10 datasets found
  1. India News Headlines Dataset

    • kaggle.com
    zip
    Updated Nov 11, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Rohit Kulkarni (2023). India News Headlines Dataset [Dataset]. https://www.kaggle.com/datasets/therohk/india-headlines-news-dataset/discussion
    Explore at:
    zip(97613967 bytes)Available download formats
    Dataset updated
    Nov 11, 2023
    Authors
    Rohit Kulkarni
    License

    https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/

    Area covered
    India
    Description

    Context

    This news dataset is a persistent historical archive of noteable events in the Indian subcontinent from start-2001 to q2-2023, recorded in real-time by the journalists of India. It contains approximately 3.8 million events published by Times of India.

    A majority of the data is focusing on Indian local news including national, city level and entertainment.

    Prepared by Rohit Kulkarni

    Content

    Time Range : Start Date: 2001-01-01 ; End Date: 2023-06-30

    CSV Rows: 3,876,557

    Columns: 1. publish_date: Date of the article being published online in yyyyMMdd format 2. headline_category: Category of the headline, ascii, dot delimited, lowercase values 3. headline_text: Text of the Headline in English, only ascii characters

    Inspiration

    Times Group as a news agency, reaches out a very wide audience across Asia and drawfs every other agency in the quantity of English articles published per day. Due to the heavy daily volume (avg. 600 articles) over multiple years, this data offers a deep insight into Indian society, its priorities, events, issues and talking points and how they have unfolded over time.

    It is possible to chop this dataset into a smaller piece based on one or more facets.

    • Time Range: Headlines during 2006 Mumbai bombings, 2014 election, ongoing health crisis
    • One or more Categories: like Citywise, Bollywood, ICC updates, Magazine, Middle East
    • One or more Keywords: like crime or ecology related tokens, names of political parties, celebrities, corporations.

    Similar news datasets exploring other attributes, countries and topics can be seen on my profile.

  2. F

    Indian English TTS Speech Dataset for Speech Synthesis

    • futurebeeai.com
    wav
    Updated Aug 1, 2022
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    FutureBee AI (2022). Indian English TTS Speech Dataset for Speech Synthesis [Dataset]. https://www.futurebeeai.com/dataset/speech-dataset/tts-monolgue-english-india
    Explore at:
    wavAvailable download formats
    Dataset updated
    Aug 1, 2022
    Dataset provided by
    FutureBeeAI
    Authors
    FutureBee AI
    License

    https://www.futurebeeai.com/policies/ai-data-license-agreementhttps://www.futurebeeai.com/policies/ai-data-license-agreement

    Dataset funded by
    FutureBeeAI
    Description

    The English TTS Monologue Speech Dataset is a professionally curated resource built to train realistic, expressive, and production-grade text-to-speech (TTS) systems. It contains studio-recorded long-form speech by trained native English voice artists, each contributing 1 to 2 hours of clean, uninterrupted monologue audio.

    Unlike typical prompt-based datasets with short, isolated phrases, this collection features long-form, topic-driven monologues that mirror natural human narration. It includes content types that are directly useful for real-world applications, like audiobook-style storytelling, educational lectures, health advisories, product explainers, digital how-tos, formal announcements, and more.

    All recordings are captured in professional studios using high-end equipment and under the guidance of experienced voice directors.

    Recording & Audio Quality

    Audio Format: WAV, 48 kHz, available in 16-bit, 24-bit, and 32-bit depth
    SNR: Minimum 30 dB
    Channel: Mono
    Recording Duration: 20-30 minutes
    Recording Environment: Studio-controlled, acoustically treated rooms
    Per Speaker Volume: 1–2 hours of speech per artist
    Quality Control: Each file is reviewed and cleaned for common acoustic issues, including: reverberation, lip smacks, mouth clicks, thumping, hissing, plosives, sibilance, background noise, static interference, clipping, and other artifacts.

    Only clean, production-grade audio makes it into the final dataset.

    Voice Artist Selection

    All voice artists are native English speakers with professional training or prior experience in narration. We ensure a diverse pool in terms of age, gender, and region to bring a balanced and rich vocal dataset.

    Artist Profile:
    Gender: Male and Female
    Age Range: 20–60 years
    Regions: Native English-speaking states from India
    Selection Process: All artists are screened, onboarded, and sample-approved using FutureBeeAI’s proprietary Yugo platform.

    Script Quality & Coverage

    Scripts are not generic or repetitive. Scripts are professionally authored by domain experts to reflect real-world use cases. They avoid redundancy and include modern vocabulary, emotional range, and phonetically rich sentence structures.

    Word Count per Script: 3,000–5,000 words per 30-minute session
    Content Types:
    Storytelling
    Script and book reading
    Informational explainers
    Government service instructions
    E-commerce tutorials
    Motivational content
    Health & wellness guides
    Education & career advice
    Linguistic Design: Balanced punctuation, emotional range, modern syntax, and vocabulary diversity

    Transcripts & Alignment

    While the script is used during the recording, we also provide post-recording updates to ensure the transcript reflects the final spoken audio. Minor edits are made to adjust for skipped or rephrased words.

    Segmentation: Time-stamped at the sentence level, aligned to actual spoken delivery
    Format: Available in plain text and JSON
    Post-processing:
    Corrected for

  3. F

    Gujarati TTS Speech Dataset for Speech Synthesis

    • futurebeeai.com
    wav
    Updated Aug 1, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    FutureBee AI (2022). Gujarati TTS Speech Dataset for Speech Synthesis [Dataset]. https://www.futurebeeai.com/dataset/speech-dataset/tts-monolgue-gujarati-india
    Explore at:
    wavAvailable download formats
    Dataset updated
    Aug 1, 2022
    Dataset provided by
    FutureBeeAI
    Authors
    FutureBee AI
    License

    https://www.futurebeeai.com/policies/ai-data-license-agreementhttps://www.futurebeeai.com/policies/ai-data-license-agreement

    Dataset funded by
    FutureBeeAI
    Description

    The Gujarati TTS Monologue Speech Dataset is a professionally curated resource built to train realistic, expressive, and production-grade text-to-speech (TTS) systems. It contains studio-recorded long-form speech by trained native Gujarati voice artists, each contributing 1 to 2 hours of clean, uninterrupted monologue audio.

    Unlike typical prompt-based datasets with short, isolated phrases, this collection features long-form, topic-driven monologues that mirror natural human narration. It includes content types that are directly useful for real-world applications, like audiobook-style storytelling, educational lectures, health advisories, product explainers, digital how-tos, formal announcements, and more.

    All recordings are captured in professional studios using high-end equipment and under the guidance of experienced voice directors.

    Recording & Audio Quality

    Audio Format: WAV, 48 kHz, available in 16-bit, 24-bit, and 32-bit depth
    SNR: Minimum 30 dB
    Channel: Mono
    Recording Duration: 20-30 minutes
    Recording Environment: Studio-controlled, acoustically treated rooms
    Per Speaker Volume: 1–2 hours of speech per artist
    Quality Control: Each file is reviewed and cleaned for common acoustic issues, including: reverberation, lip smacks, mouth clicks, thumping, hissing, plosives, sibilance, background noise, static interference, clipping, and other artifacts.

    Only clean, production-grade audio makes it into the final dataset.

    Voice Artist Selection

    All voice artists are native Gujarati speakers with professional training or prior experience in narration. We ensure a diverse pool in terms of age, gender, and region to bring a balanced and rich vocal dataset.

    Artist Profile:
    Gender: Male and Female
    Age Range: 20–60 years
    Regions: Native Gujarati-speaking states from Gujarat
    Selection Process: All artists are screened, onboarded, and sample-approved using FutureBeeAI’s proprietary Yugo platform.

    Script Quality & Coverage

    Scripts are not generic or repetitive. Scripts are professionally authored by domain experts to reflect real-world use cases. They avoid redundancy and include modern vocabulary, emotional range, and phonetically rich sentence structures.

    Word Count per Script: 3,000–5,000 words per 30-minute session
    Content Types:
    Storytelling
    Script and book reading
    Informational explainers
    Government service instructions
    E-commerce tutorials
    Motivational content
    Health & wellness guides
    Education & career advice
    Linguistic Design: Balanced punctuation, emotional range, modern syntax, and vocabulary diversity

    Transcripts & Alignment

    While the script is used during the recording, we also provide post-recording updates to ensure the transcript reflects the final spoken audio. Minor edits are made to adjust for skipped or rephrased words.

    Segmentation: Time-stamped at the sentence level, aligned to actual spoken delivery
    Format: Available in plain text and JSON
    Post-processing:
    Corrected for

  4. F

    Indian English Call Center Data for Healthcare AI

    • futurebeeai.com
    wav
    Updated Aug 1, 2022
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    FutureBee AI (2022). Indian English Call Center Data for Healthcare AI [Dataset]. https://www.futurebeeai.com/dataset/speech-dataset/healthcare-call-center-conversation-english-india
    Explore at:
    wavAvailable download formats
    Dataset updated
    Aug 1, 2022
    Dataset provided by
    FutureBeeAI
    Authors
    FutureBee AI
    License

    https://www.futurebeeai.com/policies/ai-data-license-agreementhttps://www.futurebeeai.com/policies/ai-data-license-agreement

    Dataset funded by
    FutureBeeAI
    Description

    Introduction

    This Indian English Call Center Speech Dataset for the Healthcare industry is purpose-built to accelerate the development of English speech recognition, spoken language understanding, and conversational AI systems. With 30 Hours of unscripted, real-world conversations, it delivers the linguistic and contextual depth needed to build high-performance ASR models for medical and wellness-related customer service.

    Created by FutureBeeAI, this dataset empowers voice AI teams, NLP researchers, and data scientists to develop domain-specific models for hospitals, clinics, insurance providers, and telemedicine platforms.

    Speech Data

    The dataset features 30 Hours of dual-channel call center conversations between native Indian English speakers. These recordings cover a variety of healthcare support topics, enabling the development of speech technologies that are contextually aware and linguistically rich.

    Participant Diversity:
    Speakers: 60 verified native Indian English speakers from our contributor community.
    Regions: Diverse provinces across India to ensure broad dialectal representation.
    Participant Profile: Age range of 18–70 with a gender mix of 60% male and 40% female.
    RecordingDetails:
    Conversation Nature: Naturally flowing, unscripted conversations.
    Call Duration: Each session ranges between 5 to 15 minutes.
    Audio Format: WAV format, stereo, 16-bit depth at 8kHz and 16kHz sample rates.
    Recording Environment: Captured in clear conditions without background noise or echo.

    Topic Diversity

    The dataset spans inbound and outbound calls, capturing a broad range of healthcare-specific interactions and sentiment types (positive, neutral, negative).

    Inbound Calls:
    Appointment Scheduling
    New Patient Registration
    Surgical Consultation
    Dietary Advice and Consultations
    Insurance Coverage Inquiries
    Follow-up Treatment Requests, and more
    OutboundCalls:
    Appointment Reminders
    Preventive Care Campaigns
    Test Results & Lab Reports
    Health Risk Assessment Calls
    Vaccination Updates
    Wellness Subscription Outreach, and more

    These real-world interactions help build speech models that understand healthcare domain nuances and user intent.

    Transcription

    Every audio file is accompanied by high-quality, manually created transcriptions in JSON format.

    Transcription Includes:
    Speaker-identified Dialogues
    Time-coded Segments
    Non-speech Annotations (e.g., silence, cough)
    High transcription accuracy with word error rate is below 5%, backed by dual-layer QA checks.

    Metadata

    Each conversation and speaker includes detailed metadata to support fine-tuned training and analysis.

    Participant Metadata: ID, gender, age, region, accent, and dialect.
    Conversation Metadata: Topic, sentiment, call type, sample rate, and technical specs.

    Usage and Applications

    This dataset can be used across a range of healthcare and voice AI use cases:

    <b

  5. F

    Indian English General Conversation Speech Dataset for ASR

    • futurebeeai.com
    wav
    Updated Aug 1, 2022
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    FutureBee AI (2022). Indian English General Conversation Speech Dataset for ASR [Dataset]. https://www.futurebeeai.com/dataset/speech-dataset/general-conversation-english-india
    Explore at:
    wavAvailable download formats
    Dataset updated
    Aug 1, 2022
    Dataset provided by
    FutureBeeAI
    Authors
    FutureBee AI
    License

    https://www.futurebeeai.com/policies/ai-data-license-agreementhttps://www.futurebeeai.com/policies/ai-data-license-agreement

    Dataset funded by
    FutureBeeAI
    Description

    Introduction

    Welcome to the Indian English General Conversation Speech Dataset — a rich, linguistically diverse corpus purpose-built to accelerate the development of English speech technologies. This dataset is designed to train and fine-tune ASR systems, spoken language understanding models, and generative voice AI tailored to real-world Indian English communication.

    Curated by FutureBeeAI, this 30 hours dataset offers unscripted, spontaneous two-speaker conversations across a wide array of real-life topics. It enables researchers, AI developers, and voice-first product teams to build robust, production-grade English speech models that understand and respond to authentic Indian accents and dialects.

    Speech Data

    The dataset comprises 30 hours of high-quality audio, featuring natural, free-flowing dialogue between native speakers of Indian English. These sessions range from informal daily talks to deeper, topic-specific discussions, ensuring variability and context richness for diverse use cases.

    Participant Diversity:
    Speakers: 60 verified native Indian English speakers from FutureBeeAI’s contributor community.
    Regions: Representing various provinces of India to ensure dialectal diversity and demographic balance.
    Demographics: A balanced gender ratio (60% male, 40% female) with participant ages ranging from 18 to 70 years.
    Recording Details:
    Conversation Style: Unscripted, spontaneous peer-to-peer dialogues.
    Duration: Each conversation ranges from 15 to 60 minutes.
    Audio Format: Stereo WAV files, 16-bit depth, recorded at 16kHz sample rate.
    Environment: Quiet, echo-free settings with no background noise.

    Topic Diversity

    The dataset spans a wide variety of everyday and domain-relevant themes. This topic diversity ensures the resulting models are adaptable to broad speech contexts.

    Sample Topics Include:
    Family & Relationships
    Food & Recipes
    Education & Career
    Healthcare Discussions
    Social Issues
    Technology & Gadgets
    Travel & Local Culture
    Shopping & Marketplace Experiences, and many more.

    Transcription

    Each audio file is paired with a human-verified, verbatim transcription available in JSON format.

    Transcription Highlights:
    Speaker-segmented dialogues
    Time-coded utterances
    Non-speech elements (pauses, laughter, etc.)
    High transcription accuracy, achieved through double QA pass, average WER < 5%

    These transcriptions are production-ready, enabling seamless integration into ASR model pipelines or conversational AI workflows.

    Metadata

    The dataset comes with granular metadata for both speakers and recordings:

    Speaker Metadata: Age, gender, accent, dialect, state/province, and participant ID.
    Recording Metadata: Topic, duration, audio format, device type, and sample rate.

    Such metadata helps developers fine-tune model training and supports use-case-specific filtering or demographic analysis.

    Usage and Applications

    This dataset is a versatile resource for multiple English speech and language AI applications:

    ASR Development: Train accurate speech-to-text systems for Indian English.
    Voice Assistants: Build smart assistants capable of understanding natural Indian conversations.
    <div style="margin-top:10px; margin-bottom: 10px; padding-left: 30px; display: flex; gap: 16px; align-items:

  6. F

    Kannada TTS Speech Dataset for Speech Synthesis

    • futurebeeai.com
    wav
    Updated Aug 1, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    FutureBee AI (2022). Kannada TTS Speech Dataset for Speech Synthesis [Dataset]. https://www.futurebeeai.com/dataset/speech-dataset/tts-monolgue-kannada-india
    Explore at:
    wavAvailable download formats
    Dataset updated
    Aug 1, 2022
    Dataset provided by
    FutureBeeAI
    Authors
    FutureBee AI
    License

    https://www.futurebeeai.com/policies/ai-data-license-agreementhttps://www.futurebeeai.com/policies/ai-data-license-agreement

    Dataset funded by
    FutureBeeAI
    Description

    The Kannada TTS Monologue Speech Dataset is a professionally curated resource built to train realistic, expressive, and production-grade text-to-speech (TTS) systems. It contains studio-recorded long-form speech by trained native Kannada voice artists, each contributing 1 to 2 hours of clean, uninterrupted monologue audio.

    Unlike typical prompt-based datasets with short, isolated phrases, this collection features long-form, topic-driven monologues that mirror natural human narration. It includes content types that are directly useful for real-world applications, like audiobook-style storytelling, educational lectures, health advisories, product explainers, digital how-tos, formal announcements, and more.

    All recordings are captured in professional studios using high-end equipment and under the guidance of experienced voice directors.

    Recording & Audio Quality

    Audio Format: WAV, 48 kHz, available in 16-bit, 24-bit, and 32-bit depth
    SNR: Minimum 30 dB
    Channel: Mono
    Recording Duration: 20-30 minutes
    Recording Environment: Studio-controlled, acoustically treated rooms
    Per Speaker Volume: 1–2 hours of speech per artist
    Quality Control: Each file is reviewed and cleaned for common acoustic issues, including: reverberation, lip smacks, mouth clicks, thumping, hissing, plosives, sibilance, background noise, static interference, clipping, and other artifacts.

    Only clean, production-grade audio makes it into the final dataset.

    Voice Artist Selection

    All voice artists are native Kannada speakers with professional training or prior experience in narration. We ensure a diverse pool in terms of age, gender, and region to bring a balanced and rich vocal dataset.

    Artist Profile:
    Gender: Male and Female
    Age Range: 20–60 years
    Regions: Native Kannada-speaking states from Karnataka
    Selection Process: All artists are screened, onboarded, and sample-approved using FutureBeeAI’s proprietary Yugo platform.

    Script Quality & Coverage

    Scripts are not generic or repetitive. Scripts are professionally authored by domain experts to reflect real-world use cases. They avoid redundancy and include modern vocabulary, emotional range, and phonetically rich sentence structures.

    Word Count per Script: 3,000–5,000 words per 30-minute session
    Content Types:
    Storytelling
    Script and book reading
    Informational explainers
    Government service instructions
    E-commerce tutorials
    Motivational content
    Health & wellness guides
    Education & career advice
    Linguistic Design: Balanced punctuation, emotional range, modern syntax, and vocabulary diversity

    Transcripts & Alignment

    While the script is used during the recording, we also provide post-recording updates to ensure the transcript reflects the final spoken audio. Minor edits are made to adjust for skipped or rephrased words.

    Segmentation: Time-stamped at the sentence level, aligned to actual spoken delivery
    Format: Available in plain text and JSON
    Post-processing:
    Corrected for

  7. F

    Malayalam TTS Speech Dataset for Speech Synthesis

    • futurebeeai.com
    wav
    Updated Aug 1, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    FutureBee AI (2022). Malayalam TTS Speech Dataset for Speech Synthesis [Dataset]. https://www.futurebeeai.com/dataset/speech-dataset/tts-monolgue-malayalam-india
    Explore at:
    wavAvailable download formats
    Dataset updated
    Aug 1, 2022
    Dataset provided by
    FutureBeeAI
    Authors
    FutureBee AI
    License

    https://www.futurebeeai.com/policies/ai-data-license-agreementhttps://www.futurebeeai.com/policies/ai-data-license-agreement

    Dataset funded by
    FutureBeeAI
    Description

    The Malayalam TTS Monologue Speech Dataset is a professionally curated resource built to train realistic, expressive, and production-grade text-to-speech (TTS) systems. It contains studio-recorded long-form speech by trained native Malayalam voice artists, each contributing 1 to 2 hours of clean, uninterrupted monologue audio.

    Unlike typical prompt-based datasets with short, isolated phrases, this collection features long-form, topic-driven monologues that mirror natural human narration. It includes content types that are directly useful for real-world applications, like audiobook-style storytelling, educational lectures, health advisories, product explainers, digital how-tos, formal announcements, and more.

    All recordings are captured in professional studios using high-end equipment and under the guidance of experienced voice directors.

    Recording & Audio Quality

    Audio Format: WAV, 48 kHz, available in 16-bit, 24-bit, and 32-bit depth
    SNR: Minimum 30 dB
    Channel: Mono
    Recording Duration: 20-30 minutes
    Recording Environment: Studio-controlled, acoustically treated rooms
    Per Speaker Volume: 1–2 hours of speech per artist
    Quality Control: Each file is reviewed and cleaned for common acoustic issues, including: reverberation, lip smacks, mouth clicks, thumping, hissing, plosives, sibilance, background noise, static interference, clipping, and other artifacts.

    Only clean, production-grade audio makes it into the final dataset.

    Voice Artist Selection

    All voice artists are native Malayalam speakers with professional training or prior experience in narration. We ensure a diverse pool in terms of age, gender, and region to bring a balanced and rich vocal dataset.

    Artist Profile:
    Gender: Male and Female
    Age Range: 20–60 years
    Regions: Native Malayalam-speaking states from Kerala
    Selection Process: All artists are screened, onboarded, and sample-approved using FutureBeeAI’s proprietary Yugo platform.

    Script Quality & Coverage

    Scripts are not generic or repetitive. Scripts are professionally authored by domain experts to reflect real-world use cases. They avoid redundancy and include modern vocabulary, emotional range, and phonetically rich sentence structures.

    Word Count per Script: 3,000–5,000 words per 30-minute session
    Content Types:
    Storytelling
    Script and book reading
    Informational explainers
    Government service instructions
    E-commerce tutorials
    Motivational content
    Health & wellness guides
    Education & career advice
    Linguistic Design: Balanced punctuation, emotional range, modern syntax, and vocabulary diversity

    Transcripts & Alignment

    While the script is used during the recording, we also provide post-recording updates to ensure the transcript reflects the final spoken audio. Minor edits are made to adjust for skipped or rephrased words.

    Segmentation: Time-stamped at the sentence level, aligned to actual spoken delivery
    Format: Available in plain text and JSON
    Post-processing:
    Corrected for

  8. F

    Marathi TTS Speech Dataset for Speech Synthesis

    • futurebeeai.com
    wav
    Updated Aug 1, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    FutureBee AI (2022). Marathi TTS Speech Dataset for Speech Synthesis [Dataset]. https://www.futurebeeai.com/dataset/speech-dataset/tts-monolgue-marathi-india
    Explore at:
    wavAvailable download formats
    Dataset updated
    Aug 1, 2022
    Dataset provided by
    FutureBeeAI
    Authors
    FutureBee AI
    License

    https://www.futurebeeai.com/policies/ai-data-license-agreementhttps://www.futurebeeai.com/policies/ai-data-license-agreement

    Dataset funded by
    FutureBeeAI
    Description

    The Marathi TTS Monologue Speech Dataset is a professionally curated resource built to train realistic, expressive, and production-grade text-to-speech (TTS) systems. It contains studio-recorded long-form speech by trained native Marathi voice artists, each contributing 1 to 2 hours of clean, uninterrupted monologue audio.

    Unlike typical prompt-based datasets with short, isolated phrases, this collection features long-form, topic-driven monologues that mirror natural human narration. It includes content types that are directly useful for real-world applications, like audiobook-style storytelling, educational lectures, health advisories, product explainers, digital how-tos, formal announcements, and more.

    All recordings are captured in professional studios using high-end equipment and under the guidance of experienced voice directors.

    Recording & Audio Quality

    Audio Format: WAV, 48 kHz, available in 16-bit, 24-bit, and 32-bit depth
    SNR: Minimum 30 dB
    Channel: Mono
    Recording Duration: 20-30 minutes
    Recording Environment: Studio-controlled, acoustically treated rooms
    Per Speaker Volume: 1–2 hours of speech per artist
    Quality Control: Each file is reviewed and cleaned for common acoustic issues, including: reverberation, lip smacks, mouth clicks, thumping, hissing, plosives, sibilance, background noise, static interference, clipping, and other artifacts.

    Only clean, production-grade audio makes it into the final dataset.

    Voice Artist Selection

    All voice artists are native Marathi speakers with professional training or prior experience in narration. We ensure a diverse pool in terms of age, gender, and region to bring a balanced and rich vocal dataset.

    Artist Profile:
    Gender: Male and Female
    Age Range: 20–60 years
    Regions: Native Marathi-speaking states from Maharashtra
    Selection Process: All artists are screened, onboarded, and sample-approved using FutureBeeAI’s proprietary Yugo platform.

    Script Quality & Coverage

    Scripts are not generic or repetitive. Scripts are professionally authored by domain experts to reflect real-world use cases. They avoid redundancy and include modern vocabulary, emotional range, and phonetically rich sentence structures.

    Word Count per Script: 3,000–5,000 words per 30-minute session
    Content Types:
    Storytelling
    Script and book reading
    Informational explainers
    Government service instructions
    E-commerce tutorials
    Motivational content
    Health & wellness guides
    Education & career advice
    Linguistic Design: Balanced punctuation, emotional range, modern syntax, and vocabulary diversity

    Transcripts & Alignment

    While the script is used during the recording, we also provide post-recording updates to ensure the transcript reflects the final spoken audio. Minor edits are made to adjust for skipped or rephrased words.

    Segmentation: Time-stamped at the sentence level, aligned to actual spoken delivery
    Format: Available in plain text and JSON
    Post-processing:
    Corrected for

  9. F

    Indian English Call Center Data for BFSI AI

    • futurebeeai.com
    wav
    Updated Aug 1, 2022
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    FutureBee AI (2022). Indian English Call Center Data for BFSI AI [Dataset]. https://www.futurebeeai.com/dataset/speech-dataset/bfsi-call-center-conversation-english-india
    Explore at:
    wavAvailable download formats
    Dataset updated
    Aug 1, 2022
    Dataset provided by
    FutureBeeAI
    Authors
    FutureBee AI
    License

    https://www.futurebeeai.com/policies/ai-data-license-agreementhttps://www.futurebeeai.com/policies/ai-data-license-agreement

    Dataset funded by
    FutureBeeAI
    Description

    Introduction

    This Indian English Call Center Speech Dataset for the BFSI (Banking, Financial Services, and Insurance) sector is purpose-built to accelerate the development of speech recognition, spoken language understanding, and conversational AI systems tailored for English-speaking customers. Featuring over 30 hours of real-world, unscripted audio, it offers authentic customer-agent interactions across a range of BFSI services to train robust and domain-aware ASR models.

    Curated by FutureBeeAI, this dataset empowers voice AI developers, financial technology teams, and NLP researchers to build high-accuracy, production-ready models across BFSI customer service scenarios.

    Speech Data

    The dataset contains 30 hours of dual-channel call center recordings between native Indian English speakers. Captured in realistic financial support settings, these conversations span diverse BFSI topics from loan enquiries and card disputes to insurance claims and investment options, providing deep contextual coverage for model training and evaluation.

    Participant Diversity:
    Speakers: 60 native Indian English speakers from our verified contributor pool.
    Regions: Representing multiple provinces across India to ensure coverage of various accents and dialects.
    Participant Profile: Balanced gender mix (60% male, 40% female) with age distribution from 18 to 70 years.
    Recording Details:
    Conversation Nature: Naturally flowing, unscripted interactions between agents and customers.
    Call Duration: Ranges from 5 to 15 minutes.
    Audio Format: Stereo WAV files, 16-bit depth, at 8kHz and 16kHz sample rates.
    Recording Environment: Captured in clean conditions with no echo or background noise.

    Topic Diversity

    This speech corpus includes both inbound and outbound calls with varied conversational outcomes like positive, negative, and neutral, ensuring real-world BFSI voice coverage.

    Inbound Calls:
    Debit Card Block Request
    Transaction Disputes
    Loan Enquiries
    Credit Card Billing Issues
    Account Closure & Claims
    Policy Renewals & Cancellations
    Retirement & Tax Planning
    Investment Risk Queries, and more
    Outbound Calls:
    Loan & Credit Card Offers
    Customer Surveys
    EMI Reminders
    Policy Upgrades
    Insurance Follow-ups
    Investment Opportunity Calls
    Retirement Planning Reviews, and more

    This variety ensures models trained on the dataset are equipped to handle complex financial dialogues with contextual accuracy.

    Transcription

    All audio files are accompanied by manually curated, time-coded verbatim transcriptions in JSON format.

    Transcription Includes:
    Speaker-Segmented Dialogues
    30 hours-coded Segments
    Non-speech Tags (e.g., pauses, background noise)
    High transcription accuracy with word error rate < 5% due to double-layered quality checks.

    These transcriptions are production-ready, making financial domain model training faster and more accurate.

    Metadata

    Rich metadata is available for each participant and conversation:

    Participant Metadata: ID, age, gender, accent,

  10. F

    Odia Call Center Data for Delivery & Logistics AI

    • futurebeeai.com
    wav
    Updated Aug 1, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    FutureBee AI (2022). Odia Call Center Data for Delivery & Logistics AI [Dataset]. https://www.futurebeeai.com/dataset/speech-dataset/delivery-call-center-conversation-oriya-odia-india
    Explore at:
    wavAvailable download formats
    Dataset updated
    Aug 1, 2022
    Dataset provided by
    FutureBeeAI
    Authors
    FutureBee AI
    License

    https://www.futurebeeai.com/policies/ai-data-license-agreementhttps://www.futurebeeai.com/policies/ai-data-license-agreement

    Dataset funded by
    FutureBeeAI
    Description

    Introduction

    This Odia Call Center Speech Dataset for the Delivery and Logistics industry is purpose-built to accelerate the development of speech recognition, spoken language understanding, and conversational AI systems tailored for Odia-speaking customers. With over 40 hours of real-world, unscripted call center audio, this dataset captures authentic delivery-related conversations essential for training high-performance ASR models.

    Curated by FutureBeeAI, this dataset empowers AI teams, logistics tech providers, and NLP researchers to build accurate, production-ready models for customer support automation in delivery and logistics.

    Speech Data

    The dataset contains 40 hours of dual-channel call center recordings between native Odia speakers. Captured across various delivery and logistics service scenarios, these conversations cover everything from order tracking to missed delivery resolutions offering a rich, real-world training base for AI models.

    Participant Diversity:
    Speakers: 80 native Odia speakers from our verified contributor pool.
    Regions: Multiple provinces of Odisha for accent and dialect diversity.
    Participant Profile: Balanced gender distribution (60% male, 40% female) with ages ranging from 18 to 70.
    Recording Details:
    Conversation Nature: Naturally flowing, unscripted customer-agent dialogues.
    Call Duration: 5 to 15 minutes on average.
    Audio Format: Stereo WAV, 16-bit depth, recorded at 8kHz and 16kHz.
    Recording Environment: Captured in clean, noise-free, echo-free conditions.

    Topic Diversity

    This speech corpus includes both inbound and outbound delivery-related conversations, covering varied outcomes (positive, negative, neutral) to train adaptable voice models.

    Inbound Calls:
    Order Tracking
    Delivery Complaints
    Undeliverable Addresses
    Return Process Enquiries
    Delivery Method Selection
    Order Modifications, and more
    Outbound Calls:
    Delivery Confirmations
    Subscription Offer Calls
    Incorrect Address Follow-ups
    Missed Delivery Notifications
    Delivery Feedback Surveys
    Out-of-Stock Alerts, and others

    This comprehensive coverage reflects real-world logistics workflows, helping voice AI systems interpret context and intent with precision.

    Transcription

    All recordings come with high-quality, human-generated verbatim transcriptions in JSON format.

    Transcription Includes:
    Speaker-Segmented Dialogues
    Time-coded Segments
    Non-speech Tags (e.g., pauses, noise)
    High transcription accuracy with word error rate under 5% via dual-layer quality checks.

    These transcriptions support fast, reliable model development for Odia voice AI applications in the delivery sector.

    Metadata

    Detailed metadata is included for each participant and conversation:

    Participant Metadata: ID, age, gender, region, accent, dialect.
    Conversation Metadata: Topic, call type, sentiment, sample rate, and technical attributes.

    This metadata aids in training specialized models, filtering demographics, and running advanced analytics.

    Usage and Applications

    This dataset is ideal for a

  11. Not seeing a result you expected?
    Learn how you can add new datasets to our index.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Rohit Kulkarni (2023). India News Headlines Dataset [Dataset]. https://www.kaggle.com/datasets/therohk/india-headlines-news-dataset/discussion
Organization logo

India News Headlines Dataset

Twenty One years of headlines focusing on India

Explore at:
zip(97613967 bytes)Available download formats
Dataset updated
Nov 11, 2023
Authors
Rohit Kulkarni
License

https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/

Area covered
India
Description

Context

This news dataset is a persistent historical archive of noteable events in the Indian subcontinent from start-2001 to q2-2023, recorded in real-time by the journalists of India. It contains approximately 3.8 million events published by Times of India.

A majority of the data is focusing on Indian local news including national, city level and entertainment.

Prepared by Rohit Kulkarni

Content

Time Range : Start Date: 2001-01-01 ; End Date: 2023-06-30

CSV Rows: 3,876,557

Columns: 1. publish_date: Date of the article being published online in yyyyMMdd format 2. headline_category: Category of the headline, ascii, dot delimited, lowercase values 3. headline_text: Text of the Headline in English, only ascii characters

Inspiration

Times Group as a news agency, reaches out a very wide audience across Asia and drawfs every other agency in the quantity of English articles published per day. Due to the heavy daily volume (avg. 600 articles) over multiple years, this data offers a deep insight into Indian society, its priorities, events, issues and talking points and how they have unfolded over time.

It is possible to chop this dataset into a smaller piece based on one or more facets.

  • Time Range: Headlines during 2006 Mumbai bombings, 2014 election, ongoing health crisis
  • One or more Categories: like Citywise, Bollywood, ICC updates, Magazine, Middle East
  • One or more Keywords: like crime or ecology related tokens, names of political parties, celebrities, corporations.

Similar news datasets exploring other attributes, countries and topics can be seen on my profile.

Search
Clear search
Close search
Google apps
Main menu