100+ datasets found
  1. Hospital Admissions Data

    • kaggle.com
    zip
    Updated Jan 21, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Ashish Sahani (2022). Hospital Admissions Data [Dataset]. https://www.kaggle.com/datasets/ashishsahani/hospital-admissions-data
    Explore at:
    zip(522833 bytes)Available download formats
    Dataset updated
    Jan 21, 2022
    Authors
    Ashish Sahani
    License

    Attribution-NonCommercial-ShareAlike 4.0 (CC BY-NC-SA 4.0)https://creativecommons.org/licenses/by-nc-sa/4.0/
    License information was derived automatically

    Description

    This dataset is being provided under creative commons License (Attribution-Non-Commercial-Share Alike 4.0 International (CC BY-NC-SA 4.0)) https://creativecommons.org/licenses/by-nc-sa/4.0/

    Context

    This data was collected from patients admitted over a period of two years (1 April 2017 to 31 March 2019) at Hero DMC Heart Institute, Unit of Dayanand Medical College and Hospital, Ludhiana, Punjab, India. This is a tertiary care medical college and hospital. During the study period, the cardiology unit had 14,845 admissions corresponding to 12,238 patients. 1921 patients who had multiple admissions.

    Specifically, data were related to patients ; date of admission; date of discharge; demographics, such as age, sex, locality (rural or urban); type of admission (emergency or outpatient); patient history, including smoking, alcohol, diabetes mellitus (DM), hypertension (HTN), prior coronary artery disease (CAD), prior cardiomyopathy (CMP), and chronic kidney disease (CKD); and lab parameters corresponding to hemoglobin (HB), total lymphocyte count (TLC), platelets, glucose, urea, creatinine, brain natriuretic peptide (BNP), raised cardiac enzymes (RCE) and ejection fraction (EF). Other comorbidities and features (28 features), including heart failure, STEMI, and pulmonary embolism, were recorded and analyzed.

    Shock was defined as systolic blood pressure < 90 mmHg, and when the cause for shock was any reason other than cardiac. Patients in shock due to cardiac reasons were classified into cardiogenic shock. Patients in shock due to multifactorial pathophysiology (cardiac and non-cardiac) were considered for both categories. The outcomes indicating whether the patient was discharged or expired in the hospital were also recorded.

    Further details about this dataset can be found here: https://doi.org/10.3390/diagnostics12020241

    If you use this dataset in academic research all publications arising out of it must cite the following paper: Bollepalli, S.C.; Sahani, A.K.; Aslam, N.; Mohan, B.; Kulkarni, K.; Goyal, A.; Singh, B.; Singh, G.; Mittal, A.; Tandon, R.; Chhabra, S.T.; Wander, G.S.; Armoundas, A.A. An Optimized Machine Learning Model Accurately Predicts In-Hospital Outcomes at Admission to a Cardiac Unit. Diagnostics 2022, 12, 241. https://doi.org/10.3390/diagnostics12020241

    If you intend to use this data for commercial purpose explicit written permission is required from data providers.

    Content

    table_headings.csv has explanatory names of all columns.

    Acknowledgements

    Data was collected from Hero Dayanand Medical College Heart Institute Unit of Dayanand Medical College and Hospital, Ludhiana, Punjab, India.

    Inspiration

    For any questions about the data or collaborations please contact ashish.sahani@iitrpr.ac.in

  2. Weekly United States COVID-19 Hospitalization Metrics by Jurisdiction –...

    • data.virginia.gov
    • healthdata.gov
    • +1more
    csv, json, rdf, xsl
    Updated Feb 23, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Centers for Disease Control and Prevention (2025). Weekly United States COVID-19 Hospitalization Metrics by Jurisdiction – ARCHIVED [Dataset]. https://data.virginia.gov/dataset/weekly-united-states-covid-19-hospitalization-metrics-by-jurisdiction-archived
    Explore at:
    rdf, json, csv, xslAvailable download formats
    Dataset updated
    Feb 23, 2025
    Dataset provided by
    Centers for Disease Control and Preventionhttp://www.cdc.gov/
    Area covered
    United States
    Description

    Note: After May 3, 2024, this dataset will no longer be updated because hospitals are no longer required to report data on COVID-19 hospital admissions, hospital capacity, or occupancy data to HHS through CDC’s National Healthcare Safety Network (NHSN). The related CDC COVID Data Tracker site was revised or retired on May 10, 2023.

    This dataset represents weekly COVID-19 hospitalization data and metrics aggregated to national, state/territory, and regional levels. COVID-19 hospitalization data are reported to CDC’s National Healthcare Safety Network, which monitors national and local trends in healthcare system stress, capacity, and community disease levels for approximately 6,000 hospitals in the United States. Data reported by hospitals to NHSN and included in this dataset represent aggregated counts and include metrics capturing information specific to COVID-19 hospital admissions, and inpatient and ICU bed capacity occupancy.

    Reporting information:

    • As of December 15, 2022, COVID-19 hospital data are required to be reported to NHSN, which monitors national and local trends in healthcare system stress, capacity, and community disease levels for approximately 6,000 hospitals in the United States. Data reported by hospitals to NHSN represent aggregated counts and include metrics capturing information specific to hospital capacity, occupancy, hospitalizations, and admissions. Prior to December 15, 2022, hospitals reported data directly to the U.S. Department of Health and Human Services (HHS) or via a state submission for collection in the HHS Unified Hospital Data Surveillance System (UHDSS).
    • While CDC reviews these data for errors and corrects those found, some reporting errors might still exist within the data. To minimize errors and inconsistencies in data reported, CDC removes outliers before calculating the metrics. CDC and partners work with reporters to correct these errors and update the data in subsequent weeks.
    • Many hospital subtypes, including acute care and critical access hospitals, as well as Veterans Administration, Defense Health Agency, and Indian Health Service hospitals, are included in the metric calculations provided in this report. Psychiatric, rehabilitation, and religious non-medical hospital types are excluded from calculations.
    • Data are aggregated and displayed for hospitals with the same Centers for Medicare and Medicaid Services (CMS) Certification Number (CCN), which are assigned by CMS to counties based on the CMS Provider of Services files.
    • Full details on COVID-19 hospital data reporting guidance can be found here: https://www.hhs.gov/sites/default/files/covid-19-faqs-hospitals-hospital-laboratory-acute-care-facility-data-reporting.pdf

    Metric details:

    • Time Period: timeseries data will update weekly on Mondays as soon as they are reviewed and verified, usually before 8 pm ET. Updates will occur the following day when reporting coincides with a federal holiday. Note: Weekly updates might be delayed due to delays in reporting. All data are provisional. Because these provisional counts are subject to change, including updates to data reported previously, adjustments can occur. Data may be updated since original publication due to delays in reporting (to account for data received after a given Thursday publication) or data quality corrections.
    • New COVID-19 Hospital Admissions (count): Number of new admissions of patients with laboratory-confirmed COVID-19 in the previous week (including both adult and pediatric admissions) in the entire jurisdiction.
    • New COVID-19 Hospital Admissions (7-Day Average): 7-day average of new admissions of patients with laboratory-confirmed COVID-19 in the previous week (including both adult and pediatric admissions) in the entire jurisdiction.
    • Cumulative COVID-19 Hospital Admissions: Cumulative total number of admissions of patients with labo

  3. United States COVID-19 Hospitalization Metrics by Jurisdiction, Timeseries –...

    • odgavaprod.ogopendata.com
    • healthdata.gov
    • +1more
    csv, json, rdf, xsl
    Updated Feb 23, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Centers for Disease Control and Prevention (2025). United States COVID-19 Hospitalization Metrics by Jurisdiction, Timeseries – ARCHIVED [Dataset]. https://odgavaprod.ogopendata.com/dataset/united-states-covid-19-hospitalization-metrics-by-jurisdiction-timeseries-archived
    Explore at:
    xsl, rdf, csv, jsonAvailable download formats
    Dataset updated
    Feb 23, 2025
    Dataset provided by
    Centers for Disease Control and Preventionhttp://www.cdc.gov/
    Area covered
    United States
    Description

    Note: After May 3, 2024, this dataset will no longer be updated because hospitals are no longer required to report data on COVID-19 hospital admissions, and hospital capacity and occupancy data, to HHS through CDC’s National Healthcare Safety Network. The related CDC COVID Data Tracker site was revised or retired on May 10, 2023.

    This dataset represents daily COVID-19 hospitalization data and metrics aggregated to national, state/territory, and regional levels. COVID-19 hospitalization data are reported to CDC’s National Healthcare Safety Network, which monitors national and local trends in healthcare system stress, capacity, and community disease levels for approximately 6,000 hospitals in the United States. Data reported by hospitals to NHSN and included in this dataset represent aggregated counts and include metrics capturing information specific to COVID-19 hospital admissions, and inpatient and ICU bed capacity occupancy.

    Reporting information:

    • As of December 15, 2022, COVID-19 hospital data are required to be reported to NHSN, which monitors national and local trends in healthcare system stress, capacity, and community disease levels for approximately 6,000 hospitals in the United States. Data reported by hospitals to NHSN represent aggregated counts and include metrics capturing information specific to hospital capacity, occupancy, hospitalizations, and admissions. Prior to December 15, 2022, hospitals reported data directly to the U.S. Department of Health and Human Services (HHS) or via a state submission for collection in the HHS Unified Hospital Data Surveillance System (UHDSS).
    • While CDC reviews these data for errors and corrects those found, some reporting errors might still exist within the data. To minimize errors and inconsistencies in data reported, CDC removes outliers before calculating the metrics. CDC and partners work with reporters to correct these errors and update the data in subsequent weeks.
    • Many hospital subtypes, including acute care and critical access hospitals, as well as Veterans Administration, Defense Health Agency, and Indian Health Service hospitals, are included in the metric calculations provided in this report. Psychiatric, rehabilitation, and religious non-medical hospital types are excluded from calculations.
    • Data are aggregated and displayed for hospitals with the same Centers for Medicare and Medicaid Services (CMS) Certification Number (CCN), which are assigned by CMS to counties based on the CMS Provider of Services files.
    • Full details on COVID-19 hospital data reporting guidance can be found here: https://www.hhs.gov/sites/default/files/covid-19-faqs-hospitals-hospital-laboratory-acute-care-facility-data-reporting.pdf

    Metric details:

    • Time Period: timeseries data will update weekly on Mondays as soon as they are reviewed and verified, usually before 8 pm ET. Updates will occur the following day when reporting coincides with a federal holiday. Note: Weekly updates might be delayed due to delays in reporting. All data are provisional. Because these provisional counts are subject to change, including updates to data reported previously, adjustments can occur. Data may be updated since original publication due to delays in reporting (to account for data received after a given Thursday publication) or data quality corrections.
    • New COVID-19 Hospital Admissions (count): Number of new admissions of patients with laboratory-confirmed COVID-19 in the previous week (including both adult and pediatric admissions) in the entire jurisdiction.
    • New COVID-19 Hospital Admissions (7-Day Average): 7-day average of new admissions of patients with laboratory-confirmed COVID-19 in the previous week (including both adult and pediatric admissions) in the entire jurisdiction.
    • Cumulative COVID-19 Hospital Admissions: Cumulative total number of admissions of patients with laborat

  4. d

    DOHMH Covid-19 Milestone Data: Daily Number of People Admitted to NYC...

    • catalog.data.gov
    • data.cityofnewyork.us
    Updated Sep 2, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    data.cityofnewyork.us (2023). DOHMH Covid-19 Milestone Data: Daily Number of People Admitted to NYC hospitals for Covid-19 like Illness [Dataset]. https://catalog.data.gov/dataset/dohmh-covid-19-milestone-data-daily-number-of-people-admitted-to-nyc-hospitals-for-covid-1
    Explore at:
    Dataset updated
    Sep 2, 2023
    Dataset provided by
    data.cityofnewyork.us
    Area covered
    New York
    Description

    This dataset shows the number of hospital admissions for influenza-like illness, pneumonia, or include ICD-10-CM code (U07.1) for 2019 novel coronavirus. Influenza-like illness is defined as a mention of either: fever and cough, fever and sore throat, fever and shortness of breath or difficulty breathing, or influenza. Patients whose ICD-10-CM code was subsequently assigned with only an ICD-10-CM code for influenza are excluded. Pneumonia is defined as mention or diagnosis of pneumonia. Baseline data represents the average number of people with COVID-19-like illness who are admitted to the hospital during this time of year based on historical counts. The average is based on the daily avg from the rolling same week (same day +/- 3 days) from the prior 3 years. Percent change data represents the change in count of people admitted compared to the previous day. Data sources include all hospital admissions from emergency department visits in NYC. Data are collected electronically and transmitted to the NYC Health Department hourly. This dataset is updated daily. All identifying health information is excluded from the dataset.

  5. COVID-19 Hospital Data (ARCHIVED)

    • data.chhs.ca.gov
    • data.ca.gov
    • +4more
    csv, zip
    Updated Nov 7, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    California Department of Public Health (2025). COVID-19 Hospital Data (ARCHIVED) [Dataset]. https://data.chhs.ca.gov/dataset/covid-19-hospital-data
    Explore at:
    csv(3296422), zipAvailable download formats
    Dataset updated
    Nov 7, 2025
    Dataset authored and provided by
    California Department of Public Healthhttps://www.cdph.ca.gov/
    Description

    This dataset is not being updated as hospitals are no longer mandated to report COVID Hospitalizations to CDPH.

    Data is from the California COVID-19 State Dashboard at https://covid19.ca.gov/state-dashboard/

    Note: Hospitalization counts include all patients diagnosed with COVID-19 during their stay. This does not necessarily mean they were hospitalized because of COVID-19 complications or that they experienced COVID-19 symptoms.

    Note: Cumulative totals are not available due to the fact that hospitals report the total number of patients each day (as opposed to new patients).

  6. h

    A granular assessment of the day-to-day variation in emergency presentations...

    • healthdatagateway.org
    unknown
    Updated Oct 8, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    This publication uses data from PIONEER, an ethically approved database and analytical environment (East Midlands Derby Research Ethics 20/EM/0158) (2024). A granular assessment of the day-to-day variation in emergency presentations [Dataset]. https://healthdatagateway.org/en/dataset/175
    Explore at:
    unknownAvailable download formats
    Dataset updated
    Oct 8, 2024
    Dataset authored and provided by
    This publication uses data from PIONEER, an ethically approved database and analytical environment (East Midlands Derby Research Ethics 20/EM/0158)
    License

    https://www.pioneerdatahub.co.uk/data/data-request-process/https://www.pioneerdatahub.co.uk/data/data-request-process/

    Description

    The acute-care pathway (from the emergency department (ED) through acute medical units or ambulatory care and on to wards) is the most visible aspect of the hospital health-care system to most patients. Acute hospital admissions are increasing yearly and overcrowded emergency departments and high bed occupancy rates are associated with a range of adverse patient outcomes. Predicted growth in demand for acute care driven by an ageing population and increasing multimorbidity is likely to exacerbate these problems in the absence of innovation to improve the processes of care.

    Key targets for Emergency Medicine services are changing, moving away from previous 4-hour targets. This will likely impact the assessment of patients admitted to hospital through Emergency Departments.

    This data set provides highly granular patient level information, showing the day-to-day variation in case mix and acuity. The data includes detailed demography, co-morbidity, symptoms, longitudinal acuity scores, physiology and laboratory results, all investigations, prescriptions, diagnoses and outcomes. It could be used to develop new pathways or understand the prevalence or severity of specific disease presentations.

    PIONEER geography: The West Midlands (WM) has a population of 5.9 million & includes a diverse ethnic & socio-economic mix.

    Electronic Health Record: University Hospital Birmingham is one of the largest NHS Trusts in England, providing direct acute services & specialist care across four hospital sites, with 2.2 million patient episodes per year, 2750 beds & an expanded 250 ITU bed capacity during COVID. UHB runs a fully electronic healthcare record (EHR) (PICS; Birmingham Systems), a shared primary & secondary care record (Your Care Connected) & a patient portal “My Health”.

    Scope: All patients with a medical emergency admitted to hospital, flowing through the acute medical unit. Longitudinal & individually linked, so that the preceding & subsequent health journey can be mapped & healthcare utilisation prior to & after admission understood. The dataset includes patient demographics, co-morbidities taken from ICD-10 & SNOMED-CT codes. Serial, structured data pertaining to process of care (timings, admissions, wards and readmissions), physiology readings (NEWS2 score and clinical frailty scale), Charlson comorbidity index and time dimensions.

    Available supplementary data: Matched controls; ambulance data, OMOP data, synthetic data.

    Available supplementary support: Analytics, Model build, validation & refinement; A.I.; Data partner support for ETL (extract, transform & load) process, Clinical expertise, Patient & end-user access, Purchaser access, Regulatory requirements, Data-driven trials, “fast screen” services.

  7. d

    Respiratory Virus Hospital Admissions Over Time

    • catalog.data.gov
    • data.sfgov.org
    Updated Nov 16, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    data.sfgov.org (2025). Respiratory Virus Hospital Admissions Over Time [Dataset]. https://catalog.data.gov/dataset/respiratory-virus-hospital-admissions-over-time
    Explore at:
    Dataset updated
    Nov 16, 2025
    Dataset provided by
    data.sfgov.org
    Description

    A. SUMMARY This dataset includes weekly respiratory disease hospital admissions for Influenza, RSV, and COVID-19 into San Francisco hospitals. Columns in the dataset include a count and rate of hospital admissions per 100,000 people. The data are reported by week. B. HOW THE DATASET IS CREATED Hospital admission data is reported to the San Francisco Department of Public Health (SFDPH) from the United States Center for Disease Control’s (CDC) National Healthcare Safety Network (NHSN) program. San Francisco population estimates are pulled from a view based on the San Francisco Population and Demographic Census dataset. These population estimates are from the 2019-2023 5-year American Community Survey (ACS). C. UPDATE PROCESS The dataset is updated every Friday and includes data from the previous Sunday through Saturday. For example, the update on Friday, October 17th will include data through Saturday, October 11th. Data may change as more current information becomes available. D. HOW TO USE THIS DATASET Weekly data represent a count of confirmed admissions of Influenza, RSV, and COVID-19 patients to San Francisco hospitals by week. The admission rate per 100,000 is calculated by multiplying the count of admissions each week by 100,000 and dividing by the population estimate.

  8. A dataset of anonymised hospitalised COVID-19 patient data: outcomes,...

    • zenodo.org
    • data.niaid.nih.gov
    csv
    Updated Jun 29, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Ben Lambert; Isaac J Stopard; Momeni-Boroujeni; Rachelle Mendoza; Alejandro Zuretti; Ben Lambert; Isaac J Stopard; Momeni-Boroujeni; Rachelle Mendoza; Alejandro Zuretti (2022). A dataset of anonymised hospitalised COVID-19 patient data: outcomes, demographics and biomarker measurements for two New York hospitals [Dataset]. http://doi.org/10.5281/zenodo.6771834
    Explore at:
    csvAvailable download formats
    Dataset updated
    Jun 29, 2022
    Dataset provided by
    Zenodohttp://zenodo.org/
    Authors
    Ben Lambert; Isaac J Stopard; Momeni-Boroujeni; Rachelle Mendoza; Alejandro Zuretti; Ben Lambert; Isaac J Stopard; Momeni-Boroujeni; Rachelle Mendoza; Alejandro Zuretti
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    New York
    Description

    These datasets are for a cohort of n=1540 anonymised hospitalised COVID-19 patients, and the data provide information on outcomes (i.e. patient death or discharge), demographics and biomarker measurements for two New York hospitals: State
    University of New York (SUNY) Downstate Health Sciences University and Maimonides
    Medical Center.

    The file "demographics_both_hospitals.csv" contains the ultimate outcomes of hospitalisation (whether a patient was discharged or died), demographic information and known comorbidities for each of the patients.

    The file "dynamics_clean_both_hospitals.csv" contains cleaned dynamic biomarker measurements for the n=1233 patients where this information was available and the data passed our various checks (see https://doi.org/10.1101/2021.11.12.21266248 for information of these checks and the cleaning process). Patients can be matched to demographic data via the "id" column.

    Study approval and data collection

    Study approval was obtained from the State University of New York (SUNY) Downstate Health Sciences University Institutional Review Board (IRB\#1595271-1) and Maimonides Medical Center Institutional Review Board/Research Committee (IRB\#2020-05-07). A retrospective query was performed among the patients who were admitted to SUNY Downstate Medical Center and Maimonides Medical Center with COVID-19-related symptoms, which was subsequently confirmed by RT PCR, from the beginning of February 2020 until the end of May 2020. Stratified randomization was used to select at least 500 patients who were discharged and 500 patients who died due to the complications of COVID-19. Patient outcome was recorded as a binary choice of “discharged” versus “COVID-19 related mortality”. Patients whose outcome was unknown were excluded. Demographic, clinical history and laboratory data was extracted from the hospital’s electronic health records.

  9. COVID-19 Hospital Admissions Over Time

    • healthdata.gov
    csv, xlsx, xml
    Updated Apr 8, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    data.sfgov.org (2025). COVID-19 Hospital Admissions Over Time [Dataset]. https://healthdata.gov/dataset/COVID-19-Hospital-Admissions-Over-Time/ydyb-je5g
    Explore at:
    xlsx, csv, xmlAvailable download formats
    Dataset updated
    Apr 8, 2025
    Dataset provided by
    data.sfgov.org
    Description

    As of 9/12/2024, we have resumed reporting on COVID-19 hospitalization data using a San Francisco specific dataset. These new data differ slightly from previous hospitalization data sources but the overall patterns and trends in hospitalizations remain consistent. You can access the previous data here.

    A. SUMMARY This dataset includes information on COVID+ hospital admissions for San Francisco residents into San Francisco hospitals. Specifically, the dataset includes the count and rate of COVID+ hospital admissions per 100,000. The data are reported by week.

    B. HOW THE DATASET IS CREATED Hospital admission data is reported to the San Francisco Department of Public Health (SFDPH) via the COVID Hospital Data Repository (CHDR), a system created via health officer order C19-16. The data includes all San Francisco hospitals except for the San Francisco VA Medical Center.

    San Francisco population estimates are pulled from a view based on the San Francisco Population and Demographic Census dataset. These population estimates are from the 2018-2022 5-year American Community Survey (ACS).

    C. UPDATE PROCESS Data updates weekly on Wednesday with data for the past Wednesday-Tuesday (one week lag). Data may change as more current information becomes available.

    D. HOW TO USE THIS DATASET New admissions are the count of COVID+ hospital admissions among San Francisco residents to San Francisco hospitals by week.

    The admission rate per 100,000 is calculated by multiplying the count of admissions each week by 100,000 and dividing by the population estimate.

    E. CHANGE LOG

  10. COVID-19 Reported Patient Impact and Hospital Capacity by Facility -- RAW

    • catalog.data.gov
    • healthdata.gov
    • +4more
    Updated Jul 4, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Department of Health and Human Services (2025). COVID-19 Reported Patient Impact and Hospital Capacity by Facility -- RAW [Dataset]. https://catalog.data.gov/dataset/covid-19-reported-patient-impact-and-hospital-capacity-by-facility-raw
    Explore at:
    Dataset updated
    Jul 4, 2025
    Dataset provided by
    United States Department of Health and Human Serviceshttp://www.hhs.gov/
    Description

    After May 3, 2024, this dataset and webpage will no longer be updated because hospitals are no longer required to report data on COVID-19 hospital admissions, and hospital capacity and occupancy data, to HHS through CDC’s National Healthcare Safety Network. Data voluntarily reported to NHSN after May 1, 2024, will be available starting May 10, 2024, at COVID Data Tracker Hospitalizations. The following dataset provides facility-level data for hospital utilization aggregated on a weekly basis (Sunday to Saturday). These are derived from reports with facility-level granularity across two main sources: (1) HHS TeleTracking, and (2) reporting provided directly to HHS Protect by state/territorial health departments on behalf of their healthcare facilities. The hospital population includes all hospitals registered with Centers for Medicare & Medicaid Services (CMS) as of June 1, 2020. It includes non-CMS hospitals that have reported since July 15, 2020. It does not include psychiatric, rehabilitation, Indian Health Service (IHS) facilities, U.S. Department of Veterans Affairs (VA) facilities, Defense Health Agency (DHA) facilities, and religious non-medical facilities. For a given entry, the term “collection_week” signifies the start of the period that is aggregated. For example, a “collection_week” of 2020-11-15 means the average/sum/coverage of the elements captured from that given facility starting and including Sunday, November 15, 2020, and ending and including reports for Saturday, November 21, 2020. Reported elements include an append of either “_coverage”, “_sum”, or “_avg”. A “_coverage” append denotes how many times the facility reported that element during that collection week. A “_sum” append denotes the sum of the reports provided for that facility for that element during that collection week. A “_avg” append is the average of the reports provided for that facility for that element during that collection week. The file will be updated weekly. No statistical analysis is applied to impute non-response. For averages, calculations are based on the number of values collected for a given hospital in that collection week. Suppression is applied to the file for sums and averages less than four (4). In these cases, the field will be replaced with “-999,999”. A story page was created to display both corrected and raw datasets and can be accessed at this link: https://healthdata.gov/stories/s/nhgk-5gpv This data is preliminary and subject to change as more data become available. Data is available starting on July 31, 2020. Sometimes, reports for a given facility will be provided to both HHS TeleTracking and HHS Protect. When this occurs, to ensure that there are not duplicate reports, deduplication is applied according to prioritization rules within HHS Protect. For influenza fields listed in the file, the current HHS guidance marks these fields as optional. As a result, coverage of these elements are varied. For recent updates to the dataset, scroll to the bottom of the dataset description. On May 3, 2021, the following fields have been added to this data set. hhs_ids previous_day_admission_adult_covid_confirmed_7_day_coverage previous_day_admission_pediatric_covid_confirmed_7_day_coverage previous_day_admission_adult_covid_suspected_7_day_coverage previous_day_admission_pediatric_covid_suspected_7_day_coverage previous_week_personnel_covid_vaccinated_doses_administered_7_day_sum total_personnel_covid_vaccinated_doses_none_7_day_sum total_personnel_covid_vaccinated_doses_one_7_day_sum total_personnel_covid_vaccinated_doses_all_7_day_sum previous_week_patients_covid_vaccinated_doses_one_7_day_sum previous_week_patients_covid_vaccinated_doses_all_

  11. COVID-19 Patient Impact and Hospital Capacity

    • kaggle.com
    zip
    Updated Dec 14, 2020
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Möbius (2020). COVID-19 Patient Impact and Hospital Capacity [Dataset]. https://www.kaggle.com/datasets/arashnic/covid19-patient-impact-and-hospital-capacity
    Explore at:
    zip(8953076 bytes)Available download formats
    Dataset updated
    Dec 14, 2020
    Authors
    Möbius
    License

    https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/

    Description

    Content

    This dataset provides facility-level data for hospital utilization aggregated on a weekly basis (Friday to Thursday). These are derived from reports with facility-level granularity across two main sources: (1) HHS TeleTracking, and (2) reporting provided directly to HHS Protect by state/territorial health departments on behalf of their healthcare facilities.

    The hospital population includes all hospitals registered with Centers for Medicare & Medicaid Services (CMS) as of June 1, 2020. It includes non-CMS hospitals that have reported since July 15, 2020. It does not include psychiatric, rehabilitation, Indian Health Service (IHS) facilities, U.S. Department of Veterans Affairs (VA) facilities, Defense Health Agency (DHA) facilities, and religious non-medical facilities.

    For a given entry, the term “collection_week” signifies the start of the period that is aggregated. For example, a “collection_week” of 2020-11-20 means the average/sum/coverage of the elements captured from that given facility starting and including Friday, November 20, 2020, and ending and including reports for Thursday, November 26, 2020.

    Reported elements include an append of either “_coverage”, “_sum”, or “_avg”.

    • A “_coverage” append denotes how many times the facility reported that element during that collection week.
    • A “_sum” append denotes the sum of the reports provided for that facility for that element during that collection week.
    • A “_avg” append is the average of the reports provided for that facility for that element during that collection week. #
      The file will be updated weekly. No statistical analysis is applied to impute non-response. For averages, calculations are based on the number of values collected for a given hospital in that collection week. Suppression is applied to the file for sums and averages less than four (4). In these cases, the field will be replaced with “-999,999”.

    This data is preliminary and subject to change as more data become available. Data is available starting on July 31, 2020.

    Sometimes, reports for a given facility will be provided to both HHS TeleTracking and HHS Protect. When this occurs, to ensure that there are not duplicate reports, deduplication is applied according to prioritization rules within HHS Protect.

    Data Dictionary

    Acknowledgements

    The data provided by HealthData.gov. On this site, you can find data on a wide range of topics, including environmental health, medical devices, Medicare & Medicaid, social services, community health, mental health, and substance abuse.

    Inspiration

    -Covid-19 research

  12. HCAHPS Hospital Ratings Survey

    • kaggle.com
    Updated Jan 22, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    The Devastator (2023). HCAHPS Hospital Ratings Survey [Dataset]. https://www.kaggle.com/datasets/thedevastator/hcahps-hospital-ratings-survey
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Jan 22, 2023
    Dataset provided by
    Kaggle
    Authors
    The Devastator
    Description

    HCAHPS Hospital Ratings Survey

    Patient Experience Ratings 2018-2020

    By Health [source]

    About this dataset

    This dataset contains ratings of hospitals, based on the Hospital Consumer Assessment of Healthcare Providers and Systems (HCAHPS). This survey collects data from hospital patients on their experiences during an inpatient stay. The list includes several indicators to help gauge a hospital's quality, such as star ratings based on patient opinions and percentage of positive answers to HCAHPS questions. Additionally, there are measures such as the number of completed surveys, survey response rate percent and linear mean value which assist in evaluating patient experience at each medical institution. With this comprehensive dataset you can easily draw comparisons between hospitals and make informed decisions about healthcare services provided in your area

    More Datasets

    For more datasets, click here.

    Featured Notebooks

    • 🚨 Your notebook can be here! 🚨!

    How to use the dataset

    This dataset provides useful information on the quality of care that hospitals provide. This dataset provides ratings and reviews of several hospitals, making it easy to compare hospitals in order to find out which hospital may best meet your needs.

    The following guide will walk you through how to use this dataset effectively:

    • Navigate the different columns available in this dataset by scrolling through the table. These include Hospital Name, Address, City, State, ZIP Code, County Name, Phone Number and HCAHPS Question among others.
    • Examine important information such as the patient survey star rating and HCAHPS linear mean value for each hospital included in the dataset in order to evaluate it's performance against other hospitals based on standards set out by HCAHPS .
    • Read any footnotes associated with each column carefully in order to fully understand what exactly is being measured. These may directly affect your evaluation of a particular hospital’s performance compared to others included in this dataset or even more so when compared against external sources of data outside this dataset such as other surveys or studies related to health care quality measurement metrics within that state or region where applicable & relevant (i..e Measure Start Date and Measure End Date).
    • Pay careful attention also when evaluating factors related to survey response rates (e..g Survey Response Rate Percent Footnote) & what percentages are being reported here within each category; these figures may selectively bias results so ensure full transparency is achieved by reviewing all potential influencing factors/variables prior commencing investigations/data analysis/interpretation based upon this data-set alone(or any subset thereof).

      By following these steps you should be able set up your own criteria for measuring various aspects of health care quality across different states & cities - ensuring optimal access & safety measures for both patients & healthcare providers alike over time - thus ultimately aiding decision making processes towards improved patient outcomes worldwide!

    Research Ideas

    • Tracking patient experience trends over time: This dataset can be used to analyze trends in patient experience over time by identifying changes in survey responses, star ratings, and response rates across hospitals.
    • Establishing a benchmark for high-quality hospital care: By studying the scores of the top-performing hospitals within each category, healthcare administrators can set standards and benchmarks for quality of care in their own hospitals.
    • Comparing hospital ratings to inform decision making: Patients and family members looking to book an appointment at a hospital or doctors office can use this dataset to compare different facilities’ HCAHPS scores and make an informed decision about where they would like to go for their medical treatment

    Acknowledgements

    If you use this dataset in your research, please credit the original authors. Data Source

    License

    License: Dataset copyright by authors - You are free to: - Share - copy and redistribute the material in any medium or format for any purpose, even commercially. - Adapt - remix, transform, and build upon the material for any purpose, even commercially. - You must: - Give appropriate credit - Provide a link to the license, and indicate if changes were made. - ShareAlike - You must distribute your contributions under the same license as the original. - **Keep int...

  13. Hospitals in the United States

    • kaggle.com
    Updated Oct 8, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    The Devastator (2022). Hospitals in the United States [Dataset]. https://www.kaggle.com/datasets/thedevastator/hospitals-in-the-united-states-a-comprehensive-d
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Oct 8, 2022
    Dataset provided by
    Kaggle
    Authors
    The Devastator
    Area covered
    United States
    Description

    About this dataset

    Looking for a dataset on hospitals in the United States? Look no further! This dataset contains information on all of the hospitals registered with Medicare in the US, including their addresses, phone numbers, hospital type, and more. With such a large amount of data, this dataset is perfect for anyone interested in studying the US healthcare system.

    This dataset can also be used to study hospital ownership, emergency services

    How to use the dataset

    If you want to study the US healthcare system, this dataset is perfect for you. It contains information on all of the hospitals registered with Medicare, including their addresses, phone numbers, hospital type, and more. With such a large amount of data, this dataset is perfect for anyone interested in studying the US healthcare system.

    This dataset can also be used to study hospital ownership, emergency services, and EHR usage. In addition, the hospital overall rating and various comparisons are included for safety of care, readmission rates

    Research Ideas

    1. Predicting readmission rates for different hospital conditions
    2. Analyzing relationships between hospital ownership and quality of care
    3. Studying the relationship between hospital type and patient experience

    Acknowledgements

    This dataset was originally published by Centers for Medicare and Medicaid Services and has been modified for this project

    Columns

    File: Hospital_General_Information.csv | Column name | Description | |:-------------------------------------------------------|:----------------------------------------------------------------------------------------------------------| | Hospital Name | The name of the hospital. (String) | | Hospital Name | The name of the hospital. (String) | | Address | The address of the hospital. (String) | | Address | The address of the hospital. (String) | | City | The city in which the hospital is located. (String) | | City | The city in which the hospital is located. (String) | | State | The state in which the hospital is located. (String) | | State | The state in which the hospital is located. (String) | | ZIP Code | The ZIP code of the hospital. (Integer) | | ZIP Code | The ZIP code of the hospital. (Integer) | | County Name | The county in which the hospital is located. (String) | | County Name | The county in which the hospital is located. (String) | | Phone Number | The phone number of the hospital. (String) | | Phone Number | The phone number of the hospital. (String) | | Hospital Type | The type of hospital. (String) | | Hospital Type | The type of hospital. (String) | | Hospital Ownership | The ownership of the hospital. (String) | | Hospital Ownership | The ownership of the hospital. (String) | | Emergency Services | Whether or not the...

  14. d

    COVID-19 Reported Patient Impact and Hospital Capacity by Facility

    • catalog.data.gov
    Updated Sep 27, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    data.ct.gov (2025). COVID-19 Reported Patient Impact and Hospital Capacity by Facility [Dataset]. https://catalog.data.gov/dataset/covid-19-reported-patient-impact-and-hospital-capacity-by-facility-cd5bb
    Explore at:
    Dataset updated
    Sep 27, 2025
    Dataset provided by
    data.ct.gov
    Description

    The "COVID-19 Reported Patient Impact and Hospital Capacity by Facility" dataset from the U.S. Department of Health & Human Services, filtered for Connecticut. View the full dataset and detailed metadata here: https://healthdata.gov/Hospital/COVID-19-Reported-Patient-Impact-and-Hospital-Capa/anag-cw7u The following dataset provides facility-level data for hospital utilization aggregated on a weekly basis (Friday to Thursday). These are derived from reports with facility-level granularity across two main sources: (1) HHS TeleTracking, and (2) reporting provided directly to HHS Protect by state/territorial health departments on behalf of their healthcare facilities. The hospital population includes all hospitals registered with Centers for Medicare & Medicaid Services (CMS) as of June 1, 2020. It includes non-CMS hospitals that have reported since July 15, 2020. It does not include psychiatric, rehabilitation, Indian Health Service (IHS) facilities, U.S. Department of Veterans Affairs (VA) facilities, Defense Health Agency (DHA) facilities, and religious non-medical facilities. For a given entry, the term “collection_week” signifies the start of the period that is aggregated. For example, a “collection_week” of 2020-11-20 means the average/sum/coverage of the elements captured from that given facility starting and including Friday, November 20, 2020, and ending and including reports for Thursday, November 26, 2020. Reported elements include an append of either “_coverage”, “_sum”, or “_avg”. A “_coverage” append denotes how many times the facility reported that element during that collection week. A “_sum” append denotes the sum of the reports provided for that facility for that element during that collection week. A “_avg” append is the average of the reports provided for that facility for that element during that collection week. The file will be updated weekly. No statistical analysis is applied to impute non-response. For averages, calculations are based on the number of values collected for a given hospital in that collection week. Suppression is applied to the file for sums and averages less than four (4). In these cases, the field will be replaced with “-999,999”. This data is preliminary and subject to change as more data become available. Data is available starting on July 31, 2020. Sometimes, reports for a given facility will be provided to both HHS TeleTracking and HHS Protect. When this occurs, to ensure that there are not duplicate reports, deduplication is applied according to prioritization rules within HHS Protect. For influenza fields listed in the file, the current HHS guidance marks these fields as optional. As a result, coverage of these elements are varied. On May 3, 2021, the following fields have been added to this data set. hhs_ids previous_day_admission_adult_covid_confirmed_7_day_coverage previous_day_admission_pediatric_covid_confirmed_7_day_coverage previous_day_admission_adult_covid_suspected_7_day_coverage previous_day_admission_pediatric_covid_suspected_7_day_coverage previous_week_personnel_covid_vaccinated_doses_administered_7_day_sum total_personnel_covid_vaccinated_doses_none_7_day_sum total_personnel_covid_vaccinated_doses_one_7_day_sum total_personnel_covid_vaccinated_doses_all_7_day_sum previous_week_patients_covid_vaccinated_doses_one_7_day_sum previous_week_patients_covid_vaccinated_doses_all_7_day_sum On May 8, 2021, this data set has been converted to a corrected data set. The corrections applied to this data set are to smooth out data anomalies caused by keyed in data errors. To help determine which records have had corrections made to it. An additional Boolean field called is_corrected has been added. To see the numbers as reported by the facilities, go to: https://healthdata.gov/Hospital/COVID-19-Reported-Patient-Impact-and-Hospital-Capa/uqq2-txqb On May 13, 2021 Changed vaccination fields from sum to max or min fields. This reflects the maximum or minimum number report

  15. d

    Hospital Admitted Patient Care Activity

    • digital.nhs.uk
    • production-like.nhsd.io
    Updated Sep 25, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2025). Hospital Admitted Patient Care Activity [Dataset]. https://digital.nhs.uk/data-and-information/publications/statistical/hospital-admitted-patient-care-activity
    Explore at:
    Dataset updated
    Sep 25, 2025
    License

    https://digital.nhs.uk/about-nhs-digital/terms-and-conditionshttps://digital.nhs.uk/about-nhs-digital/terms-and-conditions

    Time period covered
    Apr 1, 2024 - Mar 31, 2025
    Description

    This publication reports on Admitted Patient Care activity in England for the financial year 2024-25 This report includes but is not limited to analysis of hospital episodes by patient demographics, diagnoses, external causes/injuries, operations, bed days, admission method, time waited, specialty, provider level analysis and Adult Critical Care (ACC). It describes NHS Admitted Patient Care Activity, Adult Critical Care activity and performance in hospitals in England. The purpose of this publication is to inform and support strategic and policy-led processes for the benefit of patient care and may also be of interest to researchers, journalists and members of the public interested in NHS hospital activity in England. The data source for this publication is Hospital Episode Statistics (HES). It contains final data and replaces the provisional data that are released each month. HES contains records of all admissions, appointments and attendances at NHS-commissioned hospital services in England. The HES data used in this publication are called 'Finished Consultant Episodes', and each episode relates to a period of care for a patient under a single consultant at a single hospital. Therefore, this report counts the number of episodes of care for admitted patients rather than the number of patients. This publication shows the number of episodes during the period, with breakdowns including by patient's age, gender, diagnosis, procedure involved and by provider. Please send queries or feedback via email to enquiries@nhsdigital.nhs.uk. Author: Secondary Care Open Data and Publications, NHS England. Lead Analyst: Karl Eichler

  16. Number of hospitals in the United States 2014-2029

    • statista.com
    Updated Jul 22, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista Research Department (2025). Number of hospitals in the United States 2014-2029 [Dataset]. https://www.statista.com/topics/1074/hospitals/
    Explore at:
    Dataset updated
    Jul 22, 2025
    Dataset provided by
    Statistahttp://statista.com/
    Authors
    Statista Research Department
    Area covered
    United States
    Description

    The number of hospitals in the United States was forecast to continuously decrease between 2024 and 2029 by in total 13 hospitals (-0.23 percent). According to this forecast, in 2029, the number of hospitals will have decreased for the twelfth consecutive year to 5,548 hospitals. Depicted is the number of hospitals in the country or region at hand. As the OECD states, the rules according to which an institution can be registered as a hospital vary across countries.The shown data are an excerpt of Statista's Key Market Indicators (KMI). The KMI are a collection of primary and secondary indicators on the macro-economic, demographic and technological environment in up to 150 countries and regions worldwide. All indicators are sourced from international and national statistical offices, trade associations and the trade press and they are processed to generate comparable data sets (see supplementary notes under details for more information).Find more key insights for the number of hospitals in countries like Canada and Mexico.

  17. Weekly United States COVID-19 Hospitalization Metrics by County (Historical)...

    • data.virginia.gov
    • healthdata.gov
    • +1more
    csv, json, rdf, xsl
    Updated Feb 23, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Centers for Disease Control and Prevention (2025). Weekly United States COVID-19 Hospitalization Metrics by County (Historical) – ARCHIVED [Dataset]. https://data.virginia.gov/dataset/weekly-united-states-covid-19-hospitalization-metrics-by-county-historical-archived
    Explore at:
    rdf, json, xsl, csvAvailable download formats
    Dataset updated
    Feb 23, 2025
    Dataset provided by
    Centers for Disease Control and Preventionhttp://www.cdc.gov/
    Area covered
    United States
    Description

    Note: After May 3, 2024, this dataset will no longer be updated because hospitals are no longer required to report data on COVID-19 hospital admissions, hospital capacity, or occupancy data to HHS through CDC’s National Healthcare Safety Network (NHSN). The related CDC COVID Data Tracker site was revised or retired on May 10, 2023.

    Note: May 3,2024: Due to incomplete or missing hospital data received for the April 21,2024 through April 27, 2024 reporting period, the COVID-19 Hospital Admissions Level could not be calculated for CNMI and will be reported as “NA” or “Not Available” in the COVID-19 Hospital Admissions Level data released on May 3, 2024.

    This dataset represents COVID-19 hospitalization data and metrics aggregated to county or county-equivalent, for all counties or county-equivalents (including territories) in the United States as of the initial date of reporting for each weekly metric. COVID-19 hospitalization data are reported to CDC’s National Healthcare Safety Network, which monitors national and local trends in healthcare system stress, capacity, and community disease levels for approximately 6,000 hospitals in the United States. Data reported by hospitals to NHSN and included in this dataset represent aggregated counts and include metrics capturing information specific to COVID-19 hospital admissions, and inpatient and ICU bed capacity occupancy.

    Reporting information:

    • As of December 15, 2022, COVID-19 hospital data are required to be reported to NHSN, which monitors national and local trends in healthcare system stress, capacity, and community disease levels for approximately 6,000 hospitals in the United States. Data reported by hospitals to NHSN represent aggregated counts and include metrics capturing information specific to hospital capacity, occupancy, hospitalizations, and admissions. Prior to December 15, 2022, hospitals reported data directly to the U.S. Department of Health and Human Services (HHS) or via a state submission for collection in the HHS Unified Hospital Data Surveillance System (UHDSS).
    • While CDC reviews these data for errors and corrects those found, some reporting errors might still exist within the data. To minimize errors and inconsistencies in data reported, CDC removes outliers before calculating the metrics. CDC and partners work with reporters to correct these errors and update the data in subsequent weeks.
    • Many hospital subtypes, including acute care and critical access hospitals, as well as Veterans Administration, Defense Health Agency, and Indian Health Service hospitals, are included in the metric calculations provided in this report. Psychiatric, rehabilitation, and religious non-medical hospital types are excluded from calculations.
    • Data are aggregated and displayed for hospitals with the same Centers for Medicare and Medicaid Services (CMS) Certification Number (CCN), which are assigned by CMS to counties based on the CMS Provider of Services files.
    • Full details on COVID-19 hospital data reporting guidance can be found here: https://www.hhs.gov/sites/default/files/covid-19-faqs-hospitals-hospital-laboratory-acute-care-facility-data-reporting.pdf
    Calculation of county-level hospital metrics:
    • County-level hospital data are derived using calculations performed at the Health Service Area (HSA) level. An HSA is defined by CDC’s National Center for Health Statistics as a geographic area containing at least one county which is self-contained with respect to the population’s provision of routine hospital care. Every county in the United States is assigned to an HSA, and each HSA must contain at least one hospital. Therefore, use of HSAs in the calculation of local hospital metrics allows for more accurate characterization of the relationship between health care utilization and health status at the local level.
    • Data presented at the county-level represent admissions, hosp

  18. d

    COVID-19 Hospital Capacity Metrics - Historical

    • catalog.data.gov
    • healthdata.gov
    • +1more
    Updated Dec 2, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    data.cityofchicago.org (2023). COVID-19 Hospital Capacity Metrics - Historical [Dataset]. https://catalog.data.gov/dataset/covid-19-hospital-capacity-metrics
    Explore at:
    Dataset updated
    Dec 2, 2023
    Dataset provided by
    data.cityofchicago.org
    Description

    NOTE: This dataset is historical-only as of 5/10/2023. All data currently in the dataset will remain, but new data will not be added. The recommended alternative dataset for similar data beyond that date is  https://healthdata.gov/Hospital/COVID-19-Reported-Patient-Impact-and-Hospital-Capa/anag-cw7u. (This is not a City of Chicago site. Please direct any questions or comments through the contact information on the site.) During the COVID-19 pandemic, the Chicago Department of Public Health (CDPH) required EMS Region XI (Chicago area) hospitals to report hospital capacity and patient impact metrics related to COVID-19 to CDPH through the statewide EMResource system. This requirement has been lifted as of May 9, 2023, in alignment with the expiration of the national and statewide COVID-19 public health emergency declarations on May 11, 2023. However, all hospitals will still be required by the U.S. Department of Health and Human Services (HHS) to report COVID-19 hospital capacity and utilization metrics into the HHS Protect system through the CDC’s National Healthcare Safety Network until April 30, 2024. Facility-level data from the HHS Protect system can be found at healthdata.gov. Until May 9, 2023, all Chicago (EMS Region XI) hospitals (n=28) were required to report bed and ventilator capacity, availability, and occupancy to the Chicago Department of Public Health (CDPH) daily. A list of reporting hospitals is included below. All data represent hospital status as of 11:59 pm for that calendar day. Counts include Chicago residents and non-residents. ICU bed counts include both adult and pediatric ICU beds. Neonatal ICU beds are not included. Capacity refers to all staffed adult and pediatric ICU beds. Availability refers to all available/vacant adult and pediatric ICU beds. Hospitals began reporting COVID-19 confirmed and suspected (PUI) cases in ICU on 03/19/2020. Hospitals began reporting ICU surge capacity as part of total capacity on 5/18/2020. Acute non-ICU bed counts include burn unit, emergency department, medical/surgery (ward), other, pediatrics (pediatric ward) and psychiatry beds. Burn beds include those approved by the American Burn Association or self-designated. Capacity refers to all staffed acute non-ICU beds. An additional 500 acute/non-ICU beds were added at the McCormick Place Treatment Facility on 4/15/2020. These beds are not included in the total capacity count. The McCormick Place Treatment Facility closed on 05/08/2020. Availability refers to all available/vacant acute non-ICU beds. Hospitals began reporting COVID-19 confirmed and suspected (PUI) cases in acute non-ICU beds on 04/03/2020. Ventilator counts prior to 04/24/2020 include all full-functioning mechanical ventilators, with ventilators with bilevel positive airway pressure (BiPAP), anesthesia machines, and portable/transport ventilators counted as surge. Beginning 04/24/2020, ventilator counts include all full-functioning mechanical ventilators, BiPAP, anesthesia machines and portable/transport ventilators. Ventilators are counted regardless of ability to staff. Hospitals began reporting COVID-19 confirmed and suspected (PUI) cases on ventilators on 03/19/2020. CDPH has access to additional ventilators from the EAMC (Emergency Asset Management Center) cache. These ventilators are included in the total capacity count. Chicago (EMS Region 11) hospitals: Advocate Illinois Masonic Medical Center, Advocate Trinity Hospital, AMITA Resurrection Medical Center Chicago, AMITA Saint Joseph Hospital Chicago, AMITA Saints Mary & Elizabeth Medical Center, Ann & Robert H Lurie Children's Hospital, Comer Children's Hospital, Community First Medical Center, Holy Cross Hospital, Jackson Park Hospital & Medical Center, John H. Stroger Jr. Hospital of Cook County, Loretto Hospital, Mercy Hospital and Medical Center, , Mount Sinai Hospital, Northwestern Memorial Hospital, Norwegian American Hospital, Roseland Community Hospital, Rush University M

  19. d

    ARCHIVED: COVID-19 Hospital Admissions Over Time

    • catalog.data.gov
    • data.sfgov.org
    Updated Nov 23, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    data.sfgov.org (2025). ARCHIVED: COVID-19 Hospital Admissions Over Time [Dataset]. https://catalog.data.gov/dataset/covid-19-hospital-admissions-over-time
    Explore at:
    Dataset updated
    Nov 23, 2025
    Dataset provided by
    data.sfgov.org
    Description

    On 11/14/2025, we launched updated hospitalization reporting using data from the National Healthcare Safety Network (NHSN). The new dataset includes hospital admissions for respiratory viruses including COVID-19, flu, and RSV. You can access the new dataset here. A. SUMMARY This dataset includes information on COVID+ hospital admissions for San Francisco residents into San Francisco hospitals. Specifically, the dataset includes the count and rate of COVID+ hospital admissions per 100,000. The data are reported by week. B. HOW THE DATASET IS CREATED Hospital admission data is reported to the San Francisco Department of Public Health (SFDPH) via the COVID Hospital Data Repository (CHDR), a system created via health officer order C19-16. The data includes all San Francisco hospitals except for the San Francisco VA Medical Center. San Francisco population estimates are pulled from a view based on the San Francisco Population and Demographic Census dataset. These population estimates are from the 2018-2022 5-year American Community Survey (ACS). C. UPDATE PROCESS Data updates weekly on Wednesday with data for the past Wednesday-Tuesday (one week lag). Data may change as more current information becomes available. D. HOW TO USE THIS DATASET New admissions are the count of COVID+ hospital admissions among San Francisco residents to San Francisco hospitals by week. The admission rate per 100,000 is calculated by multiplying the count of admissions each week by 100,000 and dividing by the population estimate. E. CHANGE LOG 11/14/2025 COVID-19 hosipital admissions is tracked in a new dataset 7/18/2025 - Dataset update is paused to assess data quality and completeness. 9/12/2024 - We updated the data source for our COVID-19 hospitalization data to a San Francisco specific dataset. These new data differ slightly from previous hospitalization data sources but the overall patterns and trends in hospitalizations remain consistent. You can access the previous data here.

  20. PFAS and multimorbidity among a random sample of patients from the...

    • catalog.data.gov
    • s.cnmilf.com
    Updated Oct 28, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. EPA Office of Research and Development (ORD) (2022). PFAS and multimorbidity among a random sample of patients from the University of North Carolina Healthcare System [Dataset]. https://catalog.data.gov/dataset/pfas-and-multimorbidity-among-a-random-sample-of-patients-from-the-university-of-north-car
    Explore at:
    Dataset updated
    Oct 28, 2022
    Dataset provided by
    United States Environmental Protection Agencyhttp://www.epa.gov/
    Description

    This dataset contains electronic health records used to study associations between PFAS occurrence and multimorbidity in a random sample of UNC Healthcare system patients. The dataset contains the medical record number to uniquely identify each individual as well as information on PFAS occurrence at the zip code level, the zip code of residence for each individual, chronic disease diagnoses, patient demographics, and neighborhood socioeconomic information from the 2010 US Census. This dataset is not publicly accessible because: EPA cannot release personally identifiable information regarding living individuals, according to the Privacy Act and the Freedom of Information Act (FOIA). This dataset contains information about human research subjects. Because there is potential to identify individual participants and disclose personal information, either alone or in combination with other datasets, individual level data are not appropriate to post for public access. Restricted access may be granted to authorized persons by contacting the party listed. It can be accessed through the following means: Because this data has PII from electronic health records the data can only be accessed with an approved IRB application. Project analytic code is available at L:/PRIV/EPHD_CRB/Cavin/CARES/Project Analytic Code/Cavin Ward/PFAS Chronic Disease and Multimorbidity. Format: This data is formatted as a R dataframe and associated comma-delimited flat text file. The data has the medical record number to uniquely identify each individual (which also serves as the primary key for the dataset), as well as information on the occurrence of PFAS contamination at the zip code level, socioeconomic data at the census tract level from the 2010 US Census, demographics, and the presence of chronic disease as well as multimorbidity (the presence of two or more chronic diseases). This dataset is associated with the following publication: Ward-Caviness, C., J. Moyer, A. Weaver, R. Devlin, and D. Diazsanchez. Associations between PFAS occurrence and multimorbidity as observed in an electronic health record cohort. Environmental Epidemiology. Wolters Kluwer, Alphen aan den Rijn, NETHERLANDS, 6(4): p e217, (2022).

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Ashish Sahani (2022). Hospital Admissions Data [Dataset]. https://www.kaggle.com/datasets/ashishsahani/hospital-admissions-data
Organization logo

Hospital Admissions Data

Two Year Hospital Admissions and Discharge Data from Hero DMC Heart Institute

Explore at:
zip(522833 bytes)Available download formats
Dataset updated
Jan 21, 2022
Authors
Ashish Sahani
License

Attribution-NonCommercial-ShareAlike 4.0 (CC BY-NC-SA 4.0)https://creativecommons.org/licenses/by-nc-sa/4.0/
License information was derived automatically

Description

This dataset is being provided under creative commons License (Attribution-Non-Commercial-Share Alike 4.0 International (CC BY-NC-SA 4.0)) https://creativecommons.org/licenses/by-nc-sa/4.0/

Context

This data was collected from patients admitted over a period of two years (1 April 2017 to 31 March 2019) at Hero DMC Heart Institute, Unit of Dayanand Medical College and Hospital, Ludhiana, Punjab, India. This is a tertiary care medical college and hospital. During the study period, the cardiology unit had 14,845 admissions corresponding to 12,238 patients. 1921 patients who had multiple admissions.

Specifically, data were related to patients ; date of admission; date of discharge; demographics, such as age, sex, locality (rural or urban); type of admission (emergency or outpatient); patient history, including smoking, alcohol, diabetes mellitus (DM), hypertension (HTN), prior coronary artery disease (CAD), prior cardiomyopathy (CMP), and chronic kidney disease (CKD); and lab parameters corresponding to hemoglobin (HB), total lymphocyte count (TLC), platelets, glucose, urea, creatinine, brain natriuretic peptide (BNP), raised cardiac enzymes (RCE) and ejection fraction (EF). Other comorbidities and features (28 features), including heart failure, STEMI, and pulmonary embolism, were recorded and analyzed.

Shock was defined as systolic blood pressure < 90 mmHg, and when the cause for shock was any reason other than cardiac. Patients in shock due to cardiac reasons were classified into cardiogenic shock. Patients in shock due to multifactorial pathophysiology (cardiac and non-cardiac) were considered for both categories. The outcomes indicating whether the patient was discharged or expired in the hospital were also recorded.

Further details about this dataset can be found here: https://doi.org/10.3390/diagnostics12020241

If you use this dataset in academic research all publications arising out of it must cite the following paper: Bollepalli, S.C.; Sahani, A.K.; Aslam, N.; Mohan, B.; Kulkarni, K.; Goyal, A.; Singh, B.; Singh, G.; Mittal, A.; Tandon, R.; Chhabra, S.T.; Wander, G.S.; Armoundas, A.A. An Optimized Machine Learning Model Accurately Predicts In-Hospital Outcomes at Admission to a Cardiac Unit. Diagnostics 2022, 12, 241. https://doi.org/10.3390/diagnostics12020241

If you intend to use this data for commercial purpose explicit written permission is required from data providers.

Content

table_headings.csv has explanatory names of all columns.

Acknowledgements

Data was collected from Hero Dayanand Medical College Heart Institute Unit of Dayanand Medical College and Hospital, Ludhiana, Punjab, India.

Inspiration

For any questions about the data or collaborations please contact ashish.sahani@iitrpr.ac.in

Search
Clear search
Close search
Google apps
Main menu