71 datasets found
  1. Data from: College Completion Dataset

    • kaggle.com
    Updated Dec 6, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    The Devastator (2022). College Completion Dataset [Dataset]. https://www.kaggle.com/datasets/thedevastator/boost-student-success-with-college-completion-da
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Dec 6, 2022
    Dataset provided by
    Kagglehttp://kaggle.com/
    Authors
    The Devastator
    License

    https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/

    Description

    College Completion Dataset

    Graduation Rates, Race, Efficiency Measures and More

    By Jonathan Ortiz [source]

    About this dataset

    This College Completion dataset provides an invaluable insight into the success and progress of college students in the United States. It contains graduation rates, race and other data to offer a comprehensive view of college completion in America. The data is sourced from two primary sources – the National Center for Education Statistics (NCES)’ Integrated Postsecondary Education System (IPEDS) and Voluntary System of Accountability’s Student Success and Progress rate.

    At four-year institutions, the graduation figures come from IPEDS for first-time, full-time degree seeking students at the undergraduate level, who entered college six years earlier at four-year institutions or three years earlier at two-year institutions. Furthermore, colleges report how many students completed their program within 100 percent and 150 percent of normal time which corresponds with graduation within four years or six year respectively. Students reported as being of two or more races are included in totals but not shown separately

    When analyzing race and ethnicity data NCES have classified student demographics since 2009 into seven categories; White non-Hispanic; Black non Hispanic; American Indian/ Alaskan native ; Asian/ Pacific Islander ; Unknown race or ethnicity ; Non resident with two new categorize Native Hawaiian or Other Pacific Islander combined with Asian plus students belonging to several races. Also worth noting is that different classifications for graduate data stemming from 2008 could be due to variations in time frame examined & groupings used by particular colleges – those who can’t be identified from National Student Clearinghouse records won’t be subjected to penalty by these locations .

    When it comes down to efficiency measures parameters like “Awards per 100 Full Time Undergraduate Students which includes all undergraduate completions reported by a particular institution including associate degrees & certificates less than 4 year programme will assist us here while we also take into consideration measures like expenditure categories , Pell grant percentage , endowment values , average student aid amounts & full time faculty members contributing outstandingly towards instructional research / public service initiatives .

    When trying to quantify outcomes back up Median Estimated SAT score metric helps us when it is derived either on 25th percentile basis / 75th percentile basis with all these factors further qualified by identifying required criteria meeting 90% threshold when incoming students are considered for relevance . Last but not least , Average Student Aid equalizes amount granted by institution dividing same over total sum received against what was allotted that particular year .

    All this analysis gives an opportunity get a holistic overview about performance , potential deficits &

    More Datasets

    For more datasets, click here.

    Featured Notebooks

    • 🚨 Your notebook can be here! 🚨!

    How to use the dataset

    This dataset contains data on student success, graduation rates, race and gender demographics, an efficiency measure to compare colleges across states and more. It is a great source of information to help you better understand college completion and student success in the United States.

    In this guide we’ll explain how to use the data so that you can find out the best colleges for students with certain characteristics or focus on your target completion rate. We’ll also provide some useful tips for getting the most out of this dataset when seeking guidance on which institutions offer the highest graduation rates or have a good reputation for success in terms of completing programs within normal timeframes.

    Before getting into specifics about interpreting this dataset, it is important that you understand that each row represents information about a particular institution – such as its state affiliation, level (two-year vs four-year), control (public vs private), name and website. Each column contains various demographic information such as rate of awarding degrees compared to other institutions in its sector; race/ethnicity Makeup; full-time faculty percentage; median SAT score among first-time students; awards/grants comparison versus national average/state average - all applicable depending on institution location — and more!

    When using this dataset, our suggestion is that you begin by forming a hypothesis or research question concerning student completion at a given school based upon observable characteristics like financ...

  2. o

    US Colleges and Universities

    • public.opendatasoft.com
    • data.smartidf.services
    • +1more
    csv, excel, geojson +1
    Updated Jun 6, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2025). US Colleges and Universities [Dataset]. https://public.opendatasoft.com/explore/dataset/us-colleges-and-universities/
    Explore at:
    json, excel, geojson, csvAvailable download formats
    Dataset updated
    Jun 6, 2025
    License

    https://en.wikipedia.org/wiki/Public_domainhttps://en.wikipedia.org/wiki/Public_domain

    Area covered
    United States
    Description

    The Colleges and Universities feature class/shapefile is composed of all Post Secondary Education facilities as defined by the Integrated Post Secondary Education System (IPEDS, http://nces.ed.gov/ipeds/), National Center for Education Statistics (NCES, https://nces.ed.gov/), US Department of Education for the 2018-2019 school year. Included are Doctoral/Research Universities, Masters Colleges and Universities, Baccalaureate Colleges, Associates Colleges, Theological seminaries, Medical Schools and other health care professions, Schools of engineering and technology, business and management, art, music, design, Law schools, Teachers colleges, Tribal colleges, and other specialized institutions. Overall, this data layer covers all 50 states, as well as Puerto Rico and other assorted U.S. territories. This feature class contains all MEDS/MEDS+ as approved by the National Geospatial-Intelligence Agency (NGA) Homeland Security Infrastructure Program (HSIP) Team. Complete field and attribute information is available in the ”Entities and Attributes” metadata section. Geographical coverage is depicted in the thumbnail above and detailed in the "Place Keyword" section of the metadata. This feature class does not have a relationship class but is related to Supplemental Colleges. Colleges and Universities that are not included in the NCES IPEDS data are added to the Supplemental Colleges feature class when found. This release includes the addition of 175 new records, the removal of 468 no longer reported by NCES, and modifications to the spatial location and/or attribution of 6682 records.

  3. 🎓 US Graduates

    • kaggle.com
    Updated Aug 14, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    mexwell (2023). 🎓 US Graduates [Dataset]. https://www.kaggle.com/datasets/mexwell/us-graduates
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Aug 14, 2023
    Dataset provided by
    Kaggle
    Authors
    mexwell
    License

    http://www.gnu.org/licenses/old-licenses/gpl-2.0.en.htmlhttp://www.gnu.org/licenses/old-licenses/gpl-2.0.en.html

    Area covered
    United States
    Description

    The data in this library comes from the National Survey of Recent College Graduates. Included is information about employment numbers, major information, and the earnings of different majors. Many majors were not available before 2010, so their values have been recorded as 0 (note that this may affect the averages shown in the bar charts).

    Data Dictionary

    KeyList of...CommentExample Value
    YearIntegerThe year that this report was made for.1993
    Demographics.TotalIntegerThe estimated number of people awarded degrees in this major during this year.1295598
    Education.MajorStringThe name of the major for these graduated students."Biological Sciences"
    Salaries.HighestFloatThe highest recorded salary reported for employed people with this degree during this year.999999.0
    Salaries.LowestFloatThe lowest recorded salary reported for employed people with this degree during this year.0.0
    Salaries.MeanFloatThe average (mean) recorded salary reported for employed people with this degree during this year.160585.73
    Salaries.MedianFloatThe median recorded salary reported for employed people with this degree during this year.51000.0
    Salaries.QuantityIntegerThe number of salaries reported for employed people with this degree during this year.13432
    Salaries.Standard DeviationFloatThe standard deviation (which gives the amount of variance) of salaries reported for employed people with this degree during this year.297818.25
    Demographics.Ethnicity.AsiansIntegerThe estimated number of people identifying as Asian that were awarded degrees in this major during this year.84495
    Demographics.Ethnicity.MinoritiesIntegerThe estimated number of people identifying as a minority (e.g., Black, African American, Native American) that were awarded degrees in this major during this year.115016
    Demographics.Ethnicity.WhitesIntegerThe estimated number of people identifying as White that were awarded degrees in this major during this year.1094775
    Demographics.Gender.FemalesIntegerThe estimated number of women awarded degrees in this major during this year.551695
    Demographics.Gender.MalesIntegerThe estimated number of women awarded degrees in this major during this year.743903
    Education.Degrees.BachelorsIntegerThe estimated number of bachelor degrees awarded in this for major during this year.671374
    Education.Degrees.DoctoratesIntegerThe estimated number of doctoral degrees awarded in this for major during this year.90543
    Education.Degrees.MastersIntegerThe estimated number of Masters awarded in this for major during this year.248813
    Education.Degrees.ProfessionalsIntegerThe estimated number of professional degrees awarded in this for major during this year.284869
    Employment.Employer Type.Business/IndustryIntegerThe number of people with a degree in this major during this year who described their Employer Type as "Business/Industry".669270
    Employment.Employer Type.Educational InstitutionIntegerThe number of people with a degree in this major during this year who described their Employer Type as an "Educational Institution".300468
    Employment.Employer Type.GovernmentIntegerThe number of people with a degree in this major during this year wh...

  4. t

    SCHOOL ENROLLMENT - DP02_DES_T - Dataset - CKAN

    • portal.tad3.org
    Updated Mar 25, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2024). SCHOOL ENROLLMENT - DP02_DES_T - Dataset - CKAN [Dataset]. https://portal.tad3.org/dataset/school-enrollment-dp02_des_t
    Explore at:
    Dataset updated
    Mar 25, 2024
    License

    Attribution-ShareAlike 4.0 (CC BY-SA 4.0)https://creativecommons.org/licenses/by-sa/4.0/
    License information was derived automatically

    Description

    SELECTED SOCIAL CHARACTERISTICS IN THE UNITED STATES SCHOOL ENROLLMENT - DP02 Universe - Population 3 Year and over enrolled in school Survey-Program - American Community Survey 5-year estimates Years - 2020, 2021, 2022 People were classified as enrolled in school if they were attending a public or private school or college at any time during the 3 months prior to the time of interview. The question included instructions to “include only nursery or preschool, kindergarten, elementary school, home school, and schooling which leads to a high school diploma, or a college degree.” Respondents who did not answer the enrollment question were assigned the enrollment status and type of school of a person with the same age, sex, race, and Hispanic or Latino origin whose residence was in the same or nearby area.

  5. O

    School Attendance by Student Group and District, 2022-2023

    • data.ct.gov
    • catalog.data.gov
    application/rdfxml +5
    Updated Jun 16, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    State Department of Education (2023). School Attendance by Student Group and District, 2022-2023 [Dataset]. https://data.ct.gov/Education/School-Attendance-by-Student-Group-and-District-20/he4h-bgqh
    Explore at:
    json, csv, tsv, application/rssxml, application/rdfxml, xmlAvailable download formats
    Dataset updated
    Jun 16, 2023
    Dataset authored and provided by
    State Department of Education
    License

    U.S. Government Workshttps://www.usa.gov/government-works
    License information was derived automatically

    Description

    This dataset includes the attendance rate for public school students PK-12 by student group and by district during the 2022-2023 school year.

    Student groups include:

    Students experiencing homelessness Students with disabilities Students who qualify for free/reduced lunch English learners All high needs students Non-high needs students Students by race/ethnicity (Hispanic/Latino of any race, Black or African American, White, All other races)

    Attendance rates are provided for each student group by district and for the state. Students who are considered high needs include students who are English language learners, who receive special education, or who qualify for free and reduced lunch.

    When no attendance data is displayed in a cell, data have been suppressed to safeguard student confidentiality, or to ensure that statistics based on a very small sample size are not interpreted as equally representative as those based on a sufficiently larger sample size. For more information on CSDE data suppression policies, please visit http://edsight.ct.gov/relatedreports/BDCRE%20Data%20Suppression%20Rules.pdf.

  6. C

    Pittsburgh American Community Survey 2015, School Enrollment

    • data.wprdc.org
    • catalog.data.gov
    • +1more
    csv, txt
    Updated Jun 7, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    City of Pittsburgh (2024). Pittsburgh American Community Survey 2015, School Enrollment [Dataset]. https://data.wprdc.org/dataset/pittsburgh-american-community-survey-2015-school-enrollment
    Explore at:
    csv, txtAvailable download formats
    Dataset updated
    Jun 7, 2024
    Dataset provided by
    City of Pittsburgh
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Pittsburgh
    Description

    School enrollment data are used to assess the socioeconomic condition of school-age children. Government agencies also require these data for funding allocations and program planning and implementation.

    Data on school enrollment and grade or level attending were derived from answers to Question 10 in the 2015 American Community Survey (ACS). People were classified as enrolled in school if they were attending a public or private school or college at any time during the 3 months prior to the time of interview. The question included instructions to “include only nursery or preschool, kindergarten, elementary school, home school, and schooling which leads to a high school diploma, or a college degree.” Respondents who did not answer the enrollment question were assigned the enrollment status and type of school of a person with the same age, sex, race, and Hispanic or Latino origin whose residence was in the same or nearby area.

    School enrollment is only recorded if the schooling advances a person toward an elementary school certificate, a high school diploma, or a college, university, or professional school (such as law or medicine) degree. Tutoring or correspondence schools are included if credit can be obtained from a public or private school or college. People enrolled in “vocational, technical, or business school” such as post secondary vocational, trade, hospital school, and on job training were not reported as enrolled in school. Field interviewers were instructed to classify individuals who were home schooled as enrolled in private school. The guide sent out with the mail questionnaire includes instructions for how to classify home schoolers.

    Enrolled in Public and Private School – Includes people who attended school in the reference period and indicated they were enrolled by marking one of the questionnaire categories for “public school, public college,” or “private school, private college, home school.” The instruction guide defines a public school as “any school or college controlled and supported primarily by a local, county, state, or federal government.” Private schools are defined as schools supported and controlled primarily by religious organizations or other private groups. Home schools are defined as “parental-guided education outside of public or private school for grades 1-12.” Respondents who marked both the “public” and “private” boxes are edited to the first entry, “public.”

    Grade in Which Enrolled – From 1999-2007, in the ACS, people reported to be enrolled in “public school, public college” or “private school, private college” were classified by grade or level according to responses to Question 10b, “What grade or level was this person attending?” Seven levels were identified: “nursery school, preschool;” “kindergarten;” elementary “grade 1 to grade 4” or “grade 5 to grade 8;” high school “grade 9 to grade 12;” “college undergraduate years (freshman to senior);” and “graduate or professional school (for example: medical, dental, or law school).”

    In 2008, the school enrollment questions had several changes. “Home school” was explicitly included in the “private school, private college” category. For question 10b the categories changed to the following “Nursery school, preschool,” “Kindergarten,” “Grade 1 through grade 12,” “College undergraduate years (freshman to senior),” “Graduate or professional school beyond a bachelor’s degree (for example: MA or PhD program, or medical or law school).” The survey question allowed a write-in for the grades enrolled from 1-12.

    Question/Concept History – Since 1999, the ACS enrollment status question (Question 10a) refers to “regular school or college,” while the 1996-1998 ACS did not restrict reporting to “regular” school, and contained an additional category for the “vocational, technical or business school.” The 1996-1998 ACS used the educational attainment question to estimate level of enrollment for those reported to be enrolled in school, and had a single year write-in for the attainment of grades 1 through 11. Grade levels estimated using the attainment question were not consistent with other estimates, so a new question specifically asking grade or level of enrollment was added starting with the 1999 ACS questionnaire.

    Limitation of the Data – Beginning in 2006, the population universe in the ACS includes people living in group quarters. Data users may see slight differences in levels of school enrollment in any given geographic area due to the inclusion of this population. The extent of this difference, if any, depends on the type of group quarters present and whether the group quarters population makes up a large proportion of the total population. For example, in areas that are home to several colleges and universities, the percent of individuals 18 to 24 who were enrolled in college or graduate school would increase, as people living in college dormitories are now included in the universe.

  7. c

    Educational Attainment

    • data.ccrpc.org
    csv
    Updated Oct 16, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Champaign County Regional Planning Commission (2024). Educational Attainment [Dataset]. https://data.ccrpc.org/dataset/educational-attainment
    Explore at:
    csv(1753)Available download formats
    Dataset updated
    Oct 16, 2024
    Dataset provided by
    Champaign County Regional Planning Commission
    Description

    Overall educational attainment measures the highest level of education attained by a given individual: for example, an individual counted in the percentage of the measured population with a master’s or professional degree can be assumed to also have a bachelor’s degree and a high school diploma, but they are not counted in the population percentages for those two categories. Overall educational attainment is the broadest education indicator available, providing information about the measured county population as a whole.

    Only members of the population aged 25 and older are included in these educational attainment estimates, sourced from the U.S. Census Bureau American Community Survey (ACS).

    Champaign County has high educational attainment: over 48 percent of the county's population aged 25 or older has a bachelor's degree or graduate or professional degree as their highest level of education. In comparison, the percentage of the population aged 25 or older in the United States and Illinois with a bachelor's degree in 2023 was 21.8% (+/-0.1) and 22.8% (+/-0.2), respectively. The population aged 25 or older in the U.S. and Illinois with a graduate or professional degree in 2022, respectively, was 14.3% (+/-0.1) and 15.5% (+/-0.2).

    Educational attainment data was sourced from the U.S. Census Bureau’s American Community Survey 1-Year Estimates, which are released annually.

    As with any datasets that are estimates rather than exact counts, it is important to take into account the margins of error (listed in the column beside each figure) when drawing conclusions from the data.

    Due to the impact of the COVID-19 pandemic, instead of providing the standard 1-year data products, the Census Bureau released experimental estimates from the 1-year data in 2020. This includes a limited number of data tables for the nation, states, and the District of Columbia. The Census Bureau states that the 2020 ACS 1-year experimental tables use an experimental estimation methodology and should not be compared with other ACS data. For these reasons, and because data is not available for Champaign County, no data for 2020 is included in this Indicator.

    For interested data users, the 2020 ACS 1-Year Experimental data release includes a dataset on Educational Attainment for the Population 25 Years and Over.

    Sources: U.S. Census Bureau; American Community Survey, 2023 American Community Survey 1-Year Estimates, Table S1501; generated by CCRPC staff; using data.census.gov; (16 October 2024).; U.S. Census Bureau; American Community Survey, 2022 American Community Survey 1-Year Estimates, Table S1501; generated by CCRPC staff; using data.census.gov; (29 September 2023).; U.S. Census Bureau; American Community Survey, 2021 American Community Survey 1-Year Estimates, Table S1501; generated by CCRPC staff; using data.census.gov; (6 October 2022).; U.S. Census Bureau; American Community Survey, 2019 American Community Survey 1-Year Estimates, Table S1501; generated by CCRPC staff; using data.census.gov; (4 June 2021).; U.S. Census Bureau; American Community Survey, 2018 American Community Survey 1-Year Estimates, Table S1501; generated by CCRPC staff; using data.census.gov; (4 June 2021).; U.S. Census Bureau; American Community Survey, 2017 American Community Survey 1-Year Estimates, Table S1501; generated by CCRPC staff; using American FactFinder; (13 September 2018).; U.S. Census Bureau; American Community Survey, 2016 American Community Survey 1-Year Estimates, Table S1501; generated by CCRPC staff; using American FactFinder; (13 September 2018). U.S. Census Bureau; American Community Survey, 2015 American Community Survey 1-Year Estimates, Table S1501; generated by CCRPC staff; using American FactFinder; (19 September 2016).; U.S. Census Bureau; American Community Survey, 2014 American Community Survey 1-Year Estimates, Table S1501; generated by CCRPC staff; using American FactFinder; (16 March 2016).; U.S. Census Bureau; American Community Survey, 2013 American Community Survey 1-Year Estimates, Table S1501; generated by CCRPC staff; using American FactFinder; (16 March 2016).; U.S. Census Bureau; American Community Survey, 2012 American Community Survey 1-Year Estimates, Table S1501; generated by CCRPC staff; using American FactFinder; (16 March 2016).; U.S. Census Bureau; American Community Survey, 2011 American Community Survey 1-Year Estimates, Table S1501; generated by CCRPC staff; using American FactFinder; (16 March 2016).; U.S. Census Bureau; American Community Survey, 2010 American Community Survey 1-Year Estimates, Table S1501; generated by CCRPC staff; using American FactFinder; (16 March 2016).; U.S. Census Bureau; American Community Survey, 2009 American Community Survey 1-Year Estimates, Table S1501; generated by CCRPC staff; using American FactFinder; (16 March 2016).; U.S. Census Bureau; American Community Survey, 2008 American Community Survey 1-Year Estimates, Table S1501; generated by CCRPC staff; using American FactFinder; (16 March 2016).; U.S. Census Bureau; American Community Survey, 2007 American Community Survey 1-Year Estimates, Table S1501; generated by CCRPC staff; using American FactFinder; (16 March 2016).; U.S. Census Bureau; American Community Survey, 2006 American Community Survey 1-Year Estimates, Table S1501; generated by CCRPC staff; using American FactFinder; (16 March 2016).; U.S. Census Bureau; American Community Survey, 2005 American Community Survey 1-Year Estimates, Table S1501; generated by CCRPC staff; using American FactFinder; (16 March 2016).

  8. a

    US Schools and School District Characteristics

    • hub.arcgis.com
    Updated Apr 15, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    ArcGIS Living Atlas Team (2021). US Schools and School District Characteristics [Dataset]. https://hub.arcgis.com/maps/1577f4b9b594482684952d448aa613c7
    Explore at:
    Dataset updated
    Apr 15, 2021
    Dataset authored and provided by
    ArcGIS Living Atlas Team
    Area covered
    Description

    This map shows schools, school districts, and population density throughout the US. Click on the map to learn more about the school districts and schools within an area. A few things you can learn within this map:How many public/private schools fall within the district?What type of population density lives within this district? Socioeconomic factors about the Census Tracts which fall within the district:School enrollment of under 19 by grade Children living below the poverty level Children with no internet at home Children without a working parentRace/ethnicity breakdown of the population within the districtFor more information about the data sources:Socioeconomic factors:The American Community Survey (ACS) helps us understand the population in the US. This app uses the 5-year estimates, and the data is updated annually when the U.S. Census Bureau releases the newest estimates. For detailed metadata, visit the links in the bullet points above. Current School Districts layer:The National Center for Education Statistics’ (NCES) Education Demographic and Geographic Estimate (EDGE) program develops annually updated school district boundary composite files that include public elementary, secondary, and unified school district boundaries clipped to the U.S. shoreline. School districts are single-purpose administrative units designed by state and local officials to organize and provide public education for local residents. District boundaries are collected for NCES by the U.S. Census Bureau to support educational research and program administration, and the boundaries are essential for constructing district-level estimates of the number of children in poverty.The Census Bureau’s School District Boundary Review program (SDRP) (https://www.census.gov/programs-surveys/sdrp.html) obtains the boundaries, names, and grade ranges from state officials, and integrates these updates into Census TIGER. Census TIGER boundaries include legal maritime buffers for coastal areas by default, but the NCES composite file removes these buffers to facilitate broader use and cleaner cartographic representation. The NCES EDGE program collaborates with the U.S. Census Bureau’s Education Demographic, Geographic, and Economic Statistics (EDGE) Branch to develop the composite school district files. The inputs for this data layer were developed from Census TIGER/Line and represent the most current boundaries available. For more information about NCES school district boundary data, see https://nces.ed.gov/programs/edge/Geographic/DistrictBoundaries.Private Schools layer:This Private Schools feature dataset is composed of private elementary and secondary education facilities in the United States as defined by the Private School Survey (PSS, https://nces.ed.gov/surveys/pss/), National Center for Education Statistics (NCES, https://nces.ed.gov), US Department of Education for the 2017-2018 school year. This includes all prekindergarten through 12th grade schools as tracked by the PSS. This feature class contains all MEDS/MEDS+ as approved by NGA. Complete field and attribute information is available in the ”Entities and Attributes” metadata section. Geographical coverage is depicted in the thumbnail above and detailed in the Place Keyword section of the metadata. This release includes the addition of 2675 new records, modifications to the spatial location and/or attribution of 19836 records, the removal of 254 records no longer applicable. Additionally, 10,870 records were removed that previously had a STATUS value of 2 (Unknown; not represented in the most recent PSS data) and duplicate records identified by ORNL.Public Schools layer:This Public Schools feature dataset is composed of all Public elementary and secondary education facilities in the United States as defined by the Common Core of Data (CCD, https://nces.ed.gov/ccd/ ), National Center for Education Statistics (NCES, https://nces.ed.gov ), US Department of Education for the 2017-2018 school year. This includes all Kindergarten through 12th grade schools as tracked by the Common Core of Data. Included in this dataset are military schools in US territories and referenced in the city field with an APO or FPO address. DOD schools represented in the NCES data that are outside of the United States or US territories have been omitted. This feature class contains all MEDS/MEDS+ as approved by NGA. Complete field and attribute information is available in the ”Entities and Attributes” metadata section. Geographical coverage is depicted in the thumbnail above and detailed in the Place Keyword section of the metadata. This release includes the addition of 3065 new records, modifications to the spatial location and/or attribution of 99,287 records, and removal of 2996 records not present in the NCES CCD data.WorldPop Populated Foorprint layer:This layer represents an estimate of the footprint of human settlement in 2020. It is intended as a fast-drawing cartographic layer to augment base maps and to focus a map reader's attention on the location of human population. This layer is not intended for analysis.This layer was derived from the 2020 slice of the WorldPop Population Density 2000-2020 100m and 1km layers. WorldPop modeled this population footprint based on imagery datasets and population data from national statistical organizations and the United Nations. Zooming in to very large scales will often show discrepancies between reality and this or any model. Like all data sources imagery and population counts are subject to many types of error, thus this gridded footprint contains errors of omission and commission. The imagery base maps available in ArcGIS Online were not used in WorldPop's model. Imagery only informs the model of characteristics that indicate a potential for settlement, and cannot intrinsically indicate whether any or how many people live in a building.

  9. w

    Some college, associate's degree poverty in American Fork, Utah (2022)

    • welfareinfo.org
    Updated Sep 12, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    WelfareInfo.org (2024). Some college, associate's degree poverty in American Fork, Utah (2022) [Dataset]. https://www.welfareinfo.org/poverty-rate/utah/american-fork/stat-people-with-some-college-or-an-associates-degree/
    Explore at:
    Dataset updated
    Sep 12, 2024
    Dataset provided by
    WelfareInfo.org
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Utah, American Fork
    Description

    Some college, associate's degree Poverty Rate Statistics for 2022. This is part of a larger dataset covering poverty in American Fork, Utah by age, education, race, gender, work experience and more.

  10. c

    Poverty Rate

    • data.ccrpc.org
    • data.cuuats.cloud.ccrpc.org
    csv
    Updated Oct 17, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Champaign County Regional Planning Commission (2024). Poverty Rate [Dataset]. https://data.ccrpc.org/dataset/poverty-rate
    Explore at:
    csv(393)Available download formats
    Dataset updated
    Oct 17, 2024
    Dataset provided by
    Champaign County Regional Planning Commission
    Description

    This poverty rate data shows what percentage of the measured population* falls below the poverty line. Poverty is closely related to income: different “poverty thresholds” are in place for different sizes and types of household. A family or individual is considered to be below the poverty line if that family or individual’s income falls below their relevant poverty threshold. For more information on how poverty is measured by the U.S. Census Bureau (the source for this indicator’s data), visit the U.S. Census Bureau’s poverty webpage.

    The poverty rate is an important piece of information when evaluating an area’s economic health and well-being. The poverty rate can also be illustrative when considered in the contexts of other indicators and categories. As a piece of data, it is too important and too useful to omit from any indicator set.

    The poverty rate for all individuals in the measured population in Champaign County has hovered around roughly 20% since 2005. However, it reached its lowest rate in 2021 at 14.9%, and its second lowest rate in 2023 at 16.3%. Although the American Community Survey (ACS) data shows fluctuations between years, given their margins of error, none of the differences between consecutive years’ estimates are statistically significant, making it impossible to identify a trend.

    Poverty rate data was sourced from the U.S. Census Bureau’s American Community Survey 1-Year Estimates, which are released annually.

    As with any datasets that are estimates rather than exact counts, it is important to take into account the margins of error (listed in the column beside each figure) when drawing conclusions from the data.

    Due to the impact of the COVID-19 pandemic, instead of providing the standard 1-year data products, the Census Bureau released experimental estimates from the 1-year data in 2020. This includes a limited number of data tables for the nation, states, and the District of Columbia. The Census Bureau states that the 2020 ACS 1-year experimental tables use an experimental estimation methodology and should not be compared with other ACS data. For these reasons, and because data is not available for Champaign County, no data for 2020 is included in this Indicator.

    For interested data users, the 2020 ACS 1-Year Experimental data release includes a dataset on Poverty Status in the Past 12 Months by Age.

    *According to the U.S. Census Bureau document “How Poverty is Calculated in the ACS," poverty status is calculated for everyone but those in the following groups: “people living in institutional group quarters (such as prisons or nursing homes), people in military barracks, people in college dormitories, living situations without conventional housing, and unrelated individuals under 15 years old."

    Sources: U.S. Census Bureau; American Community Survey, 2023 American Community Survey 1-Year Estimates, Table S1701; generated by CCRPC staff; using data.census.gov; (17 October 2024).; U.S. Census Bureau; American Community Survey, 2022 American Community Survey 1-Year Estimates, Table S1701; generated by CCRPC staff; using data.census.gov; (25 September 2023).; U.S. Census Bureau; American Community Survey, 2021 American Community Survey 1-Year Estimates, Table S1701; generated by CCRPC staff; using data.census.gov; (16 September 2022).; U.S. Census Bureau; American Community Survey, 2019 American Community Survey 1-Year Estimates, Table S1701; generated by CCRPC staff; using data.census.gov; (8 June 2021).; U.S. Census Bureau; American Community Survey, 2018 American Community Survey 1-Year Estimates, Table S1701; generated by CCRPC staff; using data.census.gov; (8 June 2021).; U.S. Census Bureau; American Community Survey, 2017 American Community Survey 1-Year Estimates, Table S1701; generated by CCRPC staff; using American FactFinder; (13 September 2018).; U.S. Census Bureau; American Community Survey, 2016 American Community Survey 1-Year Estimates, Table S1701; generated by CCRPC staff; using American FactFinder; (14 September 2017).; U.S. Census Bureau; American Community Survey, 2015 American Community Survey 1-Year Estimates, Table S1701; generated by CCRPC staff; using American FactFinder; (19 September 2016).; U.S. Census Bureau; American Community Survey, 2014 American Community Survey 1-Year Estimates, Table S1701; generated by CCRPC staff; using American FactFinder; (16 March 2016).; U.S. Census Bureau; American Community Survey, 2013 American Community Survey 1-Year Estimates, Table S1701; generated by CCRPC staff; using American FactFinder; (16 March 2016).; U.S. Census Bureau; American Community Survey, 2012 American Community Survey 1-Year Estimates, Table S1701; generated by CCRPC staff; using American FactFinder; (16 March 2016).; U.S. Census Bureau; American Community Survey, 2011 American Community Survey 1-Year Estimates, Table S1701; generated by CCRPC staff; using American FactFinder; (16 March 2016).; U.S. Census Bureau; American Community Survey, 2010 American Community Survey 1-Year Estimates, Table S1701; generated by CCRPC staff; using American FactFinder; (16 March 2016).; U.S. Census Bureau; American Community Survey, 2009 American Community Survey 1-Year Estimates, Table S1701; generated by CCRPC staff; using American FactFinder; (16 March 2016).; U.S. Census Bureau; American Community Survey, 2008 American Community Survey 1-Year Estimates, Table S1701; generated by CCRPC staff; using American FactFinder; (16 March 2016).; U.S. Census Bureau; American Community Survey, 2007 American Community Survey 1-Year Estimates, Table S1701; generated by CCRPC staff; using American FactFinder; (16 March 2016).; U.S. Census Bureau; American Community Survey, 2006 American Community Survey 1-Year Estimates, Table S1701; generated by CCRPC staff; using American FactFinder; (16 March 2016).; U.S. Census Bureau; American Community Survey, 2005 American Community Survey 1-Year Estimates, Table S1701; generated by CCRPC staff; using American FactFinder; (16 March 2016).

  11. w

    Some college or associate's degree health insurance coverage in the United...

    • welfareinfo.org
    Updated Sep 12, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    WelfareInfo.org (2024). Some college or associate's degree health insurance coverage in the United States (2023) [Dataset]. https://www.welfareinfo.org/health-insurance-coverage/stat-people-who-have-some-college-or-an-associates-degree/
    Explore at:
    Dataset updated
    Sep 12, 2024
    Dataset provided by
    WelfareInfo.org
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    United States
    Description

    Some college or associate's degree Health Insurance Coverage Statistics for 2023. This is part of a larger dataset covering consumer health insurance coverage rates in United States by age, education, race, gender, work experience and more.

  12. Iowa Population 25 Years and Over Educational Attainment (ACS 5-Year...

    • data.iowa.gov
    • mydata.iowa.gov
    • +1more
    Updated Jun 7, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Census Bureau, American Community Survey (2024). Iowa Population 25 Years and Over Educational Attainment (ACS 5-Year Estimates) [Dataset]. https://data.iowa.gov/Community-Demographics/Iowa-Population-25-Years-and-Over-Educational-Atta/jmdm-eaqx
    Explore at:
    application/rdfxml, tsv, application/rssxml, csv, xml, kml, application/geo+json, kmzAvailable download formats
    Dataset updated
    Jun 7, 2024
    Dataset provided by
    United States Census Bureauhttp://census.gov/
    Authors
    U.S. Census Bureau, American Community Survey
    License

    https://www.usa.gov/government-workshttps://www.usa.gov/government-works

    Area covered
    Iowa
    Description

    This dataset provides population 25 years and over estimates by educational attainment for State of Iowa, individual Iowa counties, Iowa places and census tracts within Iowa. Data is from the American Community Survey, Five Year Estimates, Table B15003.

    Levels of educational attainment include the following: No schooling completed; Nursery school; Kindergarten; 1st grade; 2nd grade; 3rd grade; 4th grade; 5th grade; 6th grade; 7th grade; 8th grade; 9th grade; 10th grade; 11th grade; 12th grade, no diploma; Regular high school diploma; GED or alternative credential; Some college, less than 1 year; Some college, 1 or more years, no degree; Associate's degree; Bachelor's degree; Master's degree; Professional school degree; and Doctorate degree.

  13. p

    Trends in American Indian Student Percentage (1990-2023): Central Valley...

    • publicschoolreview.com
    Updated Jan 30, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Public School Review (2025). Trends in American Indian Student Percentage (1990-2023): Central Valley High School vs. Washington vs. Central Valley School District [Dataset]. https://www.publicschoolreview.com/central-valley-high-school-profile/99037
    Explore at:
    Dataset updated
    Jan 30, 2025
    Dataset authored and provided by
    Public School Review
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    This dataset tracks annual american indian student percentage from 1990 to 2023 for Central Valley High School vs. Washington and Central Valley School District

  14. p

    Trends in American Indian Student Percentage (2010-2023): Frontier High...

    • publicschoolreview.com
    Updated May 6, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Public School Review (2025). Trends in American Indian Student Percentage (2010-2023): Frontier High School vs. California vs. Kern High School District [Dataset]. https://www.publicschoolreview.com/frontier-high-school-profile/93314
    Explore at:
    Dataset updated
    May 6, 2025
    Dataset authored and provided by
    Public School Review
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Kern High School District, California
    Description

    This dataset tracks annual american indian student percentage from 2010 to 2023 for Frontier High School vs. California and Kern High School District

  15. p

    Trends in American Indian Student Percentage (1998-2023): Century High...

    • publicschoolreview.com
    Updated May 6, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Public School Review (2025). Trends in American Indian Student Percentage (1998-2023): Century High School vs. Oregon vs. Hillsboro SD 1j School District [Dataset]. https://www.publicschoolreview.com/century-high-school-profile/97123
    Explore at:
    Dataset updated
    May 6, 2025
    Dataset authored and provided by
    Public School Review
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Hillsboro
    Description

    This dataset tracks annual american indian student percentage from 1998 to 2023 for Century High School vs. Oregon and Hillsboro SD 1j School District

  16. c

    Poverty Status by Town - Datasets - CTData.org

    • data.ctdata.org
    Updated Mar 16, 2016
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2016). Poverty Status by Town - Datasets - CTData.org [Dataset]. http://data.ctdata.org/dataset/poverty-status-by-town
    Explore at:
    Dataset updated
    Mar 16, 2016
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    The Census Bureau determines that a person is living in poverty when his or her total household income compared with the size and composition of the household is below the poverty threshold. The Census Bureau uses the federal government's official definition of poverty to determine the poverty threshold. Beginning in 2000, individuals were presented with the option to select one or more races. In addition, the Census asked individuals to identify their race separately from identifying their Hispanic origin. The Census has published individual tables for the races and ethnicities provided as supplemental information to the main table that does not dissaggregate by race or ethnicity. Race categories include the following - White, Black or African American, American Indian or Alaska Native, Asian, Native Hawaiian or Other Pacific Islander, Some other race, and Two or more races. We are not including specific combinations of two or more races as the counts of these combinations are small. Ethnic categories include - Hispanic or Latino and White Non-Hispanic. This data comes from the American Community Survey (ACS) 5-Year estimates, table B17001. The ACS collects these data from a sample of households on a rolling monthly basis. ACS aggregates samples into one-, three-, or five-year periods. CTdata.org generally carries the five-year datasets, as they are considered to be the most accurate, especially for geographic areas that are the size of a county or smaller.Poverty status determined is the denominator for the poverty rate. It is the population for which poverty status was determined so when poverty is calculated they exclude institutionalized people, people in military group quarters, people in college dormitories, and unrelated individuals under 15 years of age.Below poverty level are households as determined by the thresholds based on the criteria of looking at household size, Below poverty level are households as determined by the thresholds based on the criteria of looking at household size, number of children, and age of householder.number of children, and age of householder.

  17. p

    Trends in American Indian Student Percentage (1991-2023): Eisenhower High...

    • publicschoolreview.com
    Updated May 6, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Public School Review (2025). Trends in American Indian Student Percentage (1991-2023): Eisenhower High School vs. Oklahoma vs. Lawton School District [Dataset]. https://www.publicschoolreview.com/eisenhower-high-school-profile/73505
    Explore at:
    Dataset updated
    May 6, 2025
    Dataset authored and provided by
    Public School Review
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Oklahoma, Lawton Public Schools
    Description

    This dataset tracks annual american indian student percentage from 1991 to 2023 for Eisenhower High School vs. Oklahoma and Lawton School District

  18. p

    Trends in American Indian Student Percentage (1990-1993): Mountain View High...

    • publicschoolreview.com
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Public School Review, Trends in American Indian Student Percentage (1990-1993): Mountain View High School vs. California vs. El Monte Union High School District [Dataset]. https://www.publicschoolreview.com/mountain-view-high-school-profile/91732
    Explore at:
    Dataset authored and provided by
    Public School Review
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    El Monte Union High School District, California
    Description

    This dataset tracks annual american indian student percentage from 1990 to 1993 for Mountain View High School vs. California and El Monte Union High School District

  19. p

    Trends in American Indian Student Percentage (2017-2023): Bentonville West...

    • publicschoolreview.com
    Updated May 6, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Public School Review (2025). Trends in American Indian Student Percentage (2017-2023): Bentonville West High School vs. Arkansas vs. Bentonville School District [Dataset]. https://www.publicschoolreview.com/bentonville-west-high-school-profile
    Explore at:
    Dataset updated
    May 6, 2025
    Dataset authored and provided by
    Public School Review
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Arkansas, Bentonville Public Schools
    Description

    This dataset tracks annual american indian student percentage from 2017 to 2023 for Bentonville West High School vs. Arkansas and Bentonville School District

  20. p

    Trends in American Indian Student Percentage (2005-2023): Athens High School...

    • publicschoolreview.com
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Public School Review, Trends in American Indian Student Percentage (2005-2023): Athens High School vs. Alabama vs. Athens City School District [Dataset]. https://www.publicschoolreview.com/athens-high-school-profile/35612
    Explore at:
    Dataset authored and provided by
    Public School Review
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Athens City School District, Alabama, Athens
    Description

    This dataset tracks annual american indian student percentage from 2005 to 2023 for Athens High School vs. Alabama and Athens City School District

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
The Devastator (2022). College Completion Dataset [Dataset]. https://www.kaggle.com/datasets/thedevastator/boost-student-success-with-college-completion-da
Organization logo

Data from: College Completion Dataset

Graduation Rates, Race, Efficiency Measures and More

Related Article
Explore at:
CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
Dataset updated
Dec 6, 2022
Dataset provided by
Kagglehttp://kaggle.com/
Authors
The Devastator
License

https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/

Description

College Completion Dataset

Graduation Rates, Race, Efficiency Measures and More

By Jonathan Ortiz [source]

About this dataset

This College Completion dataset provides an invaluable insight into the success and progress of college students in the United States. It contains graduation rates, race and other data to offer a comprehensive view of college completion in America. The data is sourced from two primary sources – the National Center for Education Statistics (NCES)’ Integrated Postsecondary Education System (IPEDS) and Voluntary System of Accountability’s Student Success and Progress rate.

At four-year institutions, the graduation figures come from IPEDS for first-time, full-time degree seeking students at the undergraduate level, who entered college six years earlier at four-year institutions or three years earlier at two-year institutions. Furthermore, colleges report how many students completed their program within 100 percent and 150 percent of normal time which corresponds with graduation within four years or six year respectively. Students reported as being of two or more races are included in totals but not shown separately

When analyzing race and ethnicity data NCES have classified student demographics since 2009 into seven categories; White non-Hispanic; Black non Hispanic; American Indian/ Alaskan native ; Asian/ Pacific Islander ; Unknown race or ethnicity ; Non resident with two new categorize Native Hawaiian or Other Pacific Islander combined with Asian plus students belonging to several races. Also worth noting is that different classifications for graduate data stemming from 2008 could be due to variations in time frame examined & groupings used by particular colleges – those who can’t be identified from National Student Clearinghouse records won’t be subjected to penalty by these locations .

When it comes down to efficiency measures parameters like “Awards per 100 Full Time Undergraduate Students which includes all undergraduate completions reported by a particular institution including associate degrees & certificates less than 4 year programme will assist us here while we also take into consideration measures like expenditure categories , Pell grant percentage , endowment values , average student aid amounts & full time faculty members contributing outstandingly towards instructional research / public service initiatives .

When trying to quantify outcomes back up Median Estimated SAT score metric helps us when it is derived either on 25th percentile basis / 75th percentile basis with all these factors further qualified by identifying required criteria meeting 90% threshold when incoming students are considered for relevance . Last but not least , Average Student Aid equalizes amount granted by institution dividing same over total sum received against what was allotted that particular year .

All this analysis gives an opportunity get a holistic overview about performance , potential deficits &

More Datasets

For more datasets, click here.

Featured Notebooks

  • 🚨 Your notebook can be here! 🚨!

How to use the dataset

This dataset contains data on student success, graduation rates, race and gender demographics, an efficiency measure to compare colleges across states and more. It is a great source of information to help you better understand college completion and student success in the United States.

In this guide we’ll explain how to use the data so that you can find out the best colleges for students with certain characteristics or focus on your target completion rate. We’ll also provide some useful tips for getting the most out of this dataset when seeking guidance on which institutions offer the highest graduation rates or have a good reputation for success in terms of completing programs within normal timeframes.

Before getting into specifics about interpreting this dataset, it is important that you understand that each row represents information about a particular institution – such as its state affiliation, level (two-year vs four-year), control (public vs private), name and website. Each column contains various demographic information such as rate of awarding degrees compared to other institutions in its sector; race/ethnicity Makeup; full-time faculty percentage; median SAT score among first-time students; awards/grants comparison versus national average/state average - all applicable depending on institution location — and more!

When using this dataset, our suggestion is that you begin by forming a hypothesis or research question concerning student completion at a given school based upon observable characteristics like financ...

Search
Clear search
Close search
Google apps
Main menu