Facebook
TwitterThis data set includes annual counts and percentages of Medicaid and Children’s Health Insurance Program (CHIP) enrollees who received mental health (MH) or substance use disorder (SUD) services, overall and by six subpopulation topics: age group, sex or gender identity, race and ethnicity, urban or rural residence, eligibility category, and primary language. These results were generated using Transformed Medicaid Statistical Information System (T-MSIS) Analytic Files (TAF) Release 1 data and the Race/Ethnicity Imputation Companion File. This data set includes Medicaid and CHIP enrollees in all 50 states, the District of Columbia, Puerto Rico, and the U.S. Virgin Islands, ages 12 to 64 at the end of the calendar year, who were not dually eligible for Medicare and were continuously enrolled with comprehensive benefits for 12 months, with no more than one gap in enrollment exceeding 45 days. Enrollees who received services for both an MH condition and SUD in the year are counted toward both condition categories. Enrollees in Guam, American Samoa, the Northern Mariana Islands, and select states with TAF data quality issues are not included. Results shown for the race and ethnicity subpopulation topic exclude enrollees in the U.S. Virgin Islands. Results shown for the primary language subpopulation topic exclude select states with data quality issues with the primary language variable in TAF. Some rows in the data set have a value of "DS," which indicates that data were suppressed according to the Centers for Medicare & Medicaid Services’ Cell Suppression Policy for values between 1 and 10. This data set is based on the brief: "Medicaid and CHIP enrollees who received mental health or SUD services in 2020." Enrollees are assigned to an age group subpopulation using age as of December 31st of the calendar year. Enrollees are assigned to a sex or gender identity subpopulation using their latest reported sex in the calendar year. Enrollees are assigned to a race and ethnicity subpopulation using the state-reported race and ethnicity information in TAF when it is available and of good quality; if it is missing or unreliable, race and ethnicity is indirectly estimated using an enhanced version of Bayesian Improved Surname Geocoding (BISG) (Race and ethnicity of the national Medicaid and CHIP population in 2020). Enrollees are assigned to an urban or rural subpopulation based on the 2010 Rural-Urban Commuting Area (RUCA) code associated with their home or mailing address ZIP code in TAF (Rural Medicaid and CHIP enrollees in 2020). Enrollees are assigned to an eligibility category subpopulation using their latest reported eligibility group code, CHIP code, and age in the calendar year. Enrollees are assigned to a primary language subpopulation based on their reported ISO language code in TAF (English/missing, Spanish, and all other language codes) (Primary Language). Please refer to the full brief for additional context about the methodology and detailed findings. Future updates to this data set will include more recent data years as the TAF data become available.
Facebook
TwitterThis data set includes annual counts and percentages of Medicaid and Children’s Health Insurance Program (CHIP) enrollees who received a well-child visit paid for by Medicaid or CHIP, overall and by five subpopulation topics: age group, race and ethnicity, urban or rural residence, program type, and primary language. These results were generated using Transformed Medicaid Statistical Information System (T-MSIS) Analytic Files (TAF) Release 1 data and the Race/Ethnicity Imputation Companion File. This data set includes Medicaid and CHIP enrollees in all 50 states, the District of Columbia, Puerto Rico, and the U.S. Virgin Islands, except where otherwise noted. Enrollees in Guam, American Samoa, and the Northern Mariana Islands are not included. Results include enrollees with comprehensive Medicaid or CHIP benefits for all 12 months of the year and who were younger than age 19 at the end of the calendar year. Results shown for the race and ethnicity subpopulation topic exclude enrollees in the U.S. Virgin Islands. Results shown for the primary language subpopulation topic exclude select states with data quality issues with the primary language variable in TAF. Some rows in the data set have a value of "DS," which indicates that data were suppressed according to the Centers for Medicare & Medicaid Services’ Cell Suppression Policy for values between 1 and 10. This data set is based on the brief: "Medicaid and CHIP enrollees who received a well-child visit in 2020." Enrollees are identified as receiving a well-child visit in the year according to the Line 6 criteria in the Form CMS-416 reporting instructions. Enrollees are assigned to an age group subpopulation using age as of December 31st of the calendar year. Enrollees are assigned to a race and ethnicity subpopulation using the state-reported race and ethnicity information in TAF when it is available and of good quality; if it is missing or unreliable, race and ethnicity is indirectly estimated using an enhanced version of Bayesian Improved Surname Geocoding (BISG) (Race and ethnicity of the national Medicaid and CHIP population in 2020). Enrollees are assigned to an urban or rural subpopulation based on the 2010 Rural-Urban Commuting Area (RUCA) code associated with their home or mailing address ZIP code in TAF (Rural Medicaid and CHIP enrollees in 2020). Enrollees are assigned to a program type subpopulation based on the CHIP code and eligibility group code that applies to the majority of their enrolled-months during the year (Medicaid-Only Enrollment; M-CHIP and S-CHIP Enrollment). Enrollees are assigned to a primary language subpopulation based on their reported ISO language code in TAF (English/missing, Spanish, and all other language codes) (Primary Language). Please refer to the full brief for additional context about the methodology and detailed findings. Future updates to this data set will include more recent data years as the TAF data become available.
Facebook
TwitterThe All CMS Data Feeds dataset is an expansive resource offering access to 118 unique report feeds, providing in-depth insights into various aspects of the U.S. healthcare system. With over 25.8 billion rows of data meticulously collected since 2007, this dataset is invaluable for healthcare professionals, analysts, researchers, and businesses seeking to understand and analyze healthcare trends, performance metrics, and demographic shifts over time. The dataset is updated monthly, ensuring that users always have access to the most current and relevant data available.
Dataset Overview:
118 Report Feeds: - The dataset includes a wide array of report feeds, each providing unique insights into different dimensions of healthcare. These topics range from Medicare and Medicaid service metrics, patient demographics, provider information, financial data, and much more. The breadth of information ensures that users can find relevant data for nearly any healthcare-related analysis. - As CMS releases new report feeds, they are automatically added to this dataset, keeping it current and expanding its utility for users.
25.8 Billion Rows of Data:
Historical Data Since 2007: - The dataset spans from 2007 to the present, offering a rich historical perspective that is essential for tracking long-term trends and changes in healthcare delivery, policy impacts, and patient outcomes. This historical data is particularly valuable for conducting longitudinal studies and evaluating the effects of various healthcare interventions over time.
Monthly Updates:
Data Sourced from CMS:
Use Cases:
Market Analysis:
Healthcare Research:
Performance Tracking:
Compliance and Regulatory Reporting:
Data Quality and Reliability:
The All CMS Data Feeds dataset is designed with a strong emphasis on data quality and reliability. Each row of data is meticulously cleaned and aligned, ensuring that it is both accurate and consistent. This attention to detail makes the dataset a trusted resource for high-stakes applications, where data quality is critical.
Integration and Usability:
Ease of Integration:
Facebook
Twitterhttps://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
Health care in the United States is provided by many distinct organizations. Health care facilities are largely owned and operated by private sector businesses. 58% of US community hospitals are non-profit, 21% are government owned, and 21% are for-profit. According to the World Health Organization (WHO), the United States spent more on healthcare per capita ($9,403), and more on health care as percentage of its GDP (17.1%), than any other nation in 2014. Many different datasets are needed to portray different aspects of healthcare in US like disease prevalences, pharmaceuticals and drugs, Nutritional data of different food products available in US. Such data is collected by surveys (or otherwise) conducted by Centre of Disease Control and Prevention (CDC), Foods and Drugs Administration, Center of Medicare and Medicaid Services and Agency for Healthcare Research and Quality (AHRQ). These datasets can be used to properly review demographics and diseases, determining start ratings of healthcare providers, different drugs and their compositions as well as package informations for different diseases and for food quality. We often want such information and finding and scraping such data can be a huge hurdle. So, Here an attempt is made to make available all US healthcare data at one place to download from in csv files.
Facebook
TwitterTotal Medicaid Enrollees - VIII Group Break Out Report Reported on the CMS-64
The enrollment information is a state-reported count of unduplicated individuals enrolled in the state’s Medicaid program at any time during each month in the quarterly reporting period. The enrollment data identifies the total number of Medicaid enrollees and, for states that have expanded Medicaid, provides specific counts for the number of individuals enrolled in the new adult eligibility group, also referred to as the “VIII Group”. The VIII Group is only applicable for states that have expanded their Medicaid programs by adopting the VIII Group. This data includes state-by-state data for this population as well as a count of individuals whom the state has determined are newly eligible for Medicaid. All 50 states, the District of Columbia and the US territories are represented in these data.
Notes: 1. “VIII GROUP” is also known as the “New Adult Group.” 2. The VIII Group is only applicable for states that have expanded their Medicaid programs by adopting the VIII Group. VIII Group enrollment information for the states that have not expanded their Medicaid program is noted as “N/A.”
Facebook
TwitterThis map shows where people have Medicaid or means-tested healthcare coverage in the US (ages under 65). This is shown by State, County, and Census Tract, and uses the most current ACS 5-year estimates.
Facebook
TwitterThis data set includes annual counts and percentages of Medicaid and Children’s Health Insurance Program (CHIP) enrollees by primary language spoken (English, Spanish, and all other languages). Results are shown overall; by state; and by five subpopulation topics: race and ethnicity, age group, scope of Medicaid and CHIP benefits, urban or rural residence, and eligibility category. These results were generated using Transformed Medicaid Statistical Information System (T-MSIS) Analytic Files (TAF) Release 1 data and the Race/Ethnicity Imputation Companion File. This data set includes Medicaid and CHIP enrollees in all 50 states, the District of Columbia, Puerto Rico, and the U.S. Virgin Islands who were enrolled for at least one day in the calendar year, except where otherwise noted. Enrollees in Guam, American Samoa, the Northern Mariana Islands, and select states with data quality issues with the primary language variable in TAF are not included. Results shown for the race and ethnicity subpopulation topic exclude enrollees in the U.S. Virgin Islands. Results shown overall (where subpopulation topic is "Total enrollees") exclude enrollees younger than age 5 and enrollees in the U.S. Virgin Islands. Results for states with TAF data quality issues in the year have a value of "Unusable data." Some rows in the data set have a value of "DS," which indicates that data were suppressed according to the Centers for Medicare & Medicaid Services’ Cell Suppression Policy for values between 1 and 10. This data set is based on the brief: "Primary language spoken by the Medicaid and CHIP population in 2020." Enrollees are assigned to a primary language category based on their reported ISO language code in TAF (English/missing, Spanish, and all other language codes) (Primary Language). Enrollees are assigned to a race and ethnicity subpopulation using the state-reported race and ethnicity information in TAF when it is available and of good quality; if it is missing or unreliable, race and ethnicity is indirectly estimated using an enhanced version of Bayesian Improved Surname Geocoding (BISG) (Race and ethnicity of the national Medicaid and CHIP population in 2020). Enrollees are assigned to an age group subpopulation using age as of December 31st of the calendar year. Enrollees are assigned to the comprehensive benefits or limited benefits subpopulation according to the criteria in the "Identifying Beneficiaries with Full-Scope, Comprehensive, and Limited Benefits in the TAF" DQ Atlas brief. Enrollees are assigned to an urban or rural subpopulation based on the 2010 Rural-Urban Commuting Area (RUCA) code associated with their home or mailing address ZIP code in TAF (Rural Medicaid and CHIP enrollees in 2020). Enrollees are assigned to an eligibility category subpopulation using their latest reported eligibility group code, CHIP code, and age in the calendar year. Please refer to the full brief for additional context about the methodology and detailed findings. Future updates to this data set will include more recent data years as the TAF data become available.
Facebook
TwitterThis data set includes annual counts and percentages of Medicaid enrollees who are eligible for benefits based on disability, overall; by reason for qualification of disability benefits; and by four subpopulation topics: age group, dual eligibility status, race and ethnicity, and managed care participation. These results were generated using Transformed Medicaid Statistical Information System (T-MSIS) Analytic Files (TAF) Release 1 data and the Race/Ethnicity Imputation Companion File. This data set includes Medicaid enrollees in all 50 states, the District of Columbia, Puerto Rico, and the U.S. Virgin Islands who were enrolled for at least one day in the calendar year, except where otherwise noted. Enrollees in Guam, American Samoa, and the Northern Mariana Islands are not included. The Children’s Health Insurance Program (CHIP) does not confer eligibility based on disability, so Medicaid expansion CHIP (M-CHIP) and separate CHIP (S-CHIP) enrollees are not included. Results shown for the race and ethnicity subpopulation topic exclude enrollees in the U.S. Virgin Islands. Results shown for the dual eligibility, race and ethnicity, and managed care participation subpopulation topics are restricted to working-age adults (ages 19 to 64) with comprehensive Medicaid benefits. Some rows in the data set have a value of "DS," which indicates that data were suppressed according to the Centers for Medicare & Medicaid Services’ Cell Suppression Policy for values between 1 and 10. This data set is based on the brief: "Medicaid enrollees who qualify for benefits based on disability in 2020." Enrollees are assigned to a disability category based on their latest reported eligibility group code and age in the calendar year. Enrollees are assigned to an age group subpopulation using age as of December 31st of the calendar year. Enrollees are assigned to a dual eligibility status subpopulation based on the dual eligibility code that applies to the majority of their enrolled-months during the year (Dual Eligibility Code). Enrollees are assigned to a race and ethnicity subpopulation using the state-reported race and ethnicity information in TAF when it is available and of good quality; if it is missing or unreliable, race and ethnicity is indirectly estimated using an enhanced version of Bayesian Improved Surname Geocoding (BISG) (Race and ethnicity of the national Medicaid and CHIP population in 2020). Enrollees are assigned to a managed care participation subpopulation based on the managed care plan type code that applies to the majority of their enrolled-months during the year (Enrollment in CMC Plans). Please refer to the full brief for additional context about the methodology and detailed findings. Future updates to this data set will include more recent data years as the TAF data become available.
Facebook
TwitterBy Data Society [source]
This fascinating dataset from the Centers for Medicare & Medicaid Services provides an in-depth analysis of health insurance plans offered throughout the United States. Exploring this data, you can gain insights into how plan rates and benefits vary across states, explore how plan benefits relate to plan rates, and investigate how plans vary across insurance network providers.
The top-level directory includes six CSV files which contain information about: BenefitsCostSharing.csv; BusinessRules.csv; Network.csv; PlanAttributes.csv; Rate.csv; and ServiceArea.csv - as well as two additional CSV files which facilitate joining data across years: Crosswalk2015.csv (joining 2014 and 2015 data) and Crosswalk2016
For more datasets, click here.
- 🚨 Your notebook can be here! 🚨!
This Kaggle dataset contains comprehensive data on US health insurance Marketplace plans. The data was obtained from the Centers for Medicare & Medicaid Services and contains information such as plan rates and benefits, metal levels, dental coverage, and child/adult-only coverages.
In order to use this dataset effectively, it is important to understand the different columns/variables that make up the dataset. The columns are state, dental plan, multistate plan (2015 and 2016), metal level (2014-2016), child/adult-only coverage (2014-2016), FIPS code (Federal Information Processing Standard code for the particular state), zipcode, crosswalk level (level of crosswalk between 2014-2016 data sets), reason for crosswalk parameter.
Using this dataset can help you answer interesting questions about US health insurance Marketplace plans across different variables such as state or rate information. It may also be interesting to compare certain variables over time with respect to how they affect certain types of people or how they differ across states or regions. Additionally, an analysis of the different price points associated with various kinds of coverage could provide insights into which kinds of plans are most attractive in various marketplaces based on cost savings alone
Once you have a good understanding of your data by studying individual parameters in depth across multiple states or regions you can begin looking at correlations between different parameters You can identify patterns that emerge around common characteristics or trends within areas or across markets over time when you have gathered sufficient historical data:
- Does higher out of pocket limits tend to come with higher premiums?
- Are there more multi-state markets in some states than others?
- What type of metal levels does each region prefer?
- Examining the impacts of age, metal levels and plan benefits on insurance rates in different states.
- Analyzing how dental plans vary across different states/regions and examining whether there are correlations between affordability and quality of care among plans with dental coverage options.
- Investigating how the Crosswalk level affects insurance rates by comparing insurance premiums from different metals level across states with varying Crosswalk Levels (e.g., how does a Bronze plan differ in cost for two states with differing Crosswalk Level 1 vs 2)
If you use this dataset in your research, please credit the original authors. Data Source
License: Dataset copyright by authors - You are free to: - Share - copy and redistribute the material in any medium or format for any purpose, even commercially. - Adapt - remix, transform, and build upon the material for any purpose, even commercially. - You must: - Give appropriate credit - Provide a link to the license, and indicate if changes were made. - ShareAlike - You must distribute your contributions under the same license as the original. - Keep intact - all notices that refer to this license, including copyright notices.
File: Crosswalk2016.csv | Column name | Description | |:------------------------------|:------------------------------------------------------------------------------------------------------------------------------| | State | The state in which...
Facebook
Twitterhttps://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
Context Financial relationships between manufacturers of drugs, devices, biologicals, and medical supplies and healthcare providers (physicians, non-physician practitioners, and teaching hospitals) are common and often serve important functions. However, these ties can also create potential conflicts of interest.
The CMS (Centers for Medicare & Medicaid Services) Open Payments program is a U.S. federal initiative designed to increase transparency around these financial relationships. By publicly reporting data on payments and other transfers of value, the program helps patients and researchers better understand the nature and extent of these collaborations.
While the raw data is incredibly rich, its comprehensive and detailed structure can be challenging for quick analysis or machine learning applications. This dataset is a cleaned, processed, and user-friendly version of the original Open Payments data, specifically prepared to facilitate straightforward data exploration, visualization, and predictive modeling.
Content This dataset contains records of payments made by manufacturers to healthcare providers in the United States. The original, multi-part fields for products, specialties, and licenses have been simplified to focus on the primary entry for each record, and columns with low variance or sparse data have been removed.
The dataset includes the following columns: | Column Name | Description | | ------------------------- | -------------------------------------------------------------------------------------------------------- | | payment_id | System-assigned unique identifier for the payment transaction. | | payment_amount | The total value of the payment in U.S. Dollars. | | payment_number | The number of individual payments included in the total amount. | | address_full | The full primary business street address of the payment recipient. | | address_country | The primary business country of the recipient. | | address_state | The primary business state of the recipient (2-letter abbreviation). | | address_city | The primary business city of the recipient. | | zip_code | The 5 or 9-digit zip code for the recipient's primary business location. | | payment_day | The day of the month the payment was made. | | payment_month | The month the payment was made. | | payment_year | The year the payment was made. | | publication_day | The day of the month the payment record was published. | | publication_month | The month the payment record was published. | | publication_year | The year the payment record was published. | | change_type | An indicator showing if the record is new or added (NEW, ADD). | | indicator_third_party | Indicates if payment was made to a third party (ENTITY, INDIVIDUAL, NO THIRD PARTY PAYMENT). | | indicator_related_product | Indicates if the payment was related to a specific product (YES, NO). | | indicator_covered | Indicates if the related product is "covered" under Open Payments rules (UNKNOWN, NON-COVERED, COVERED). | | identity_type | The professional designation of the payment recipient (NON-PHYSICIAN PRACTITIONER, PHYSICIAN). | | first_name | The first name of the covered recipient. | | last_name | The last name of the covered recipient. | | manufacturer_name | The name of the company that made the payment. | | manufacturer_state | The state where the paying company is located. | | manufacturer_country | The country where the paying compan...
Facebook
TwitterU.S. Government Workshttps://www.usa.gov/government-works
License information was derived automatically
This data set includes annual counts and percentages of Medicaid and Children’s Health Insurance Program (CHIP) enrollees by race and ethnicity overall and by three subpopulation topics: scope of Medicaid and CHIP benefits, age group, and eligibility category. These results were generated using Transformed Medicaid Statistical Information System (T-MSIS) Analytic Files (TAF) Release 1 data and the Race/Ethnicity Imputation Companion File. This data set includes Medicaid and CHIP enrollees in all 50 states, the District of Columbia, and Puerto Rico who were enrolled for at least one day in the calendar year. Enrollees in Guam, American Samoa, the Northern Mariana Islands, and the U.S. Virgin Islands are not included. Results shown for the age group and eligibility category subpopulation topics only include enrollees with comprehensive Medicaid and CHIP benefits in the year. Some rows in the data set have a value of "DS," which indicates that data were suppressed according to the Centers for Medicare & Medicaid Services’ Cell Suppression Policy for values between 1 and 10. This data set is based on information shown in the brief: "Race and ethnicity of the national Medicaid and CHIP population in 2020." Enrollees are assigned to six race and ethnicity categories using the state-reported race and ethnicity information in TAF when it is available and of good quality; if it is missing or unreliable, race and ethnicity is indirectly estimated using an enhanced version of Bayesian Improved Surname Geocoding (BISG). Enrollees are assigned to a child (ages 0-18) or adult (ages 19 and older) subpopulation using age as of December 31st of the calendar year. Enrollees are assigned to the comprehensive benefits or limited benefits subpopulation according to the criteria in the "Identifying Beneficiaries with Full-Scope, Comprehensive, and Limited Benefits in the TAF" DQ Atlas brief. Enrollees are assigned to an eligibility category subpopulation using their latest reported eligibility group code, CHIP code, and age in the calendar year. Please refer to the full brief for additional context about the methodology and detailed findings. Future updates to this data set will include more recent data years as the TAF data become available.
Facebook
TwitterDQS Medicaid coverage among persons under age 65, by selected characteristics: United States
Description
Data on Medicaid coverage among people under age 65, in the United States, by selected population characteristics. Data from Health, United States. SOURCE: National Center for Health Statistics, National Health Interview Survey. Search, visualize, and download these and other estimates from over 120 health topics with the NCHS Data Query System (DQS), available from:… See the full description on the dataset page: https://huggingface.co/datasets/HHS-Official/dqs-medicaid-coverage-among-persons-under-age-65-b.
Facebook
TwitterThis data set includes monthly counts and rates (per 1,000 beneficiaries) of acute care services, including emergency department (ED) visits, inpatient stays, intensive care unit (ICU) stays, and ICU stays that include ventilator use, provided to Medicaid and CHIP beneficiaries, by state. Users can filter to acute care services for any reason, or acute care services for COVID-19.
These metrics are based on data in the T-MSIS Analytic Files (TAF). Some states have serious data quality issues for one or more months, making the data unusable for calculating acute care services measures. To assess data quality, analysts adapted measures featured in the DQ Atlas. Data for a state and month are considered unusable if at least one of the following topics meets the DQ Atlas threshold for unusable: Total Medicaid and CHIP Enrollment, Claims Volume - IP, Claims Volume - OT, Diagnosis Code - IP, Diagnosis Code - OT, Procedure Codes - OT Professional. Please refer to the DQ Atlas at http://medicaid.gov/dq-atlas for more information about data quality assessment methods. Cells with a value of “DQ” indicate that data were suppressed due to unusable data.
Some cells have a value of “DS”. This indicates that data were suppressed for confidentiality reasons because the group included fewer than 11 beneficiaries.
Facebook
TwitterData on Medicaid coverage among persons under age 65 by selected population characteristics. Please refer to the PDF or Excel version of this table in the HUS 2019 Data Finder (https://www.cdc.gov/nchs/hus/contents2019.htm) for critical information about measures, definitions, and changes over time.
SOURCE: NCHS, National Health Interview Survey, health insurance supplements (1984, 1989, 1994-1996). Starting with 1997, data are from the family core and the sample adult questionnaires. Data for level of difficulty are from the 2010 Quality of Life, 2011-2017 Functioning and Disability, and 2018 Sample Adult questionnaires. For more information on the National Health Interview Survey, see the corresponding Appendix entry at https://www.cdc.gov/nchs/data/hus/hus19-appendix-508.pdf.
Facebook
TwitterThis data set includes annual counts and percentages of Medicaid and Children’s Health Insurance Program (CHIP) enrollees by urban or rural residence. Results are shown overall; by state; and by four subpopulation topics: scope of Medicaid and CHIP benefits, race and ethnicity, disability-related eligibility category, and managed care participation. These results were generated using Transformed Medicaid Statistical Information System (T-MSIS) Analytic Files (TAF) Release 1 data and the Race/Ethnicity Imputation Companion File. This data set includes Medicaid and CHIP enrollees in all 50 states, the District of Columbia, Puerto Rico, and the U.S. Virgin Islands who were enrolled for at least one day in the calendar year, except where otherwise noted. Enrollees in Guam, American Samoa, and the Northern Mariana Islands are not included. Results shown overall (where subpopulation topic is "Total enrollees") and for the race and ethnicity subpopulation topic exclude enrollees in the U.S. Virgin Islands. Results shown for the race and ethnicity, disability category, and managed care participation subpopulation topics only include Medicaid and CHIP enrollees with comprehensive benefits. Results shown for the disability category subpopulation topic only include working-age adults (ages 19 to 64). Results for states with TAF data quality issues in the year have a value of "Unusable data." Some rows in the data set have a value of "DS," which indicates that data were suppressed according to the Centers for Medicare & Medicaid Services’ Cell Suppression Policy for values between 1 and 10. This data set is based on the brief: "Rural Medicaid and CHIP enrollees in 2020." Enrollees are assigned to an urban or rural category based on the 2010 Rural-Urban Commuting Area (RUCA) code associated with their home or mailing address ZIP code in TAF. Enrollees are assigned to the comprehensive benefits or limited benefits subpopulation according to the criteria in the "Identifying Beneficiaries with Full-Scope, Comprehensive, and Limited Benefits in the TAF" DQ Atlas brief. Enrollees are assigned to a race and ethnicity subpopulation using the state-reported race and ethnicity information in TAF when it is available and of good quality; if it is missing or unreliable, race and ethnicity is indirectly estimated using an enhanced version of Bayesian Improved Surname Geocoding (BISG) (Race and ethnicity of the national Medicaid and CHIP population in 2020). Enrollees are assigned to a disability category subpopulation using their latest reported eligibility group code and age in the year (Medicaid enrollees who qualify for benefits based on disability in 2020). Enrollees are assigned to a managed care participation subpopulation based on the managed care plan type code that applies to the majority of their enrolled-months during the year (Enrollment in CMC Plans). Please refer to the full brief for additional context about the methodology and detailed findings. Future updates to this data set will include more recent data years as the TAF data become available.
Facebook
TwitterThis data set includes annual counts and percentages of Medicaid and Children’s Health Insurance Program (CHIP) enrollees who received a well-child visit paid for by Medicaid or CHIP, overall and by five subpopulation topics: age group, race and ethnicity, urban or rural residence, program type, and primary language. These results were generated using Transformed Medicaid Statistical Information System (T-MSIS) Analytic Files (TAF) Release 1 data and the Race/Ethnicity Imputation Companion File. This data set includes Medicaid and CHIP enrollees in all 50 states, the District of Columbia, Puerto Rico, and the U.S. Virgin Islands, except where otherwise noted. Enrollees in Guam, American Samoa, and the Northern Mariana Islands are not included. Results include enrollees with comprehensive Medicaid or CHIP benefits for all 12 months of the year and who were younger than age 19 at the end of the calendar year. Results shown for the race and ethnicity subpopulation topic exclude enrollees in the U.S. Virgin Islands. Results shown for the primary language subpopulation topic exclude select states with data quality issues with the primary language variable in TAF. Some rows in the data set have a value of "DS," which indicates that data were suppressed according to the Centers for Medicare & Medicaid Services’ Cell Suppression Policy for values between 1 and 10. This data set is based on the brief: "Medicaid and CHIP enrollees who received a well-child visit in 2020." Enrollees are identified as receiving a well-child visit in the year according to the Line 6 criteria in the Form CMS-416 reporting instructions. Enrollees are assigned to an age group subpopulation using age as of December 31st of the calendar year. Enrollees are assigned to a race and ethnicity subpopulation using the state-reported race and ethnicity information in TAF when it is available and of good quality; if it is missing or unreliable, race and ethnicity is indirectly estimated using an enhanced version of Bayesian Improved Surname Geocoding (BISG) (Race and ethnicity of the national Medicaid and CHIP population in 2020). Enrollees are assigned to an urban or rural subpopulation based on the 2010 Rural-Urban Commuting Area (RUCA) code associated with their home or mailing address ZIP code in TAF (Rural Medicaid and CHIP enrollees in 2020). Enrollees are assigned to a program type subpopulation based on the CHIP code and eligibility group code that applies to the majority of their enrolled-months during the year (Medicaid-Only Enrollment; M-CHIP and S-CHIP Enrollment). Enrollees are assigned to a primary language subpopulation based on their reported ISO language code in TAF (English/missing, Spanish, and all other language codes) (Primary Language). Please refer to the full brief for additional context about the methodology and detailed findings. Future updates to this data set will include more recent data years as the TAF data become available.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Medicare is a federal health insurance program for those aged 65 and older, certain people under 65 with disabilities, and people of any age with end-stage renal disease in the United States (US). Medicare covers about 96% of all US citizens aged 65 and older. These data have been used to describe patterns of morbidity and mortality and burden of disease, compare the effectiveness of pharmacologic therapies, examine the cost of care, evaluate the effects of provider practices on the delivery of care, and explore the effects of important policy changes on physician practices and patient outcomes. In 2014, 16% of Medicare beneficiaries were under the age of 65 years, 46% were between 65 and 74 years, 25% between 75 and 84 years, and 12% over the age of 85 years. Fifty-five percent of beneficiaries were female, 76% were white, 10% black, 9% Hispanic, and 5% Asian or other/unknown race.
Facebook
TwitterBehavioral Health Services Provided to the Medicaid and CHIP Population
Description
This data set includes monthly counts and rates (per 1,000 beneficiaries) of behavioral health services, including emergency department services, inpatient services, intensive outpatient/partial hospitalizations, outpatient services, or services delivered through telehealth, provided to Medicaid and CHIP beneficiaries, by state. Users can filter by either mental health disorder or… See the full description on the dataset page: https://huggingface.co/datasets/HHS-Official/behavioral-health-servicesprovided-to-the-medicaid.
Facebook
TwitterThis data set includes annual counts and rates of Medicaid- and Children’s Health Insurance Program (CHIP)-covered live-birth deliveries that were preterm or with a severe maternal morbidity (SMM) condition within six weeks before or after delivery. Results are shown overall; by state; and by four subpopulation topics: age group, race and ethnicity, disability-related eligibility category, and type of SMM condition (SMM category only). These results were generated using Transformed Medicaid Statistical Information System (T-MSIS) Analytic Files (TAF) Release 1 data and the Race/Ethnicity Imputation Companion File. This data set includes Medicaid and CHIP enrollees in all 50 states, the District of Columbia, Puerto Rico, and the U.S. Virgin Islands, who were ages 15 to 49 as of their delivery date, who were enrolled in Medicaid or CHIP at any point in the calendar year, and who had a live birth. Enrollees in Guam, American Samoa, the Northern Mariana Islands, and select states with TAF data quality issues are not included. Results shown for the race and ethnicity subpopulation topic exclude enrollees in the U.S. Virgin Islands. Results for SMM are calculated per 10,000 Medicaid- and CHIP-covered live births. Results for states with TAF data quality issues in the year have a value of "Unusable data." Some rows in the data set have a value of "DS," which indicates that data were suppressed according to the Centers for Medicare & Medicaid Services’ Cell Suppression Policy for values between 1 and 10.
This data set is based on the brief: "Prematurity and severe maternal morbidity among Medicaid- and CHIP-covered live births in 2021." Preterm birth is defined as a live birth that occurs before the 37th week of gestation. SMM deliveries are defined as live births with an SMM condition within six weeks before or after delivery (Identifying Severe Maternal Morbidity (SMM)). Enrollees are assigned to an age group subpopulation using age as of their delivery date. Enrollees are assigned to a race and ethnicity subpopulation using the state-reported race and ethnicity information in TAF when it is available and of good quality; if it is missing or unreliable, race and ethnicity is indirectly estimated using an enhanced version of Bayesian Improved Surname Geocoding (BISG) (Race and ethnicity of the national Medicaid and CHIP population in 2020). Enrollees are assigned to a disability category subpopulation using their latest reported eligibility group code and age in the year (Medicaid enrollees who qualify for benefits based on disability in 2020). Please refer to the full brief for additional context about the methodology and detailed findings. Future updates to this data set will include more recent data years as the TAF data become available.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The Medicare Current Beneficiary Survey (MCBS) - Survey File Microdata Public Use File (PUF) dataset provides information on topics such as Medicare beneficiaries' access to care, health status, other information regarding beneficiaries’ knowledge of, attitudes toward, and satisfaction with their health care, as well as demographic data and information on all types of health insurance coverage.Resources for Using and Understanding the DataThis dataset is based on information from the MCBS and administrative data. The MCBS is a continuous, multi-purpose longitudinal survey covering a representative national sample of the Medicare population, including the population of beneficiaries aged 65 and over and beneficiaries aged 64 and below with certain disabling conditions. The MCBS collects this information in three data collection periods, or rounds, per year. Disclosure protections have been applied to the file, including de-identification and other methods. As a result, the MCBS Survey File Microdata file does not require a Data Use Agreement (DUA). In contrast, the MCBS Limited Data Set (LDS) releases contain beneficiary-level protected health information (PHI) and therefore require a DUA. The MCBS - Survey File Microdata file is not intended to replace the more detailed LDS files but, rather, it makes available a general-use publicly-available alternative that provides the highest degree of protection to the Medicare beneficiaries’ PHI. The main benefits of using the MCBS - Survey File Microdata file are:Increased data access for researchers of the MCBS through a free file download that is consistent with other U.S. Department of Health and Human Services (HHS) public-use survey files.Enhanced potential for policy-relevant analyses, by attracting new researchers and policymakers. Accessing the MCBS LDS can be a significant deterrent due to the associated costs and time but the MCBS - Survey File Microdata file mitigates these barriers to encourage broader utilization. A link to the more detailed MCBS LDS files is provided in the Resources section on this page. MCBS LDS data are also presented in the MCBS Chartbook linked in the Visualization section on this page.
Facebook
TwitterThis data set includes annual counts and percentages of Medicaid and Children’s Health Insurance Program (CHIP) enrollees who received mental health (MH) or substance use disorder (SUD) services, overall and by six subpopulation topics: age group, sex or gender identity, race and ethnicity, urban or rural residence, eligibility category, and primary language. These results were generated using Transformed Medicaid Statistical Information System (T-MSIS) Analytic Files (TAF) Release 1 data and the Race/Ethnicity Imputation Companion File. This data set includes Medicaid and CHIP enrollees in all 50 states, the District of Columbia, Puerto Rico, and the U.S. Virgin Islands, ages 12 to 64 at the end of the calendar year, who were not dually eligible for Medicare and were continuously enrolled with comprehensive benefits for 12 months, with no more than one gap in enrollment exceeding 45 days. Enrollees who received services for both an MH condition and SUD in the year are counted toward both condition categories. Enrollees in Guam, American Samoa, the Northern Mariana Islands, and select states with TAF data quality issues are not included. Results shown for the race and ethnicity subpopulation topic exclude enrollees in the U.S. Virgin Islands. Results shown for the primary language subpopulation topic exclude select states with data quality issues with the primary language variable in TAF. Some rows in the data set have a value of "DS," which indicates that data were suppressed according to the Centers for Medicare & Medicaid Services’ Cell Suppression Policy for values between 1 and 10. This data set is based on the brief: "Medicaid and CHIP enrollees who received mental health or SUD services in 2020." Enrollees are assigned to an age group subpopulation using age as of December 31st of the calendar year. Enrollees are assigned to a sex or gender identity subpopulation using their latest reported sex in the calendar year. Enrollees are assigned to a race and ethnicity subpopulation using the state-reported race and ethnicity information in TAF when it is available and of good quality; if it is missing or unreliable, race and ethnicity is indirectly estimated using an enhanced version of Bayesian Improved Surname Geocoding (BISG) (Race and ethnicity of the national Medicaid and CHIP population in 2020). Enrollees are assigned to an urban or rural subpopulation based on the 2010 Rural-Urban Commuting Area (RUCA) code associated with their home or mailing address ZIP code in TAF (Rural Medicaid and CHIP enrollees in 2020). Enrollees are assigned to an eligibility category subpopulation using their latest reported eligibility group code, CHIP code, and age in the calendar year. Enrollees are assigned to a primary language subpopulation based on their reported ISO language code in TAF (English/missing, Spanish, and all other language codes) (Primary Language). Please refer to the full brief for additional context about the methodology and detailed findings. Future updates to this data set will include more recent data years as the TAF data become available.