Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Analysis of ‘🎗️ Cancer Rates by U.S. State’ provided by Analyst-2 (analyst-2.ai), based on source dataset retrieved from https://www.kaggle.com/yamqwe/cancer-rates-by-u-s-statee on 13 February 2022.
--- Dataset description provided by original source is as follows ---
In the following maps, the U.S. states are divided into groups based on the rates at which people developed or died from cancer in 2013, the most recent year for which incidence data are available.
The rates are the numbers out of 100,000 people who developed or died from cancer each year.
Incidence Rates by State
The number of people who get cancer is called cancer incidence. In the United States, the rate of getting cancer varies from state to state.
*Rates are per 100,000 and are age-adjusted to the 2000 U.S. standard population.
‡Rates are not shown if the state did not meet USCS publication criteria or if the state did not submit data to CDC.
†Source: U.S. Cancer Statistics Working Group. United States Cancer Statistics: 1999–2013 Incidence and Mortality Web-based Report. Atlanta (GA): Department of Health and Human Services, Centers for Disease Control and Prevention, and National Cancer Institute; 2016. Available at: http://www.cdc.gov/uscs.
Death Rates by State
Rates of dying from cancer also vary from state to state.
*Rates are per 100,000 and are age-adjusted to the 2000 U.S. standard population.
†Source: U.S. Cancer Statistics Working Group. United States Cancer Statistics: 1999–2013 Incidence and Mortality Web-based Report. Atlanta (GA): Department of Health and Human Services, Centers for Disease Control and Prevention, and National Cancer Institute; 2016. Available at: http://www.cdc.gov/uscs.
Source: https://www.cdc.gov/cancer/dcpc/data/state.htm
This dataset was created by Adam Helsinger and contains around 100 samples along with Range, Rate, technical information and other features such as: - Range - Rate - and more.
- Analyze Range in relation to Rate
- Study the influence of Range on Rate
- More datasets
If you use this dataset in your research, please credit Adam Helsinger
--- Original source retains full ownership of the source dataset ---
By Data Exercises [source]
This dataset is a comprehensive collection of data from county-level cancer mortality and incidence rates in the United States between 2000-2014. This data provides an unprecedented level of detail into cancer cases, deaths, and trends at a local level. The included columns include County, FIPS, age-adjusted death rate, average death rate per year, recent trend (2) in death rates, recent 5-year trend (2) in death rates and average annual count for each county. This dataset can be used to provide deep insight into the patterns and effects of cancer on communities as well as help inform policy decisions related to mitigating risk factors or increasing preventive measures such as screenings. With this comprehensive set of records from across the United States over 15 years, you will be able to make informed decisions regarding individual patient care or policy development within your own community!
For more datasets, click here.
- 🚨 Your notebook can be here! 🚨!
This dataset provides comprehensive US county-level cancer mortality and incidence rates from 2000 to 2014. It includes the mortality and incidence rate for each county, as well as whether the county met the objective of 45.5 deaths per 100,000 people. It also provides information on recent trends in death rates and average annual counts of cases over the five year period studied.
This dataset can be extremely useful to researchers looking to study trends in cancer death rates across counties. By using this data, researchers will be able to gain valuable insight into how different counties are performing in terms of providing treatment and prevention services for cancer patients and whether preventative measures and healthcare access are having an effect on reducing cancer mortality rates over time. This data can also be used to inform policy makers about counties needing more target prevention efforts or additional resources for providing better healthcare access within at risk communities.
When using this dataset, it is important to pay close attention to any qualitative columns such as “Recent Trend” or “Recent 5-Year Trend (2)” that may provide insights into long term changes that may not be readily apparent when using quantitative variables such as age-adjusted death rate or average deaths per year over shorter periods of time like one year or five years respectively. Additionally, when studying differences between different counties it is important to take note of any standard FIPS code differences that may indicate that data was collected by a different source with a difference methodology than what was used in other areas studied
- Using this dataset, we can identify patterns in cancer mortality and incidence rates that are statistically significant to create treatment regimens or preventive measures specifically targeting those areas.
- This data can be useful for policymakers to target areas with elevated cancer mortality and incidence rates so they can allocate financial resources to these areas more efficiently.
- This dataset can be used to investigate which factors (such as pollution levels, access to medical care, genetic make up) may have an influence on the cancer mortality and incidence rates in different US counties
If you use this dataset in your research, please credit the original authors. Data Source
License: Dataset copyright by authors - You are free to: - Share - copy and redistribute the material in any medium or format for any purpose, even commercially. - Adapt - remix, transform, and build upon the material for any purpose, even commercially. - You must: - Give appropriate credit - Provide a link to the license, and indicate if changes were made. - ShareAlike - You must distribute your contributions under the same license as the original. - Keep intact - all notices that refer to this license, including copyright notices.
File: death .csv | Column name | Description | |:-------------------------------------------|:-------------------------------------------------------------------...
I was interested in investigating cancer incidence levels in the US by looking at how they vary by race or state. All the data is collected online from Centers for Disease Control and Prevention, State Cancer Profiles, and United States Census Bureau. This dataset can be used to answer questions on the correlation between poverty levels, insurance levels and cancer incidence levels. Further, one can find which cancers affect a certain race more or a certain state.
Attribution-NonCommercial-ShareAlike 4.0 (CC BY-NC-SA 4.0)https://creativecommons.org/licenses/by-nc-sa/4.0/
License information was derived automatically
Dataset Card for Lung Cancer
Dataset Summary
The effectiveness of cancer prediction system helps the people to know their cancer risk with low cost and it also helps the people to take the appropriate decision based on their cancer risk status. The data is collected from the website online lung cancer prediction system .
Supported Tasks and Leaderboards
[More Information Needed]
Languages
[More Information Needed]
Dataset Structure… See the full description on the dataset page: https://huggingface.co/datasets/virtual10/lungs_cancer.
MIT Licensehttps://opensource.org/licenses/MIT
License information was derived automatically
This dataset contains Age-Adjusted Rate, Confidence Interval, Average Annual Count, and Trend field information for US States for the average 5 year span from 2012 to 2016.Data is segmented by sex and age, with fields describing the sex and age group tabulated.For more information, visit statecancerprofiles.cancer.gov Data NotationsState Cancer Registries may provide more current or more local data.† Incidence rates (cases per 100,000 population per year) are age-adjusted to the 2000 US standard population seer.cancer.gov/stdpopulations/stdpop.19ages.html. Rates are for invasive cancer only (except for bladder cancer which is invasive and in situ) or unless otherwise specified. Rates calculated using SEER*Stat. [seer.cancer.gov/seerstat]Population counts for denominators are based on Census populations as modified [seer.cancer.gov/popdata] by NCI. The 1969-2016 US Population Data File [seer.cancer.gov/popdata] is used for SEER and NPCR incidence rates.‡ Incidence data come from different sources. Due to different years of data availability, most of the trends are AAPCs based on APCs but some are APCs calculated in SEER*Stat. Please refer to the source for each area for additional information. Rates and trends are computed using different standards for malignancy. For more information see malignant.html.^ All Stages refers to any stage in the Surveillance, Epidemiology, and End Results (SEER) summary stage [seer.cancer.gov/tools/ssm].Healthy People 2020 Objectives [www.healthypeople.gov]provided by the Centers for Disease Control and Prevention [www.cdc.gov]. Michigan Data do not include cases diagnosed in other states for those states in which the data exchange agreement specifically prohibits the release of data to third parties.Trend Data not available for Nevada.Data Source Field Key:(1) Source: CDC's National Program of Cancer Registries Cancer Surveillance System (NPCR-CSS) November 2018 data submission and SEER November 2018 submission as published in United States Cancer Statistics nccd.cdc.gov/uscs Source: State Cancer Registry and the CDC's National Program of Cancer Registries Cancer Surveillance System (NPCR-CSS) November 2018 data submission. State rates include rates from metropolitan areas funded by SEER [seer.cancer.gov/registries].(6) Source: State Cancer Registry and the CDC's National Program of Cancer Registries Cancer Surveillance System (NPCR-CSS) November 2018 data submission.(7) Source: SEER November 2018 submission.8 Source: Incidence data provided by the SEER Program. [seer.cancer.gov] AAPCs are calculated by the Joinpoint Regression Program [surveillance.cancer.gov/joinpoint] and are based on APCs. Data are age-adjusted to the 2000 US standard population www.seer.cancer.gov/stdpopulations/single_age.html. Rates are for invasive cancer only (except for bladder cancer which is invasive and in situ) or unless otherwise specified. Population counts for denominators are based on Census populations as modified by NCI. The 1969-2017 US Population Data [seer.cancer.gov/popdata] File is used with SEER November 2018 data. Please note that the data comes from different sources. Due to different years [statecancerprofiles.cancer.gov/historicaltrend/differences.html] of data availability, most of the trends are AAPCs based on APCs but some are APCs calculated in SEER*Stat. [seer.cancer.gov/seerstat] Please refer to the source for each graph for additional information. Some data are not available [http://statecancerprofiles.cancer.gov/datanotavailable.html] for combinations of geography, cancer site, age, and race/ethnicity.
One woman in nine can expect to develop breast cancer during her lifetime and one in 25 will die from the disease. Statistically low incidences of breast cancer are found in Newfoundland and Labrador, the territories, and northern areas of most provinces. Otherwise, each province has one or more pockets of significantly high breast cancer incidence. These are often located in more southerly areas, but they do not seem to be restricted to either urban or rural areas alone. Breast cancer rates are a health status indicator. They can be used to help assess health conditions. Health status refers to the state of health of a person or group, and measures causes of sickness and death. It can also include people’s assessment of their own health.
This is historical data. The update frequency has been set to "Static Data" and is here for historic value. Updated on 8/14/2024
Cancer Mortality Rate - This indicator shows the age-adjusted mortality rate from cancer (per 100,000 population). Maryland’s age adjusted cancer mortality rate is higher than the US cancer mortality rate. Cancer impacts people across all population groups, however wide racial disparities exist. https://health.maryland.gov/pophealth/Documents/SHIP/SHIP%20Lite%20Data%20Details/Cancer%20Mortality%20Rate.pdf"/> Link to Data Details
Death rate has been age-adjusted by the 2000 U.S. standard population. Single-year data are only available for Los Angeles County overall, Service Planning Areas, Supervisorial Districts, City of Los Angeles overall, and City of Los Angeles Council Districts.Lung cancer is a leading cause of cancer-related death in the US. People who smoke have the greatest risk of lung cancer, though lung cancer can also occur in people who have never smoked. Most cases are due to long-term tobacco smoking or exposure to secondhand tobacco smoke. Cities and communities can take an active role in curbing tobacco use and reducing lung cancer by adopting policies to regulate tobacco retail; reducing exposure to secondhand smoke in outdoor public spaces, such as parks, restaurants, or in multi-unit housing; and improving access to tobacco cessation programs and other preventive services.For more information about the Community Health Profiles Data Initiative, please see the initiative homepage.
Cancer Mortality Rate - This indicator shows the age-adjusted mortality rate from cancer (per 100,000 population). Maryland’s age adjusted cancer mortality rate is higher than the US cancer mortality rate. Cancer impacts people across all population groups, however wide racial disparities exist.
https://www.cancerimagingarchive.net/data-usage-policies-and-restrictions/https://www.cancerimagingarchive.net/data-usage-policies-and-restrictions/
Characteristic | Value (N = 26254) |
---|---|
Age (years) | Mean ± SD: 61.4± 5 Median (IQR): 60 (57-65) Range: 43-75 |
Sex | Male: 15512 (59%) Female: 10742 (41%) |
Race | White: 23969 (91.3%) |
Ethnicity | Not Available |
Background: The aggressive and heterogeneous nature of lung cancer has thwarted efforts to reduce mortality from this cancer through the use of screening. The advent of low-dose helical computed tomography (CT) altered the landscape of lung-cancer screening, with studies indicating that low-dose CT detects many tumors at early stages. The National Lung Screening Trial (NLST) was conducted to determine whether screening with low-dose CT could reduce mortality from lung cancer.
Methods: From August 2002 through April 2004, we enrolled 53,454 persons at high risk for lung cancer at 33 U.S. medical centers. Participants were randomly assigned to undergo three annual screenings with either low-dose CT (26,722 participants) or single-view posteroanterior chest radiography (26,732). Data were collected on cases of lung cancer and deaths from lung cancer that occurred through December 31, 2009. This dataset includes the low-dose CT scans from 26,254 of these subjects, as well as digitized histopathology images from 451 subjects.
Results: The rate of adherence to screening was more than 90%. The rate of positive screening tests was 24.2% with low-dose CT and 6.9% with radiography over all three rounds. A total of 96.4% of the positive screening results in the low-dose CT group and 94.5% in the radiography group were false positive results. The incidence of lung cancer was 645 cases per 100,000 person-years (1060 cancers) in the low-dose CT group, as compared with 572 cases per 100,000 person-years (941 cancers) in the radiography group (rate ratio, 1.13; 95% confidence interval [CI], 1.03 to 1.23). There were 247 deaths from lung cancer per 100,000 person-years in the low-dose CT group and 309 deaths per 100,000 person-years in the radiography group, representing a relative reduction in mortality from lung cancer with low-dose CT screening of 20.0% (95% CI, 6.8 to 26.7; P=0.004). The rate of death from any cause was reduced in the low-dose CT group, as compared with the radiography group, by 6.7% (95% CI, 1.2 to 13.6; P=0.02).
Conclusions: Screening with the use of low-dose CT reduces mortality from lung cancer. (Funded by the National Cancer Institute; National Lung Screening Trial ClinicalTrials.gov number, NCT00047385).
Data Availability: A summary of the National Lung Screening Trial and its available datasets are provided on the Cancer Data Access System (CDAS). CDAS is maintained by Information Management System (IMS), contracted by the National Cancer Institute (NCI) as keepers and statistical analyzers of the NLST trial data. The full clinical data set from NLST is available through CDAS. Users of TCIA can download without restriction a publicly distributable subset of that clinical data, along with the CT and Histopathology images collected during the trial. (These previously were restricted.)
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
BackgroundCancer and diabetes are among the leading causes of morbidity and mortality worldwide. Several studies have reported diabetes as a risk factor for developing cancer, a relationship that may be explained by associated factors shared with both diseases such as age, sex, body weight, smoking, and alcohol consumption. Social factors referred to as social determinants of health (SDOH) were shown to be associated with the risk of developing cancer and diabetes. Despite that diabetes and social factors were identified as significant determinants of cancer, no studies examined their combined effect on the risk of developing cancer. In this study, we aim at filling this gap in the literature by triangulating the association between diabetes, indices of SDOH, and the risk of developing cancer.MethodsWe have conducted a quantitative study using data from the Behavioral Risk Factor Surveillance System (BRFSS), whereby information was collected nationally from residents in the United States (US) with respect to their health-related risk behaviors, chronic health conditions, and the use of preventive services. Data analysis using weighted regressions was conducted on 389,158 study participants.ResultsOur findings indicated that diabetes is a risk factor that increases the likelihood of cancer by 13% (OR 1.13; 95%CI: 1.05–1.21). People of White race had higher odds for cancer compared to African Americans (OR 0.44; 95%CI: 0.39–0.49), Asians (OR 0.27; 95%CI: 0.20–0.38), and other races (OR 0.56; 95%CI: 0.46–0.69). The indices of SDOH that were positively associated with having cancer encompassed unemployment (OR 1.78; 95%CI: 1.59–1.99), retirement (OR 1.54; 95%CI: 1.43–1.67), higher income levels with ORs ranging between 1.16–1.38, college education (OR 1.10; 95%CI: 1.02–1.18), college graduates (OR 1.31; 95%CI: 1.21–1.40), and healthcare coverage (OR 1.44; 95%CI: 1.22–1.71). On the other hand, the indices of SDOH that were protective against having cancer were comprised of renting a home (OR 0.86; 95%CI: 0.79–0.93) and never married (OR 0.73; 95%CI: 0.65–0.81).ConclusionThis study offers a novel social dimension for the association between diabetes and cancer that could guide setting strategies for addressing social inequities in disease prevention and access to healthcare.
This map service portrays the number of deaths per 100,000 people per square mile from lung and colon cancer. It displays the distribution of lung and colon cancer across the United States. Pop-ups show attributes such as state name, county name, number of colon or lung cancer deaths, and square miles per area.Lung Cancer: Death due to malignant neoplasm of the trachea, bronchus and lung.Colon Cancer: Death due to malignant neoplasm of the colon, rectum and anus.This data was sourced from: Community Health Status Indicators_Other Health Datapalooza focused content that may interest you: Health Datapalooza Health Datapalooza
https://www.icpsr.umich.edu/web/ICPSR/studies/36144/termshttps://www.icpsr.umich.edu/web/ICPSR/studies/36144/terms
These data are being released in BETA version to facilitate early access to the study for research purposes. This collection has not been fully processed by NACDA or ICPSR at this time; the original materials provided by the principal investigator were minimally processed and converted to other file types for ease of use. As the study is further processed and given enhanced features by ICPSR, users will be able to access the updated versions of the study. Please report any data errors or problems to user support and we will work with you to resolve any data related issues. The National Health Interview Survey (NHIS) is conducted annually and sponsored by the National Center for Health Statistics (NCHS), which is part of the U.S. Public Health Service. The purpose of the NHIS is to obtain information about the amount and distribution of illness, its effects in terms of disability and chronic impairments, and the kinds of health services people receive across the United States population through the collection and analysis of data on a broad range of health topics. The redesigned NHIS questionnaire introduced in 1997 (see National Health Interview Survey, 1997 [ICPSR 2954]) consists of a core that remains largely unchanged from year to year, plus an assortment of supplements varying from year to year. The 2010 NHIS Core consists of three modules: Family, Sample Adult, and Sample Child. The datasets derived from these modules include Household Level, Family Level, Person Level, Injury/Poison Episode Level, Injury/Poison Verbatim Level, Sample Adult Level, and Sample Child level. The 2010 NHIS supplements consist of stand alone datasets for Cancer Level and Quality of Life data derived from the Sample Adult core and Disability Questions Tests 2010 Level derived from the Family core questionnaire. Additional supplementary questions can be found in the Sample Child dataset on the topics of cancer, immunization, mental health, and mental health services and in the Sample Adult dataset on the topics of epilepsy, immunization, and occupational health. Part 1, Household Level, contains data on type of living quarters, number of families in the household responding and not responding, and the month and year of the interview for each sampling unit. Parts 2-5 are based on the Family Core questionnaire. Part 2, Family Level, provides information on all family members with respect to family size, family structure, health status, limitation of daily activities, cognitive impairment, health conditions, doctor visits, hospital stays, health care access and utilization, employment, income, participation in government assistance programs, and basic demographic information. Part 3, Person Level, includes information on sex, age, race, marital status, education, family income, major activities, health status, health care costs, activity limits, and employment status. Parts 4 and 5, Injury/Poisoning Episode Level and Injury/Poisoning Verbatim Level, consist of questions about injuries and poisonings that resulted in medical consultations for any family members and contains information about the external cause and nature of the injury or poisoning episode and what the person was doing at the time of the injury or poisoning episode, in addition to the date and place of occurrence. A randomly-selected adult in each family was interviewed for Part 6, Sample Adult Level, regarding specific health issues, the relation between employment and health, health status, health care and doctor visits, limitation of daily activities, immunizations, and behaviors such as smoking, alcohol consumption, and physical activity. Demographic information, including occupation and industry, also was collected. The respondents to Part 6 also completed Part 7, Cancer Level, which consists of a set of supplemental questions about diet and nutrition, physical activity, tobacco, cancer screening, genetic testing, family history, and survivorship. Part 8, Sample Child Level, provides information from an adult in the household on medical conditions of one child in the household, such as developmental or intellectual disabilities, respiratory problems, seizures, allergies, and use of special equipment like hearing aids, braces, or wheelchairs. Parts 9 through 13 comprise the additional Supplements and Paradata for the 2010 NHIS. Part 9, Disability Questions Tests 2010 Level
WONDER online databases include county-level Compressed Mortality (death certificates) since 1979; county-level Multiple Cause of Death (death certificates) since 1999; county-level Natality (birth certificates) since 1995; county-level Linked Birth / Death records (linked birth-death certificates) since 1995; state & large metro-level United States Cancer Statistics mortality (death certificates) since 1999; state & large metro-level United States Cancer Statistics incidence (cancer registry cases) since 1999; state and metro-level Online Tuberculosis Information System (TB case reports) since 1993; state-level Sexually Transmitted Disease Morbidity (case reports) since 1984; state-level Vaccine Adverse Event Reporting system (adverse reaction case reports) since 1990; county-level population estimates since 1970. The WONDER web server also hosts the Data2010 system with state-level data for compliance with Healthy People 2010 goals since 1998; the National Notifiable Disease Surveillance System weekly provisional case reports since 1996; the 122 Cities Mortality Reporting System weekly death reports since 1996; the Prevention Guidelines database (book in electronic format) published 1998; the Scientific Data Archives (public use data sets and documentation); and links to other online data sources on the "Topics" page.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This study aimed to identify the trends in the incidence of thymic cancer, i.e., thymoma, thymic carcinoma, and thymic neuroendocrine tumor, in the United States. Data from the United States Cancer Statistics (USCS) database (2001–2015) and those from the Surveillance, Epidemiology, and End Results (SEER) database (SEER 9 [1973–2015], SEER 13 [1992–2015], and SEER 18 [2000–2015]) were used in this study. All incidences were per 100,000 population at risk. The trends in incidence were described as annual percent change (APC) using the Joinpoint regression program. Data from the USCS (2001–2015) database showed an increase in thymic cancer diagnosis with an APC of 4.89% from 2001 to 2006, which is mainly attributed to the significant increase in the incidence of thymoma and thymic carcinoma particularly in women. The incidence of thymic cancer did not increase from 2006 to 2015, which may be attributed to the increase in the diagnosis of thymic carcinoma from 2004 to 2015, with a concomitant decrease in thymoma from 2008 to 2015. Before declining, the age-specific incidence of thymic cancer peaked at ages 70–74 years, with a peak incidence at 1.06 per 100,000 population, and decreased in older age groups. The incidence of thymic cancer was higher in men than in women. Asian/Pacific Islanders had the highest incidence of thymoma, followed by black and then white people. The incidence of thymic carcinoma increased from 2004 to 2015, with a concomitant decrease in thymoma from 2008 to 2015. Asian/Pacific Islanders had the highest incidence of thymoma than other races.
There's a story behind every dataset and here's your opportunity to share yours.
What's inside is more than just rows and columns. Make it easy for others to get started by describing how you acquired the data and what time period it represents, too. Welcome to our regular closed dataset based weekend hackathon. In this weekend hackathon, we are challenging all the machinehackers to predict the melanoma tumor size based on various attributes. Melanomas present in many different shapes, sizes, and colors. That’s why it’s tricky to provide a comprehensive set of warning signs. Melanoma, also known as malignant melanoma, is a type of skin cancer that develops from the pigment-producing cells known as melanocytes. The primary cause of melanoma is ultraviolet light (UV) exposure in those with low levels of the skin pigment melanin. The UV light may be from the sun or other sources, such as tanning devices.
Melanoma is the most dangerous type of skin cancer. Globally, in 2012, it newly occurred in 232,000 people. In 2015, there were 3.1 million people with active disease, which resulted in 59,800 deaths. Australia and New Zealand have the highest rates of melanoma in the world. There are also high rates in Northern Europe and North America, while it is less common in Asia, Africa, and Latin America. In the United States melanoma occurs about 1.6 times more often in men than women.
Data Description:
Train.csv - 9146 rows x 9 columns
Test.csv - 36584 rows x 8 columns
Sample Submission - Acceptable submission format
Attributes Description:
mass_npea: the mass of the area understudy for melanoma tumor
size_npear: the size of the area understudy for melanoma tumor
malign_ratio: ration of normal to malign surface understudy
damage_size: unrecoverable area of skin damaged by the tumor
exposed_area: total area exposed to the tumor
std_dev_malign: standard deviation of malign skin measurements
err_malign: error in malign skin measurements
malign_penalty: penalty applied due to measurement error in the lab
damage_ratio: the ratio of damage to total spread on the skin
tumor_size: size of melanoma_tumor
We wouldn't be here without the help of others. If you owe any attributions or thanks, include them here along with any citations of past research.
Your data will be in front of the world's largest data science community. What questions do you want to see answered?
https://choosealicense.com/licenses/cc/https://choosealicense.com/licenses/cc/
breastcanc-ultrasound-class
Background
Cancer is the second leading cause of death worldwide, according to IHME - Global Burden of Disease, with 10.7 mln casualties in 2019.
Amongst the various types of cancer, a huge role is played by breast cancer, which stands in 4th position among the deadliest tumors, with more than 700.000 deaths during 2019 (IHME - Global Burden of Disease).
Moreover, breast cancer has the highest share of number of cases/100 people worldwide… See the full description on the dataset page: https://huggingface.co/datasets/as-cle-bert/breastcancer-auto-segmentation.
https://choosealicense.com/licenses/cc/https://choosealicense.com/licenses/cc/
breastcanc-ultrasound-class
Background
Cancer is the second leading cause of death worldwide, according to IHME - Global Burden of Disease, with 10.7 mln casualties in 2019.
Amongst the various types of cancer, a huge role is played by breast cancer, which stands in 4th position among the deadliest tumors, with more than 700.000 deaths during 2019 (IHME - Global Burden of Disease).
Moreover, breast cancer has the highest share of number of cases/100 people worldwide… See the full description on the dataset page: https://huggingface.co/datasets/as-cle-bert/breastcancer-auto-objdetect.
MMWR Surveillance Summary 66 (No. SS-1):1-8 found that nonmetropolitan areas have significant numbers of potentially excess deaths from the five leading causes of death. These figures accompany this report by presenting information on potentially excess deaths in nonmetropolitan and metropolitan areas at the state level. They also add additional years of data and options for selecting different age ranges and benchmarks. Potentially excess deaths are defined in MMWR Surveillance Summary 66(No. SS-1):1-8 as deaths that exceed the numbers that would be expected if the death rates of states with the lowest rates (benchmarks) occurred across all states. They are calculated by subtracting expected deaths for specific benchmarks from observed deaths. Not all potentially excess deaths can be prevented; some areas might have characteristics that predispose them to higher rates of death. However, many potentially excess deaths might represent deaths that could be prevented through improved public health programs that support healthier behaviors and neighborhoods or better access to health care services. Mortality data for U.S. residents come from the National Vital Statistics System. Estimates based on fewer than 10 observed deaths are not shown and shaded yellow on the map. Underlying cause of death is based on the International Classification of Diseases, 10th Revision (ICD-10) Heart disease (I00-I09, I11, I13, and I20–I51) Cancer (C00–C97) Unintentional injury (V01–X59 and Y85–Y86) Chronic lower respiratory disease (J40–J47) Stroke (I60–I69) Locality (nonmetropolitan vs. metropolitan) is based on the Office of Management and Budget’s 2013 county-based classification scheme. Benchmarks are based on the three states with the lowest age and cause-specific mortality rates. Potentially excess deaths for each state are calculated by subtracting deaths at the benchmark rates (expected deaths) from observed deaths. Users can explore three benchmarks: “2010 Fixed” is a fixed benchmark based on the best performing States in 2010. “2005 Fixed” is a fixed benchmark based on the best performing States in 2005. “Floating” is based on the best performing States in each year so change from year to year. SOURCES CDC/NCHS, National Vital Statistics System, mortality data (see http://www.cdc.gov/nchs/deaths.htm); and CDC WONDER (see http://wonder.cdc.gov). REFERENCES Moy E, Garcia MC, Bastian B, Rossen LM, Ingram DD, Faul M, Massetti GM, Thomas CC, Hong Y, Yoon PW, Iademarco MF. Leading Causes of Death in Nonmetropolitan and Metropolitan Areas – United States, 1999-2014. MMWR Surveillance Summary 2017; 66(No. SS-1):1-8. Garcia MC, Faul M, Massetti G, Thomas CC, Hong Y, Bauer UE, Iademarco MF. Reducing Potentially Excess Deaths from the Five Leading Causes of Death in the Rural United States. MMWR Surveillance Summary 2017; 66(No. SS-2):1–7.
https://choosealicense.com/licenses/cc/https://choosealicense.com/licenses/cc/
breastcanc-ultrasound-class
Background
Cancer is the second leading cause of death worldwide, according to IHME - Global Burden of Disease, with 10.7 mln casualties in 2019.
Amongst the various types of cancer, a huge role is played by breast cancer, which stands in 4th position among the deadliest tumors, with more than 700.000 deaths during 2019 (IHME - Global Burden of Disease).
Moreover, breast cancer has the highest share of number of cases/100 people worldwide… See the full description on the dataset page: https://huggingface.co/datasets/as-cle-bert/breastcanc-ultrasound-class.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Analysis of ‘🎗️ Cancer Rates by U.S. State’ provided by Analyst-2 (analyst-2.ai), based on source dataset retrieved from https://www.kaggle.com/yamqwe/cancer-rates-by-u-s-statee on 13 February 2022.
--- Dataset description provided by original source is as follows ---
In the following maps, the U.S. states are divided into groups based on the rates at which people developed or died from cancer in 2013, the most recent year for which incidence data are available.
The rates are the numbers out of 100,000 people who developed or died from cancer each year.
Incidence Rates by State
The number of people who get cancer is called cancer incidence. In the United States, the rate of getting cancer varies from state to state.
*Rates are per 100,000 and are age-adjusted to the 2000 U.S. standard population.
‡Rates are not shown if the state did not meet USCS publication criteria or if the state did not submit data to CDC.
†Source: U.S. Cancer Statistics Working Group. United States Cancer Statistics: 1999–2013 Incidence and Mortality Web-based Report. Atlanta (GA): Department of Health and Human Services, Centers for Disease Control and Prevention, and National Cancer Institute; 2016. Available at: http://www.cdc.gov/uscs.
Death Rates by State
Rates of dying from cancer also vary from state to state.
*Rates are per 100,000 and are age-adjusted to the 2000 U.S. standard population.
†Source: U.S. Cancer Statistics Working Group. United States Cancer Statistics: 1999–2013 Incidence and Mortality Web-based Report. Atlanta (GA): Department of Health and Human Services, Centers for Disease Control and Prevention, and National Cancer Institute; 2016. Available at: http://www.cdc.gov/uscs.
Source: https://www.cdc.gov/cancer/dcpc/data/state.htm
This dataset was created by Adam Helsinger and contains around 100 samples along with Range, Rate, technical information and other features such as: - Range - Rate - and more.
- Analyze Range in relation to Rate
- Study the influence of Range on Rate
- More datasets
If you use this dataset in your research, please credit Adam Helsinger
--- Original source retains full ownership of the source dataset ---