa
    Description

    Abstract

    The State of Giving project, established by the Centre for Civil Society (CCS) at the University of KwaZulu-Natal (UKZN), the Southern African Grantmakers’ Association (SAGA) and the National Development Agency (NDA), was initiated to generate information on and analyse the resource flows to poverty alleviation and development in South Africa. One component of the broader project was a focus on individual-level giving, which involved the design, implementation and analysis of a national sample survey on individual level giving behaviour. It thus speaks to both the urban and rural and the formal and informal dimensions of our social context. The survey collected data on who gives, why and how much they give, as well as what they give and the recipients of their giving.

    Geographic coverage

    The sample, a random stratified one comprising 3000 respondents, is representative of all South Africans aged 18 and above.

    Analysis unit

    Individuals

    Universe

    The population of interest in the survey was all South Africans aged 18 and above.

    Kind of data

    Sample survey data

    Sampling procedure

    A random stratified survey sample was drawn by Ross Jennings at S&T. The sample was stratified by race and province at the first level, and then by area (rural/urban/etc.) at the second level. The sample frame comprised 3000 respondents, yielding an error bar of 1.8%. The results are representative of all South Africans aged 18 and above, in all parts of the country, including formal and informal dwellings. Unlike many surveys, the project partners ensured that the rural component of the sample (commonly the most expensive for logistical reasons) was large and did not require heavy weighting (where a small number of respondents have to represent the views of a far larger community).

    Randomness was built into the selection of starting points (from which fieldworkers begin their work) - every 5th dwelling was selected, after a randomly selected starting point had been identified - and into the selection of respondents, where the birthday rule was applied. That is, a household roster was completed, all those aged 18 and above were listed, and the householder whose birthday came next was identified as the respondent. Three call-backs were undertaken to interview the selected respondent; if s/he was unavailable, the household was substituted.

    A second sample was drawn, specifically to boost the minority religious groups – namely Hindus, Jews and Muslims. They are separately analysed and reported as part of the broader project, since area sampling was used, disallowing us from incorporating them into the national survey dataset.

    Mode of data collection

    Face-to-face [f2f]

    Research instrument

    A set of focus groups were staged across the country in order to inform questionnaire design. Groups were recruited across a range of criteria, including demographic and religious differences, in order to ensure a wide range of views were canvassed. Direct input from focus group participants informed a series of robust design sessions with all the project partners, from which a draft questionnaire was designed. The questionnaire was piloted in two provinces, involving urban and rural respondents and covering all four race groups. The pilot included testing specific questions, and the overall methodological approach, namely our ability to quantify giving. After the pilot results had been assessed, the questionnaire was revised before going into field.

    Sampling error estimates

    1. "0" values in some variables Many of the variables have a "0" value in addition to the values for responses, e.g. variables with yes/no responses are coded "0" "1""2". There is no indication that the 0 represents "missing" (only Q75 specifies the use of "0" for none/nobody).

    2. Variable Q9 (Question 9) Q8 lists the number of resident children under the age of 18. Q9 refers to this question with: "of these children aged below 16 living in your household". This should probably be "aged below 18", in line with Q8 The data only reflects children under 16, so the question should probably have been "of these children, how many below the age of 16 are (Q9A) children of the head of the household and (Q9B) children not born to the head of household, i.e. children born to others. It seems though, that Q8 and Q9 should match, with Q8 identifying children and Q9 identifying children of the household head. If specifying 16 rather than 18 in Q9 is an error, then this has been reflected in the data. This means that household members 17-18 years are listed, but the data does not record whether they are children of the household head.

    3. Variable Q21 (Question 21) “What do you think is the most deserving cause that you support or would support if you could?” There are 14 values for Q21 (1-14).According to the report (Everatt, D. and G. Solanki. 2005. A Nation of givers: Social giving amongst South Africans) this and other open-ended questions were later categorised and given numeric codes. However, a codebook was not included with the documentation provided to DataFirst

    4. Variable Q22 (Question 22) “Is there one cause or charity or organisation you would definitely NOT give money to?” There are 14 values for Q22 (1-14). Again, this requires a code list for explanation.

    5. Variable Q29 (Question 29) Q28 deals with the giving of goods/food/clothes. Q29 provides a breakdown of these items, and Q28Q29L lists time/labour as one of these. It seems that Q29L is incorrectly listed as a sub-set of goods/food/clothes. Also, giving time to causes is dealt with extensively in Q30A-Q and Q31A-Q, so this variable seems out of place.

    6. Variable Q39 (Question 36) This concerns the giving of food, goods, or other forms of help to beggars/street children/people asking for help, but the question text does not specifically mention these forms of help, so can be misleading.

    7. Variable Q44 (Question 44) Q44 asks the respondent to complete the sentence "Help the poor because…." There are 8 values for this variable (0-7 and 11). Again, a code list is required to explain these values.

    8. Variable Q59 (Question 59) This question has three coded responses (1-3) so should have three values (or 4, with a “missing” value). There are 12 values for this variable, though (59A-59L). It is possible that this variable has been swopped with Q60 (However, Q60 only has 11 options in the questionnaire)

    9. Variable Q60 (Question 60) The variable from this question only has 4 values, but there are 11 possible responses to this question (60A-60K). This variable could have been swopped with Q59 (In which case, the extra value needs explanation, as Q59 only has 11 options in the questionnaire.

    10. Variables Q67 - Q82 From this point on the order of variables seems wrong, as the responses don't match the number of values listed in the questionnaire. The variables seem to refer to the next question along, e.g. Variable Q67 seems to have data emanating from Question 68, and so on. The data in the revised dataset has been corrected to reflect this.

    11. There is no variable Q83 in the dataset, although there is a question 83 in the questionnaire. This seems to support the above explanation. Data users are requested to provide any additional findings on this that come to light in their research.

  13. n

    Groundswell Africa Spatial Population and Migration Projections at...

    • earthdata.nasa.gov
    • datasets.ai
    • +3more
    Updated Jun 17, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    ESDIS (2025). Groundswell Africa Spatial Population and Migration Projections at One-Eighth Degree According to SSPs and RCPs, 2010-2050 [Dataset]. http://doi.org/10.7927/jmc9-q708
    Explore at:
    Dataset updated
    Jun 17, 2025
    Dataset authored and provided by
    ESDIS
    Area covered
    Africa
    Description

    The Groundswell Africa Spatial Population and Migration Projections at One-Eighth Degree According to SSPs and RCPs, 2010-2050 data set provides a baseline population distribution for 2010 and projections from 2020 to 2050, in five-year increments, of population distribution and internal climate-related and other migration for West Africa and the Lake Victoria Basin. The projections are produced using the NCAR-CIDR Spatial Population Downscaling Model developed by the CUNY Institute for Demographic Research (CIDR) and the National Center for Atmospheric Research (NCAR). The model incorporates assumptions based on future development scenarios (Shared Socioeconomic Pathways or SSPs) and emissions trajectories (Representative Concentration Pathways or RCPs). The SSPs include SSP2, representing a middle-of-the road future, and SSP4, representing an unequal development future. Climate models using low and high emissions scenarios, RCP2.6 and RCP8.5, then drive climate impact models on water availability, crop productivity, and pasturelands (where cropping does not occur), as well as flood impacts, from the Inter-Sectoral Impacts Model Intercomparison Project (ISIMIP). Sea-level rise impacts in the coastal zone are estimated to be 1 meter under RCP2.6 and 2 meters under RCP8.5, to account for potential storm surge or coastal flooding. Four scenarios are generated, a pessimistic reference scenario combining SSP4 and RCP8.5, a more climate-friendly scenario combining SSP4 and RCP2.6, a more inclusive development scenario combining SSP2 and RCP8.5, and an optimistic scenario combining SSP2 and RCP2.6. Each scenario provides an ensemble average of four model runs combining different climate impact models as well as confidence intervals to better capture uncertainties. The modeling work was funded and developed jointly with The World Bank.

  14. Twitter users in Africa 2019-2028

    • statista.com
    Updated Feb 15, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista Research Department (2025). Twitter users in Africa 2019-2028 [Dataset]. https://www.statista.com/topics/9813/internet-usage-in-africa/
    Explore at:
    Dataset updated
    Feb 15, 2025
    Dataset provided by
    Statistahttp://statista.com/
    Authors
    Statista Research Department
    Area covered
    Africa
    Description

    The number of Twitter users in Africa was forecast to continuously increase between 2024 and 2028 by in total 28.1 million users (+100.75 percent). After the ninth consecutive increasing year, the Twitter user base is estimated to reach 55.96 million users and therefore a new peak in 2028. Notably, the number of Twitter users of was continuously increasing over the past years.User figures, shown here regarding the platform twitter, have been estimated by taking into account company filings or press material, secondary research, app downloads and traffic data. They refer to the average monthly active users over the period.The shown data are an excerpt of Statista's Key Market Indicators (KMI). The KMI are a collection of primary and secondary indicators on the macro-economic, demographic and technological environment in up to 150 countries and regions worldwide. All indicators are sourced from international and national statistical offices, trade associations and the trade press and they are processed to generate comparable data sets (see supplementary notes under details for more information).Find more key insights for the number of Twitter users in countries like Australia & Oceania and North America.

  15. Afrobarometer Survey 2021 - Senegal

    • microdata.worldbank.org
    • catalog.ihsn.org
    Updated Apr 18, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Institute for Empirical Research in Political Economy (IREEP) (2023). Afrobarometer Survey 2021 - Senegal [Dataset]. https://microdata.worldbank.org/index.php/catalog/5818
    Explore at:
    Dataset updated
    Apr 18, 2023
    Dataset provided by
    Institute for Justice and Reconciliationhttp://www.ijr.org.za/
    Ghana Centre for Democratic Development (CDD)
    Institute for Empirical Research in Political Economy (IREEP)
    Michigan State University (MSU)
    University of Cape Town (UCT, South Africa)
    Institute for Development Studies (IDS)
    Time period covered
    2020 - 2021
    Area covered
    Senegal
    Description

    Abstract

    The Afrobarometer is a comparative series of public attitude surveys that assess African citizen's attitudes to democracy and governance, markets, and civil society, among other topics. The surveys have been undertaken at periodic intervals since 1999. The Afrobarometer's coverage has increased over time. Round 1 (1999-2001) initially covered 7 countries and was later extended to 12 countries. Round 2 (2002-2004) surveyed citizens in 16 countries. Round 3 (2005-2006) 18 countries, Round 4 (2008) 20 countries, Round 5 (2011-2013) 34 countries, Round 6 (2014-2015) 36 countries, and Round 7 (2016-2018) 34 countries. The survey covered 34 countries in Round 8 (2019-2021).

    Geographic coverage

    National coverage

    Analysis unit

    Individual

    Universe

    Citizens of Senegal who are 18 years and older

    Kind of data

    Sample survey data [ssd]

    Sampling procedure

    Afrobarometer uses national probability samples designed to meet the following criteria. Samples are designed to generate a sample that is a representative cross-section of all citizens of voting age in a given country. The goal is to give every adult citizen an equal and known chance of being selected for an interview. They achieve this by:

    • using random selection methods at every stage of sampling; • sampling at all stages with probability proportionate to population size wherever possible to ensure that larger (i.e., more populated) geographic units have a proportionally greater probability of being chosen into the sample.

    The sampling universe normally includes all citizens age 18 and older. As a standard practice, we exclude people living in institutionalized settings, such as students in dormitories, patients in hospitals, and persons in prisons or nursing homes. Occasionally, we must also exclude people living in areas determined to be inaccessible due to conflict or insecurity. Any such exclusion is noted in the technical information report (TIR) that accompanies each data set.

    Sample size and design Samples usually include either 1,200 or 2,400 cases. A randomly selected sample of n=1200 cases allows inferences to national adult populations with a margin of sampling error of no more than +/-2.8% with a confidence level of 95 percent. With a sample size of n=2400, the margin of error decreases to +/-2.0% at 95 percent confidence level.

    The sample design is a clustered, stratified, multi-stage, area probability sample. Specifically, we first stratify the sample according to the main sub-national unit of government (state, province, region, etc.) and by urban or rural location.

    Area stratification reduces the likelihood that distinctive ethnic or language groups are left out of the sample. Afrobarometer occasionally purposely oversamples certain populations that are politically significant within a country to ensure that the size of the sub-sample is large enough to be analysed. Any oversamples is noted in the TIR.

    Sample stages Samples are drawn in either four or five stages:

    Stage 1: In rural areas only, the first stage is to draw secondary sampling units (SSUs). SSUs are not used in urban areas, and in some countries they are not used in rural areas. See the TIR that accompanies each data set for specific details on the sample in any given country. Stage 2: We randomly select primary sampling units (PSU). Stage 3: We then randomly select sampling start points. Stage 4: Interviewers then randomly select households. Stage 5: Within the household, the interviewer randomly selects an individual respondent. Each interviewer alternates in each household between interviewing a man and interviewing a woman to ensure gender balance in the sample.

    To keep the costs and logistics of fieldwork within manageable limits, eight interviews are clustered within each selected PSU.

    Senegal - Sample size: 1,200 - Sampling Frame: 2013 General Census of Population and Housing - Sample design: Nationally representative, random, clustered, stratified, multi-stage area probability sample - Stratification: Region and rural-urban location - Stages: PSUs (from strata), start points, households, respondents - PSU selection: Probability Proportionate to Population Size (PPPS) - Cluster size: 8 households per PSU - Household selection: Randomly selected start points, followed by walk pattern using 5/10 interval - Respondent selection: Gender quota filled by alternating interviews between men and women; respondents of appropriate gender listed, after which computer randomly selects individual

    Mode of data collection

    Face-to-face [f2f]

    Research instrument

    The Round 8 questionnaire has been developed by the Questionnaire Committee after reviewing the findings and feedback obtained in previous Rounds, and securing input on preferred new topics from a host of donors, analysts, and users of the data.

    The questionnaire consists of three parts: 1. Part 1 captures the steps for selecting households and respondents, and includes the introduction to the respondent and (pp.1-4). This section should be filled in by the Fieldworker. 2. Part 2 covers the core attitudinal and demographic questions that are asked by the Fieldworker and answered by the Respondent (Q1 – Q100). 3. Part 3 includes contextual questions about the setting and atmosphere of the interview, and collects information on the Fieldworker. This section is completed by the Fieldworker (Q101 – Q123).

    Response rate

    Outcome rates: - Contact rate: 92% - Cooperation rate: 84% - Refusal rate: 4% - Response rate: 77%

    Sampling error estimates

    +/- 3% at 95% confidence level

  16. Data from: Gridded birth and pregnancy datasets for Africa, Latin America...

    • figshare.com
    pdf
    Updated Jun 1, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Scientific Data; Natalia Tejedor‐Garavito (2023). Gridded birth and pregnancy datasets for Africa, Latin America and the Caribbean [Dataset]. http://doi.org/10.6084/m9.figshare.7571081.v1
    Explore at:
    pdfAvailable download formats
    Dataset updated
    Jun 1, 2023
    Dataset provided by
    figshare
    Figsharehttp://figshare.com/
    Authors
    Scientific Data; Natalia Tejedor‐Garavito
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Latin America, Caribbean
    Description

    20 minute lightning talk presentation given by Natalia Tejedor Garavito, from University of Southampton and WorldPop, at the Better Science through Better Data 2018 event. The video recording, slides and scribe are included.

  17. Census 2011 - South Africa

    • microdata.worldbank.org
    • catalog.ihsn.org
    • +1more
    Updated Sep 18, 2014
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statistics South Africa (2014). Census 2011 - South Africa [Dataset]. https://microdata.worldbank.org/index.php/catalog/2067
    Explore at:
    Dataset updated
    Sep 18, 2014
    Dataset authored and provided by
    Statistics South Africahttp://www.statssa.gov.za/
    Time period covered
    2011
    Area covered
    South Africa
    Description

    Abstract

    Censuses are principal means of collecting basic population and housing statistics required for social and economic development, policy interventions, their implementation and evaluation.The census plays an essential role in public administration. The results are used to ensure: • equity in distribution of government services • distributing and allocating government funds among various regions and districts for education and health services • delineating electoral districts at national and local levels, and • measuring the impact of industrial development, to name a few The census also provides the benchmark for all surveys conducted by the national statistical office. Without the sampling frame derived from the census, the national statistical system would face difficulties in providing reliable official statistics for use by government and the public. Census also provides information on small areas and population groups with minimum sampling errors. This is important, for example, in planning the location of a school or clinic. Census information is also invaluable for use in the private sector for activities such as business planning and market analyses. The information is used as a benchmark in research and analysis.

    Census 2011 was the third democratic census to be conducted in South Africa. Census 2011 specific objectives included: - To provide statistics on population, demographic, social, economic and housing characteristics; - To provide a base for the selection of a new sampling frame; - To provide data at lowest geographical level; and - To provide a primary base for the mid-year projections.

    Geographic coverage

    National

    Analysis unit

    Households, Individuals

    Kind of data

    Census/enumeration data [cen]

    Mode of data collection

    Face-to-face [f2f]

    Research instrument

    About the Questionnaire : Much emphasis has been placed on the need for a population census to help government direct its development programmes, but less has been written about how the census questionnaire is compiled. The main focus of a population and housing census is to take stock and produce a total count of the population without omission or duplication. Another major focus is to be able to provide accurate demographic and socio-economic characteristics pertaining to each individual enumerated. Apart from individuals, the focus is on collecting accurate data on housing characteristics and services.A population and housing census provides data needed to facilitate informed decision-making as far as policy formulation and implementation are concerned, as well as to monitor and evaluate their programmes at the smallest area level possible. It is therefore important that Statistics South Africa collects statistical data that comply with the United Nations recommendations and other relevant stakeholder needs.

    The United Nations underscores the following factors in determining the selection of topics to be investigated in population censuses: a) The needs of a broad range of data users in the country; b) Achievement of the maximum degree of international comparability, both within regions and on a worldwide basis; c) The probable willingness and ability of the public to give adequate information on the topics; and d) The total national resources available for conducting a census.

    In addition, the UN stipulates that census-takers should avoid collecting information that is no longer required simply because it was traditionally collected in the past, but rather focus on key demographic, social and socio-economic variables.It becomes necessary, therefore, in consultation with a broad range of users of census data, to review periodically the topics traditionally investigated and to re-evaluate the need for the series to which they contribute, particularly in the light of new data needs and alternative data sources that may have become available for investigating topics formerly covered in the population census. It was against this background that Statistics South Africa conducted user consultations in 2008 after the release of some of the Community Survey products. However, some groundwork in relation to core questions recommended by all countries in Africa has been done. In line with users' meetings, the crucial demands of the Millennium Development Goals (MDGs) should also be met. It is also imperative that Stats SA meet the demands of the users that require small area data.

    Accuracy of data depends on a well-designed questionnaire that is short and to the point. The interview to complete the questionnaire should not take longer than 18 minutes per household. Accuracy also depends on the diligence of the enumerator and honesty of the respondent.On the other hand, disadvantaged populations, owing to their small numbers, are best covered in the census and not in household sample surveys.Variables such as employment/unemployment, religion, income, and language are more accurately covered in household surveys than in censuses.Users'/stakeholders' input in terms of providing information in the planning phase of the census is crucial in making it a success. However, the information provided should be within the scope of the census.

    1. The Household Questionnaire is divided into the following sections:
    2. Household identification particulars
    3. Individual particulars Section A: Demographics Section B: Migration Section C: General Health and Functioning Section D: Parental Survival and Income Section E: Education Section F: Employment Section G: Fertility (Women 12-50 Years Listed) Section H: Housing, Household Goods and Services and Agricultural Activities Section I: Mortality in the Last 12 Months The Household Questionnaire is available in Afrikaans; English; isiZulu; IsiNdebele; Sepedi; SeSotho; SiSwati;Tshivenda;Xitsonga

    4. The Transient and Tourist Hotel Questionnaire (English) is divided into the following sections:

    5. Name, Age, Gender, Date of Birth, Marital Status, Population Group, Country of birth, Citizenship, Province.

    6. The Questionnaire for Institutions (English) is divided into the following sections:

    7. Particulars of the institution

    8. Availability of piped water for the institution

    9. Main source of water for domestic use

    10. Main type of toilet facility

    11. Type of energy/fuel used for cooking, heating and lighting at the institution

    12. Disposal of refuse or rubbish

    13. Asset ownership (TV, Radio, Landline telephone, Refrigerator, Internet facilities)

    14. List of persons in the institution on census night (name, date of birth, sex, population group, marital status, barcode number)

    15. The Post Enumeration Survey Questionnaire (English)

    These questionnaires are provided as external resources.

    Cleaning operations

    Data editing and validation system The execution of each phase of Census operations introduces some form of errors in Census data. Despite quality assurance methodologies embedded in all the phases; data collection, data capturing (both manual and automated), coding, and editing, a number of errors creep in and distort the collected information. To promote consistency and improve on data quality, editing is a paramount phase in identifying and minimising errors such as invalid values, inconsistent entries or unknown/missing values. The editing process for Census 2011 was based on defined rules (specifications).

    The editing of Census 2011 data involved a number of sequential processes: selection of members of the editing team, review of Census 2001 and 2007 Community Survey editing specifications, development of editing specifications for the Census 2011 pre-tests (2009 pilot and 2010 Dress Rehearsal), development of firewall editing specifications and finalisation of specifications for the main Census.

    Editing team The Census 2011 editing team was drawn from various divisions of the organisation based on skills and experience in data editing. The team thus composed of subject matter specialists (demographers and programmers), managers as well as data processors. Census 2011 editing team was drawn from various divisions of the organization based on skills and experience in data editing. The team thus composed of subject matter specialists (demographers and programmers), managers as well as data processors.

    The Census 2011 questionnaire was very complex, characterised by many sections, interlinked questions and skipping instructions. Editing of such complex, interlinked data items required application of a combination of editing techniques. Errors relating to structure were resolved using structural query language (SQL) in Oracle dataset. CSPro software was used to resolve content related errors. The strategy used for Census 2011 data editing was implementation of automated error detection and correction with minimal changes. Combinations of logical and dynamic imputation/editing were used. Logical imputations were preferred, and in many cases substantial effort was undertaken to deduce a consistent value based on the rest of the household’s information. To profile the extent of changes in the dataset and assess the effects of imputation, a set of imputation flags are included in the edited dataset. Imputation flags values include the following: 0 no imputation was performed; raw data were preserved 1 Logical editing was performed, raw data were blank 2 logical editing was performed, raw data were not blank 3 hot-deck imputation was performed, raw data were blank 4 hot-deck imputation was performed, raw data were not blank

    Data appraisal

    Independent monitoring and evaluation of Census field activities Independent monitoring of the Census 2011 field activities was carried out by a team of 31 professionals and 381 Monitoring

  18. w

    Social Giving Survey 2003 - South Africa

    • microdata.worldbank.org
    • dev.ihsn.org
    • +2more
    Updated May 1, 2014
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    National Development Agency (NDA) (2014). Social Giving Survey 2003 - South Africa [Dataset]. https://microdata.worldbank.org/index.php/catalog/1577
    Explore at:
    Dataset updated
    May 1, 2014
    Dataset provided by
    National Development Agency (NDA)
    Southern African Grantmakers’ Association (SAGA)
    Centre for Civil Society (CCS)
    Time period covered
    2003
    Area covered
    South Africa
    Description

    Abstract

    The State of Giving project, established by the Centre for Civil Society (CCS) at the University of KwaZulu-Natal (UKZN), the Southern African Grantmakers’ Association (SAGA) and the National Development Agency (NDA), was initiated to generate information on and analyse the resource flows to poverty alleviation and development in South Africa. One component of the broader project was a focus on individual-level giving, which involved the design, implementation and analysis of a national sample survey on individual level giving behaviour. The sample, a random stratified one comprising 3000 respondents, is representative of all South Africans aged 18 and above. It thus speaks to both the urban and rural and the formal and informal dimensions of our social context. The survey collected data on who gives, why and how much they give, as well as what they give and the recipients of their giving.

    Geographic coverage

    National coverage

    Analysis unit

    Units of analysis in the survey were households and individuals

    Universe

    The population of interest in the survey was all South Africans aged 18 and above.

    Kind of data

    Sample survey data [ssd]

    Sampling procedure

    A random stratified survey sample was drawn by Ross Jennings at S&T. The sample was stratified by race and province at the first level, and then by area (rural/urban/etc.) at the second level. The sample frame comprised 3000 respondents, yielding an error bar of 1.8%. The results are representative of all South Africans aged 18 and above, in all parts of the country, including formal and informal dwellings. Unlike many surveys, the project partners ensured that the rural component of the sample (commonly the most expensive for logistical reasons) was large and did not require heavy weighting (where a small number of respondents have to represent the views of a far larger community).

    Randomness was built into the selection of starting points (from which fieldworkers begin their work) - every 5th dwelling was selected, after a randomly selected starting point had been identified - and into the selection of respondents, where the birthday rule was applied. That is, a household roster was completed, all those aged 18 and above were listed, and the householder whose birthday came next was identified as the respondent. Three call-backs were undertaken to interview the selected respondent; if s/he was unavailable, the household was substituted.

    A second sample was drawn, specifically to boost the minority religious groups – namely Hindus, Jews and Muslims. They are separately analysed and reported as part of the broader project, since area sampling was used, disallowing us from incorporating them into the national survey dataset.

    Mode of data collection

    Face-to-face [f2f]

    Research instrument

    A set of focus groups were staged across the country in order to inform questionnaire design. Groups were recruited across a range of criteria, including demographic and religious differences, in order to ensure a wide range of views were canvassed. Direct input from focus group participants informed a series of robust design sessions with all the project partners, from which a draft questionnaire was designed. The questionnaire was piloted in two provinces, involving urban and rural respondents and covering all four race groups. The pilot included testing specific questions, and the overall methodological approach, namely our ability to quantify giving. After the pilot results had been assessed, the questionnaire was revised before going into field.

    Data appraisal

    1. "0" values in some variables Many of the variables have a "0" value in addition to the values for responses, e.g. variables with yes/no responses are coded "0" "1""2". There is no indication that the 0 represents "missing" (only Q75 specifies the use of "0" for none/nobody).

    2. Variable Q9 (Question 9) Q8 lists the number of resident children under the age of 18. Q9 refers to this question with: "of these children aged below 16 living in your household". This should probably be "aged below 18", in line with Q8 The data only reflects children under 16, so the question should probably have been "of these children, how many below the age of 16 are (Q9A) children of the head of the household and (Q9B) children not born to the head of household, i.e. children born to others. It seems though, that Q8 and Q9 should match, with Q8 identifying children and Q9 identifying children of the household head. If specifying 16 rather than 18 in Q9 is an error, then this has been reflected in the data. This means that household members 17-18 years are listed, but the data does not record whether they are children of the household head.

    3. Variable Q21 (Question 21) "What do you think is the most deserving cause that you support or would support if you could?" There are 14 values for Q21 (1-14).According to the report (Everatt, D. and G. Solanki. 2005. A Nation of givers: Social giving amongst South Africans) this and other open-ended questions were later categorised and given numeric codes. However, a codebook was not included with the documentation provided to DataFirst

    4. Variable Q22 (Question 22) "Is there one cause or charity or organisation you would definitely NOT give money to?" There are 14 values for Q22 (1-14). Again, this requires a code list for explanation.

    5. Variable Q29 (Question 29) Q28 deals with the giving of goods/food/clothes. Q29 provides a breakdown of these items, and Q28Q29L lists time/labour as one of these. It seems that Q29L is incorrectly listed as a sub-set of goods/food/clothes. Also, giving time to causes is dealt with extensively in Q30A-Q and Q31A-Q, so this variable seems out of place.

    6. Variable Q39 (Question 36) This concerns the giving of food, goods, or other forms of help to beggars/street children/people asking for help, but the question text does not specifically mention these forms of help, so can be misleading.

    7. Variable Q44 (Question 44) Q44 asks the respondent to complete the sentence "Help the poor because…." There are 8 values for this variable (0-7 and 11). Again, a code list is required to explain these values.

    8. Variable Q59 (Question 59) This question has three coded responses (1-3) so should have three values (or 4, with a "missing" value). There are 12 values for this variable, though (59A-59L). It is possible that this variable has been swopped with Q60 (However, Q60 only has 11 options in the questionnaire)

    9. Variable Q60 (Question 60) The variable from this question only has 4 values, but there are 11 possible responses to this question (60A-60K). This variable could have been swopped with Q59 (In which case, the extra value needs explanation, as Q59 only has 11 options in the questionnaire.

    10. Variables Q67 - Q82 From this point on the order of variables seems wrong, as the responses don't match the number of values listed in the questionnaire. The variables seem to refer to the next question along, e.g. Variable Q67 seems to have data emanating from Question 68, and so on. The data in the revised dataset has been corrected to reflect this.

    11. There is no variable Q83 in the dataset, although there is a question 83 in the questionnaire. This seems to support the above explanation. Data users are requested to provide any additional findings on this that come to light in their research.

  19. Richness index (2010) - ClimAfrica WP4

    • data.amerigeoss.org
    • data.apps.fao.org
    http, pdf, png, wms +1
    Updated Feb 6, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Food and Agriculture Organization (2023). Richness index (2010) - ClimAfrica WP4 [Dataset]. https://data.amerigeoss.org/dataset/5d112b2b-9793-4484-808c-4a6172c5d4d0
    Explore at:
    png, pdf, http, zip, wmsAvailable download formats
    Dataset updated
    Feb 6, 2023
    Dataset provided by
    Food and Agriculture Organizationhttp://fao.org/
    License

    Attribution-NonCommercial-ShareAlike 3.0 (CC BY-NC-SA 3.0)https://creativecommons.org/licenses/by-nc-sa/3.0/
    License information was derived automatically

    Description

    The “richness index” represents the level of economical wellbeing a country certain area in 2010. Regions with higher income per capita and low poverty rate and more access to market are wealthier and are therefore better able to prepare for and respond to adversity. The index results from the second cluster of the Principal Component Analysis preformed among 9 potential variables. The analysis identifies four dominant variables, namely “GDPppp per capita”, “agriculture share GDP per agriculture sector worker”, “poverty rate” and “market accessibility”, assigning weights of 0.33, 0.26, 0.25 and 0.16, respectively. Before to perform the analysis all variables were log transformed (except the “agriculture share GDP per agriculture sector worker”) to shorten the extreme variation and then were score-standardized (converted to distribution with average of 0 and standard deviation of 1; inverse method was applied for the “poverty rate” and “market accessibility”) in order to be comparable. The 0.5 arc-minute grid total GDPppp is based on the night time light satellite imagery of NOAA (see Ghosh, T., Powell, R., Elvidge, C. D., Baugh, K. E., Sutton, P. C., & Anderson, S. (2010).Shedding light on the global distribution of economic activity. The Open Geography Journal (3), 148-161) and adjusted to national total as recorded by International Monetary Fund for 2010. The “GDPppp per capita” was calculated dividing the total GDPppp by the population in each pixel. Further, a focal statistic ran to determine mean values within 10 km. This had a smoothing effect and represents some of the extended influence of intense economic activity for the local people. Country based data for “agriculture share GDP per agriculture sector worker” were calculated from GDPppp (data from International Monetary Fund) fraction from agriculture activity (measured by World Bank) divided by the number of worker in the agriculture sector (data from World Bank). The tabular data represents the average of the period 2008-2012 and were linked by country unit to the national boundaries shapefile (FAO/GAUL) and then converted into raster format (resolution 0.5 arc-minute). The first administrative level data for the “poverty rate” were estimated by NOAA for 2003 using nighttime lights satellite imagery. Tabular data were linked by first administrative unit to the first administrative boundaries shapefile (FAO/GAUL) and then converted into raster format (resolution 0.5 arc-minute). The 0.5 arc-minute grid “market accessibility” measures the travel distance in minutes to large cities (with population greater than 50,000 people). This dataset was developed by the European Commission and the World Bank to represent access to markets, schools, hospitals, etc.. The dataset capture the connectivity and the concentration of economic activity (in 2000). Markets may be important for a variety of reasons, including their abilities to spread risk and increase incomes. Markets are a means of linking people both spatially and over time. That is, they allow shocks (and risks) to be spread over wider areas. In particular, markets should make households less vulnerable to (localized) covariate shocks. This dataset has been produced in the framework of the “Climate change predictions in Sub-Saharan Africa: impacts and adaptations (ClimAfrica)” project, Work Package 4 (WP4). More information on ClimAfrica project is provided in the Supplemental Information section of this metadata.

    Data publication: 2014-05-15

    Supplemental Information:

    ClimAfrica was an international project funded by European Commission under the 7th Framework Programme (FP7) for the period 2010-2014. The ClimAfrica consortium was formed by 18 institutions, 9 from Europe, 8 from Africa, and the Food and Agriculture Organization of United Nations (FAO).

    ClimAfrica was conceived to respond to the urgent international need for the most appropriate and up-to-date tools and methodologies to better understand and predict climate change, assess its impact on African ecosystems and population, and develop the correct adaptation strategies. Africa is probably the most vulnerable continent to climate change and climate variability and shows diverse range of agro-ecological and geographical features. Thus the impacts of climate change can be very high and can greatly differ across the continent, and even within countries.

    The project focused on the following specific objectives:

    1. Develop improved climate predictions on seasonal to decadal climatic scales, especially relevant to SSA;

    2. Assess climate impacts in key sectors of SSA livelihood and economy, especially water resources and agriculture;

    3. Evaluate the vulnerability of ecosystems and civil population to inter-annual variations and longer trends (10 years) in climate;

    4. Suggest and analyse new suited adaptation strategies, focused on local needs;

    5. Develop a new concept of 10 years monitoring and forecasting warning system, useful for food security, risk management and civil protection in SSA;

    6. Analyse the economic impacts of climate change on agriculture and water resources in SSA and the cost-effectiveness of potential adaptation measures.

    The work of ClimAfrica project was broken down into the following work packages (WPs) closely connected. All the activities described in WP1, WP2, WP3, WP4, WP5 consider the domain of the entire South Sahara Africa region. Only WP6 has a country specific (watershed) spatial scale where models validation and detailed processes analysis are carried out.

    Contact points:

    Metadata Contact: FAO-Data

    Resource Contact: Selvaraju Ramasamy

    Resource constraints:

    copyright

    Online resources:

    Richness index (2010)

    Project deliverable D4.1 - Scenarios of major production systems in Africa

    Climafrica Website - Climate Change Predictions In Sub-Saharan Africa: Impacts And Adaptations

  20. SAFI Survey Results

    • figshare.com
    txt
    Updated May 19, 2018
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Philip Woodhouse; Gert Jan Veldwisch; Daniel Brockington; Hans C. Komakech; Angela Manjichi; Jean-Philippe Venot (2018). SAFI Survey Results [Dataset]. http://doi.org/10.6084/m9.figshare.6262019.v4
    Explore at:
    txtAvailable download formats
    Dataset updated
    May 19, 2018
    Dataset provided by
    Figsharehttp://figshare.com/
    Authors
    Philip Woodhouse; Gert Jan Veldwisch; Daniel Brockington; Hans C. Komakech; Angela Manjichi; Jean-Philippe Venot
    License

    CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
    License information was derived automatically

    Description

    SAFI (Studying African Farmer-Led Irrigation) is a currently running project which is looking at farming and irrigation methods. This is survey data relating to households and agriculture in Tanzania and Mozambique. The survey data was collected through interviews conducted between November 2016 and June 2017. The survey covered such things as; household features (e.g. construction materials used, number of household members), agricultural practices (e.g. water usage), assets (e.g. number and types of livestock) and details about the household members.This is a teaching version of the collected data, it is not the full dataset. The survey is split into several sections:A – General questions about when and where the survey was conducted.B - Information about the household and how long they have been living in the areaC – Details about the accommodation and other buildings on the farmD – Details about the different plots of land they grow crops onE – Details about how they irrigate the land and availability of waterF – Financial details including assets owned and sources of incomeG – Details of Financial hardshipsX – Information collected directly from the smartphone (GPS) or automatically included in the form (instanceID)key_id Added to provide a unique Id for each observation. (The InstanceID field does this as well but it is not as convenient to use)A01_interview_date, Date of InterviewA03_quest_no, Questionnaire numberA04_start, Timestamp of start of InterviewA05_end, Timestamp of end of InterviewA06_province, Province nameA07_district, District nameA08_ward, Ward nameA09_village, Village nameA11_years_farm, Number of years the household have been farming in this areaA12_agr_assoc, Does the head of the household belong to an agricultural association_note2 Possible form comment relating to the sectionB_no_membrs, How many members of the household?_members_count Internal count of membersB11_remittance_money, Is there any financial assistance from family members not living on the farmB16_years_liv, How many years have you been living in this village or neighbouring village?B17_parents_liv, Did your parents live in this village or neighbouring village?B18_sp_parents_liv, Did your spouse's parents live in this village or neighbouring village?B19_grand_liv, Did your grandparents live in this village or neighbouring village?B20_sp_grand_liv, Did your spouse's grandparents live in this village or neighbouring village?C01_respondent_roof_type, What type of roof does their house have?C02_respondent_wall_type, What type of walls does their house have (from list)C02_respondent_wall_type_other, What type of walls does their house have (not on list)C03_respondent_floor_type, What type of floor does their house have C04_window_type, Does the house have glass in at least one window?C05_buildings_in_compound, How many buildings are in the compound? Do not include stores, toilets or temporary structures.C06_rooms, How many rooms in the main house are used for sleeping?C07_other_buildings, Does the DU own any other buildings other than those on this plotD_no_plots, How many plots were cultivated in the last 12 months?D_plots_count, Internal count of plotsE01_water_use, Do you bring water to your fields, stop water leaving your fields or drain water out of any of your fields?E_no_group_count, How many plots are irrigated?E_yes_group_count, How many plots are not irrigated?E17_no_enough_water, Are there months when you cannot get enough water for your crops? Indicate which months.E18_months_no_water, Please select the monthsE19_period_use, For how long have you been using these methods of watering crops? (years)E20_exper_other, Do you have experience of such methods on other farms?E21_other_meth, Have you used other methods before?E22_res_change, Why did you change the way of watering your crops?E23_memb_assoc, Are you a member of an irrigation association?E24_resp_assoc, Do you have responsibilities in that association?E25_fees_water, Do you pay fees to use water?E26_affect_conflicts, Have you been affected by conflicts with other irrigators in the area ?_note Form comment for sectionF04_need_money, If you started or changed the way you water your crops recently, did you need any money for it?F05_money_source, Where did the money came from? (list)F05_money_source_other, Where did the money came from? (not on list)F06_crops_contr, Considering fields where you have applied water, how much do those crops contribute to your overall income?F08_emply_lab, In the most recent cultivation season, did you employ day labourers on fields?F09_du_labour, In the most recent cultivation season, did anyone in the household undertake day labour work on other farm?F10_liv_owned, What types of livestock do you own? (list)F10_liv_owned_other, What types of livestock do you own? (not on list)F_liv_count, Livestock countF12_poultry, Own poultry?F13_du_look_aftr_cows, At the present time, does the household look after cows for someone else in return for milk or money?F14_items_owned, Which of the following items are owned by the household? (list)F14_items_owned_other, Which of the following items are owned by the household? (not on list)G01_no_meals, How many meals do people in your household normally eat in a day?G02_months_lack_food, Indicate which months, In the last 12 months have you faced a situation when you did not have enough food to feed the household?G03_no_food_mitigation, When you have faced such a situation what do you do?gps:Latitude, Location latitude (provided by smartphone)gps:Longitude, Location Longitude (provided by smartphone)gps:Altitude, Location Altitude (provided by smartphone)gps:Accuracy, Location accuracy (provided by smartphone)instanceID, Unique identifier for the form data submission

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Institute for Democracy in South Africa (IDASA) (2021). Afrobarometer Survey 1 1999-2000, Merged 7 Country - Botswana, Lesotho, Malawi, Namibia, South Africa, Zambia, Zimbabwe [Dataset]. https://microdata.worldbank.org/index.php/catalog/889

Afrobarometer Survey 1 1999-2000, Merged 7 Country - Botswana, Lesotho, Malawi, Namibia, South Africa, Zambia, Zimbabwe

Explore at:
Dataset updated
Apr 27, 2021
Dataset provided by
Michigan State University (MSU)
Institute for Democracy in South Africa (IDASA)
Ghana Centre for Democratic Development (CDD-Ghana)
Time period covered
1999 - 2000
Area covered
Botswana, Zimbabwe, Zambia, Malawi, South Africa, Namibia, Lesotho, Africa
Description

Abstract

Round 1 of the Afrobarometer survey was conducted from July 1999 through June 2001 in 12 African countries, to solicit public opinion on democracy, governance, markets, and national identity. The full 12 country dataset released was pieced together out of different projects, Round 1 of the Afrobarometer survey,the old Southern African Democracy Barometer, and similar surveys done in West and East Africa.

The 7 country dataset is a subset of the Round 1 survey dataset, and consists of a combined dataset for the 7 Southern African countries surveyed with other African countries in Round 1, 1999-2000 (Botswana, Lesotho, Malawi, Namibia, South Africa, Zambia and Zimbabwe). It is a useful dataset because, in contrast to the full 12 country Round 1 dataset, all countries in this dataset were surveyed with the identical questionnaire

Geographic coverage

Botswana Lesotho Malawi Namibia South Africa Zambia Zimbabwe

Analysis unit

Basic units of analysis that the study investigates include: individuals and groups

Kind of data

Sample survey data [ssd]

Sampling procedure

A new sample has to be drawn for each round of Afrobarometer surveys. Whereas the standard sample size for Round 3 surveys will be 1200 cases, a larger sample size will be required in societies that are extremely heterogeneous (such as South Africa and Nigeria), where the sample size will be increased to 2400. Other adaptations may be necessary within some countries to account for the varying quality of the census data or the availability of census maps.

The sample is designed as a representative cross-section of all citizens of voting age in a given country. The goal is to give every adult citizen an equal and known chance of selection for interview. We strive to reach this objective by (a) strictly applying random selection methods at every stage of sampling and by (b) applying sampling with probability proportionate to population size wherever possible. A randomly selected sample of 1200 cases allows inferences to national adult populations with a margin of sampling error of no more than plus or minus 2.5 percent with a confidence level of 95 percent. If the sample size is increased to 2400, the confidence interval shrinks to plus or minus 2 percent.

Sample Universe

The sample universe for Afrobarometer surveys includes all citizens of voting age within the country. In other words, we exclude anyone who is not a citizen and anyone who has not attained this age (usually 18 years) on the day of the survey. Also excluded are areas determined to be either inaccessible or not relevant to the study, such as those experiencing armed conflict or natural disasters, as well as national parks and game reserves. As a matter of practice, we have also excluded people living in institutionalized settings, such as students in dormitories and persons in prisons or nursing homes.

What to do about areas experiencing political unrest? On the one hand we want to include them because they are politically important. On the other hand, we want to avoid stretching out the fieldwork over many months while we wait for the situation to settle down. It was agreed at the 2002 Cape Town Planning Workshop that it is difficult to come up with a general rule that will fit all imaginable circumstances. We will therefore make judgments on a case-by-case basis on whether or not to proceed with fieldwork or to exclude or substitute areas of conflict. National Partners are requested to consult Core Partners on any major delays, exclusions or substitutions of this sort.

Sample Design

The sample design is a clustered, stratified, multi-stage, area probability sample.

To repeat the main sampling principle, the objective of the design is to give every sample element (i.e. adult citizen) an equal and known chance of being chosen for inclusion in the sample. We strive to reach this objective by (a) strictly applying random selection methods at every stage of sampling and by (b) applying sampling with probability proportionate to population size wherever possible.

In a series of stages, geographically defined sampling units of decreasing size are selected. To ensure that the sample is representative, the probability of selection at various stages is adjusted as follows:

The sample is stratified by key social characteristics in the population such as sub-national area (e.g. region/province) and residential locality (urban or rural). The area stratification reduces the likelihood that distinctive ethnic or language groups are left out of the sample. And the urban/rural stratification is a means to make sure that these localities are represented in their correct proportions. Wherever possible, and always in the first stage of sampling, random sampling is conducted with probability proportionate to population size (PPPS). The purpose is to guarantee that larger (i.e., more populated) geographical units have a proportionally greater probability of being chosen into the sample. The sampling design has four stages

A first-stage to stratify and randomly select primary sampling units;

A second-stage to randomly select sampling start-points;

A third stage to randomly choose households;

A final-stage involving the random selection of individual respondents

We shall deal with each of these stages in turn.

STAGE ONE: Selection of Primary Sampling Units (PSUs)

The primary sampling units (PSU's) are the smallest, well-defined geographic units for which reliable population data are available. In most countries, these will be Census Enumeration Areas (or EAs). Most national census data and maps are broken down to the EA level. In the text that follows we will use the acronyms PSU and EA interchangeably because, when census data are employed, they refer to the same unit.

We strongly recommend that NIs use official national census data as the sampling frame for Afrobarometer surveys. Where recent or reliable census data are not available, NIs are asked to inform the relevant Core Partner before they substitute any other demographic data. Where the census is out of date, NIs should consult a demographer to obtain the best possible estimates of population growth rates. These should be applied to the outdated census data in order to make projections of population figures for the year of the survey. It is important to bear in mind that population growth rates vary by area (region) and (especially) between rural and urban localities. Therefore, any projected census data should include adjustments to take such variations into account.

Indeed, we urge NIs to establish collegial working relationships within professionals in the national census bureau, not only to obtain the most recent census data, projections, and maps, but to gain access to sampling expertise. NIs may even commission a census statistician to draw the sample to Afrobarometer specifications, provided that provision for this service has been made in the survey budget.

Regardless of who draws the sample, the NIs should thoroughly acquaint themselves with the strengths and weaknesses of the available census data and the availability and quality of EA maps. The country and methodology reports should cite the exact census data used, its known shortcomings, if any, and any projections made from the data. At minimum, the NI must know the size of the population and the urban/rural population divide in each region in order to specify how to distribute population and PSU's in the first stage of sampling. National investigators should obtain this written data before they attempt to stratify the sample.

Once this data is obtained, the sample population (either 1200 or 2400) should be stratified, first by area (region/province) and then by residential locality (urban or rural). In each case, the proportion of the sample in each locality in each region should be the same as its proportion in the national population as indicated by the updated census figures.

Having stratified the sample, it is then possible to determine how many PSU's should be selected for the country as a whole, for each region, and for each urban or rural locality.

The total number of PSU's to be selected for the whole country is determined by calculating the maximum degree of clustering of interviews one can accept in any PSU. Because PSUs (which are usually geographically small EAs) tend to be socially homogenous we do not want to select too many people in any one place. Thus, the Afrobarometer has established a standard of no more than 8 interviews per PSU. For a sample size of 1200, the sample must therefore contain 150 PSUs/EAs (1200 divided by 8). For a sample size of 2400, there must be 300 PSUs/EAs.

These PSUs should then be allocated proportionally to the urban and rural localities within each regional stratum of the sample. Let's take a couple of examples from a country with a sample size of 1200. If the urban locality of Region X in this country constitutes 10 percent of the current national population, then the sample for this stratum should be 15 PSUs (calculated as 10 percent of 150 PSUs). If the rural population of Region Y constitutes 4 percent of the current national population, then the sample for this stratum should be 6 PSU's.

The next step is to select particular PSUs/EAs using random methods. Using the above example of the rural localities in Region Y, let us say that you need to pick 6 sample EAs out of a census list that contains a total of 240 rural EAs in Region Y. But which 6? If the EAs created by the national census bureau are of equal or roughly equal population size, then selection is relatively straightforward. Just number all EAs consecutively, then make six selections using a table of random numbers. This procedure, known as simple random sampling (SRS), will

Search
Clear search
Close search
Google apps
Main menu