Facebook
TwitterBytemine offers access to over 100 million verified personal email addresses for US consumers and professionals. This extensive B2C contact database is designed to support modern outreach, digital marketing, lead generation, and customer engagement across channels that reach people where they are most responsive — their personal inbox.
Unlike traditional work email databases that limit outreach to business hours or corporate filters, personal emails enable more flexible, direct, and often higher-converting communication. Whether you're running direct-to-consumer campaigns, re-engaging inactive users, or enriching existing contact records, Bytemine provides the scale and data quality you need to connect effectively.
Our personal email dataset includes:
100 million+ verified personal email addresses (Gmail, Yahoo, Outlook, etc.) Matched with names, phone numbers, location, and demographic attributes 50+ enriched fields including age range, gender, location, occupation, and consumer behavior signals Optional inclusion of job title, company, and professional details for dual B2B-B2C targeting
All emails are verified and regularly updated to ensure deliverability, reduce bounce rates, and improve sender reputation. Contacts are sourced through direct data licensing agreements with consumer platforms, B2C applications, and verified aggregators, ensuring compliance and reliability.
This data is ideal for:
B2C marketing campaigns (email newsletters, promotions, lifecycle emails) Direct-to-consumer product launches and brand activations Customer re-engagement and loyalty campaigns Lookalike audience creation for paid media CRM enrichment with consumer-facing contact info Identity resolution and cross-channel targeting Data onboarding for ad platforms or audience segmentation Consumer surveys, polling, and research
Bytemine’s personal email dataset empowers your marketing, growth, and data teams with clean, structured, and highly scalable contact information. Each record can be enriched with behavioral and demographic data, enabling advanced personalization and segmentation strategies.
Access is available through:
With flexible delivery options and scalable pricing, Bytemine supports startups, growth teams, agencies, and enterprise platforms looking to expand their reach and drive performance with verified consumer data.
If you're looking to power outreach across consumer inboxes, enrich B2C data, or build a scalable, compliant contact database, Bytemine’s personal email dataset is the fastest way to connect with real people across the United States.
Facebook
Twitterhttps://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
**🌍 World Countries Dataset This World Countries Dataset contains detailed information about countries across the globe, offering insights into their geographic, demographic, and economic characteristics.
It includes various features such as population, area, GDP, languages, and regional classifications. This dataset is ideal for projects related to data visualization, statistical analysis, geographical studies, or machine learning applications such as clustering or classification of countries.
This dataset was manually compiled/collected from reliable open data sources (e.g., Wikipedia, World Bank, or other governmental datasets).
**🔍 Sample Questions Explored Using Python: - Q. 1) Which countries have the highest and lowest population? - Q. 2) What is the average area (in sq. km) of countries in each region? - Q. 3) Which countries have more than 100 million population and GDP above $1 trillion? - Q. 4) Which languages are most commonly spoken across countries? - Q. 5) Show a bar graph comparing GDPs of G7 nations. - Q. 6) How many countries are there in each continent or region? - Q. 7) Which countries have both a high population density and low GDP per capita? - Q. 8) Create a world map visualization of population or GDP distribution. - Q. 9) What are the top 10 most densely populated countries? - Q. 10) How many landlocked countries are there in the world?
**🧾 Features / Columns in the Dataset: - Country: The name of the country (e.g., "Pakistan", "France").
Capital: The capital city of the country.
Region: Broad geographical region (e.g., "Asia", "Europe").
Subregion: More specific geographical grouping (e.g., "Southern Asia").
Population: Total population of the country.
Area (sq. km): Total land area in square kilometers.
Population Density: Number of people per square kilometer.
GDP (USD): Gross Domestic Product (in U.S. dollars).
GDP per Capita: GDP divided by the population.
Official Languages: Officially recognized language(s) spoken.
Currency: Name of the currency used.
Timezones: Timezones in which the country falls.
Borders: List of bordering countries (if any).
Landlocked: Whether the country is landlocked (Yes/No).
Latitude / Longitude: Coordinates for geographical plotting.
Facebook
Twitterhttps://spdx.org/licenses/CC0-1.0.htmlhttps://spdx.org/licenses/CC0-1.0.html
This is the dataset for the study of "Social dilemma in the excess use of antimicrobials incurring antimicrobial resistance". The emergence of antimicrobial resistance (AMR) caused by the excess use of antimicrobials has come to be recognized as a global threat to public health. There is a ‘tragedy of the commons’ type social dilemma behind this excessive use of antimicrobials, which should be recognized by all stakeholders. To address this global threat, we thus surveyed eight countries/areas to determine whether people recognize this dilemma and showed that although more than half of the population pays little, if any, attention to it, almost 20% recognize this social dilemma, and 15–30% of those have a positive attitude toward solving that dilemma. We suspect that increasing individual awareness of this social dilemma contributes to decreasing the frequency of AMR emergencies. Methods We designed a questionnaire to observe a social dilemma in the excess use of antimicrobials incurring antimicrobial resistance by placing two types of imaginary artificial-intelligence (AI) physicians who perform medical practice from either an individual or societal perspective. We assume two AI medical diagnosis systems: “Individual precedence AI” (abbreviated Individual-AI) and “World precedence AI” (abbreviated World-AI). Both AIs diagnose and prescribe medicine automatically. The Individual-AI system diagnoses patients and prescribes medicine to prevent infections based on an individual perspective, including all prophylactic prescriptions against rare accidental infections (not yet present and unlikely to occur). It does not consider the global risk of AMR in the decision. The World-AI system, instead, takes into account the global mortality rate of AMR, aiming to reduce the total number of all AMR-related deaths. Because of this, this AI system does not prescribe antimicrobials against rare and not-yet-present infections. This questionnaire design allows us to observe the social dilemma. For example, it shows a typical social dilemma caused by preferring the use of Individual-AI for diagnosing oneself but preferring the use of World-AI for diagnosing strangers.
The survey entitled “Survey on Medical Advancement” was administered to 8 countries/areas. The survey was conducted 4 times. For the two surveys in Japan, an internet survey company, Cross Marketing Inc. (https://www.cross-m.co.jp/en/), created the questionnaire webpages based on our study design. The company also collected the data. As of April 2020, Cross Marketing Inc. has 4.79 million people in an active panel (survey participants who registered in advance). Here, the definition of an active panel is a survey respondent who has been active within the last year. For the panels, the questionnaire and response column were displayed on the website through which the respondents could complete and submit their responses. We extracted 500 submissions for each gender and each age group by random sampling from all samples collected during the survey periods. The surveys in the 7 countries/areas (i.e., the United States, the United Kingdom, Sweden, Taiwan, Australia, Brazil, and Russia) are conducted by Cint (https://www.cint.com/). Cint is the world’s largest consumer network for digital survey-based research. The headquarters of the company is in Sweden. Cint maintains a survey platform that contained more than 100 million consumer monitors in over 80 countries as of May 2020. For surveys in the US, UK, Sweden, Taiwan, Australia, Brazil, and Russia, Cint Japan (https://jp.cint.com/), which is the Japanese distributor of Cint, created translated questionnaire webpages based on our study design. The company also collected the data. We extracted at least 500 (US, UK, SWE, BRA, RUS) or 250 (TWN, AUS) submissions for each gender (male and female) and each age group (20 s, 30 s, 40 s, 50 s, and 60 s) by random sampling from all samples collected between survey periods. Note that both companies eliminated inconsistent or apathetic respondents. For example, respondents with inconsistent responses (e.g., the registered age of the respondent differed from the reported age at the time of the survey.) were eliminated before reaching the authors. In addition, respondents with significantly short response times (i.e., shorter than 1 min) were eliminated because they may not have read the questions carefully.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Money Supply M0 in the United States increased to 53615000 USD Million in October from 5478000 USD Million in September of 2025. This dataset provides - United States Money Supply M0 - actual values, historical data, forecast, chart, statistics, economic calendar and news.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset tabulates the Wisconsin population over the last 20 plus years. It lists the population for each year, along with the year on year change in population, as well as the change in percentage terms for each year. The dataset can be utilized to understand the population change of Wisconsin across the last two decades. For example, using this dataset, we can identify if the population is declining or increasing. If there is a change, when the population peaked, or if it is still growing and has not reached its peak. We can also compare the trend with the overall trend of United States population over the same period of time.
Key observations
In 2024, the population of Wisconsin was 5.96 million, a 0.52% increase year-by-year from 2023. Previously, in 2023, Wisconsin population was 5.93 million, an increase of 0.45% compared to a population of 5.9 million in 2022. Over the last 20 plus years, between 2000 and 2024, population of Wisconsin increased by 587,126. In this period, the peak population was 5.96 million in the year 2024. The numbers suggest that the population has not reached its peak yet and is showing a trend of further growth. Source: U.S. Census Bureau Population Estimates Program (PEP).
When available, the data consists of estimates from the U.S. Census Bureau Population Estimates Program (PEP).
Data Coverage:
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for Wisconsin Population by Year. You can refer the same here
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset tabulates the Iowa population by age cohorts (Children: Under 18 years; Working population: 18-64 years; Senior population: 65 years or more). It lists the population in each age cohort group along with its percentage relative to the total population of Iowa. The dataset can be utilized to understand the population distribution across children, working population and senior population for dependency ratio, housing requirements, ageing, migration patterns etc.
Key observations
The largest age group was 18 to 64 years with a poulation of 1.89 million (59.15% of the total population). Source: U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates.
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates.
Age cohorts:
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for Iowa Population by Age. You can refer the same here
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset tabulates the North Carolina population by age cohorts (Children: Under 18 years; Working population: 18-64 years; Senior population: 65 years or more). It lists the population in each age cohort group along with its percentage relative to the total population of North Carolina. The dataset can be utilized to understand the population distribution across children, working population and senior population for dependency ratio, housing requirements, ageing, migration patterns etc.
Key observations
The largest age group was 18 to 64 years with a poulation of 6.47 million (61.17% of the total population). Source: U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates.
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates.
Age cohorts:
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for North Carolina Population by Age. You can refer the same here
Facebook
TwitterSuccess.ai presents an exclusive opportunity to connect directly with top-tier decision-makers in the finance sector through our CEO Contact Data, specifically designed for venture capital and private equity investors based in the USA. This tailored database is part of our expansive collection that draws from over 700 million global profiles, meticulously verified to ensure the highest quality and reliability.
Why Choose Success.ai’s CEO Contact Data?
Specialized Investor Profiles: Access detailed profiles of CEOs and senior executives from leading venture capital and private equity firms across the United States. Investment Insights: Gain valuable insights into investment trends, fund sizes, and sectors of interest directly from the decision-makers. Verified Contact Details: We provide up-to-date email addresses and phone numbers, ensuring that you reach the right people without the hassle of outdated information. Data Features:
Targeted Financial Sector Data: Directly target influential figures in the financial sector who have the authority to make investment decisions. Comprehensive Executive Information: Profiles include not just contact information but also professional backgrounds, areas of investment focus, and operational histories. Geographic Precision: Focus your outreach efforts on US-based investors with our geographically segmented data. Flexible Delivery and Integration: Choose from various delivery options including API access for real-time integration or static files for periodic campaign use, allowing for seamless incorporation into your CRM or marketing automation tools.
Competitive Pricing with Best Price Guarantee: Success.ai is committed to providing competitive pricing without compromising on quality, backed by our Best Price Guarantee.
Effective Use Cases for CEO Contact Data:
Fundraising Initiatives: Connect with venture capital and private equity firms for fundraising activities or financial endorsements. Partnership Development: Forge strategic partnerships and collaborations with leading investors in the industry. Event Invitations: Send personalized invites to investment summits, roundtables, and networking events catered to top financial executives. Market Analysis: Utilize executive insights to better understand the investment landscape and refine your market strategies. Quality Assurance and Compliance:
Rigorous Data Verification: Our data undergoes continuous verification processes to maintain accuracy and completeness. Compliance with Regulations: All data handling practices adhere to GDPR and other relevant data protection laws, ensuring ethical and lawful use. Support and Custom Solutions:
Client Support: Our team is available to assist with any queries or specific data needs you may have. Tailored Data Solutions: Customize data sets according to specific criteria such as investment size, sector focus, or geographic location. Start Connecting with Venture Leaders: Empower your business strategy and network building by accessing Success.ai’s CEO Contact Data for venture capital and private equity investors. Whether you're looking to initiate funding rounds, explore investment opportunities, or engage with top financial leaders, our reliable data will pave the way for meaningful connections and successful outcomes.
Contact Success.ai today to discover how our precise and comprehensive data can transform your business approach and help you achieve your strategic goals.
Facebook
Twitterhttps://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
NYC Open Data is an opportunity to engage New Yorkers in the information that is produced and used by City government. We believe that every New Yorker can benefit from Open Data, and Open Data can benefit from every New Yorker. Source: https://opendata.cityofnewyork.us/overview/
Thanks to NYC Open Data, which makes public data generated by city agencies available for public use, and Citi Bike, we've incorporated over 150 GB of data in 5 open datasets into Google BigQuery Public Datasets, including:
Over 8 million 311 service requests from 2012-2016
More than 1 million motor vehicle collisions 2012-present
Citi Bike stations and 30 million Citi Bike trips 2013-present
Over 1 billion Yellow and Green Taxi rides from 2009-present
Over 500,000 sidewalk trees surveyed decennially in 1995, 2005, and 2015
This dataset is deprecated and not being updated.
Fork this kernel to get started with this dataset.
https://opendata.cityofnewyork.us/
This dataset is publicly available for anyone to use under the following terms provided by the Dataset Source - https://data.cityofnewyork.us/ - and is provided "AS IS" without any warranty, express or implied, from Google. Google disclaims all liability for any damages, direct or indirect, resulting from the use of the dataset.
By accessing datasets and feeds available through NYC Open Data, the user agrees to all of the Terms of Use of NYC.gov as well as the Privacy Policy for NYC.gov. The user also agrees to any additional terms of use defined by the agencies, bureaus, and offices providing data. Public data sets made available on NYC Open Data are provided for informational purposes. The City does not warranty the completeness, accuracy, content, or fitness for any particular purpose or use of any public data set made available on NYC Open Data, nor are any such warranties to be implied or inferred with respect to the public data sets furnished therein.
The City is not liable for any deficiencies in the completeness, accuracy, content, or fitness for any particular purpose or use of any public data set, or application utilizing such data set, provided by any third party.
Banner Photo by @bicadmedia from Unplash.
On which New York City streets are you most likely to find a loud party?
Can you find the Virginia Pines in New York City?
Where was the only collision caused by an animal that injured a cyclist?
What’s the Citi Bike record for the Longest Distance in the Shortest Time (on a route with at least 100 rides)?
https://cloud.google.com/blog/big-data/2017/01/images/148467900588042/nyc-dataset-6.png" alt="enter image description here">
https://cloud.google.com/blog/big-data/2017/01/images/148467900588042/nyc-dataset-6.png
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset tabulates the Los Angeles population by age cohorts (Children: Under 18 years; Working population: 18-64 years; Senior population: 65 years or more). It lists the population in each age cohort group along with its percentage relative to the total population of Los Angeles. The dataset can be utilized to understand the population distribution across children, working population and senior population for dependency ratio, housing requirements, ageing, migration patterns etc.
Key observations
The largest age group was 18 to 64 years with a poulation of 2.57 million (66.68% of the total population). Source: U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates.
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates.
Age cohorts:
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for Los Angeles Population by Age. You can refer the same here
Facebook
TwitterSuccess.ai offers a comprehensive, enterprise-ready B2B leads data solution, ideal for businesses seeking access to over 150 million verified employee profiles and 170 million work emails. Our data empowers organizations across industries to target key decision-makers, optimize recruitment, and fuel B2B marketing efforts. Whether you're looking for UK B2B data, B2B marketing data, or global B2B contact data, Success.ai provides the insights you need with pinpoint accuracy.
Tailored for B2B Sales, Marketing, Recruitment and more: Our B2B contact data and B2B email data solutions are designed to enhance your lead generation, sales, and recruitment efforts. Build hyper-targeted lists based on job title, industry, seniority, and geographic location. Whether you’re reaching mid-level professionals or C-suite executives, Success.ai delivers the data you need to connect with the right people.
API Features:
Key Categories Served: B2B sales leads – Identify decision-makers in key industries, B2B marketing data – Target professionals for your marketing campaigns, Recruitment data – Source top talent efficiently and reduce hiring times, CRM enrichment – Update and enhance your CRM with verified, updated data, Global reach – Coverage across 195 countries, including the United States, United Kingdom, Germany, India, Singapore, and more.
Global Coverage with Real-Time Accuracy: Success.ai’s dataset spans a wide range of industries such as technology, finance, healthcare, and manufacturing. With continuous real-time updates, your team can rely on the most accurate data available: 150M+ Employee Profiles: Access professional profiles worldwide with insights including full name, job title, seniority, and industry. 170M Verified Work Emails: Reach decision-makers directly with verified work emails, available across industries and geographies, including Singapore and UK B2B data. GDPR-Compliant: Our data is fully compliant with GDPR and other global privacy regulations, ensuring safe and legal use of B2B marketing data.
Key Data Points for Every Employee Profile: Every profile in Success.ai’s database includes over 20 critical data points, providing the information needed to power B2B sales and marketing campaigns: Full Name, Job Title, Company, Work Email, Location, Phone Number, LinkedIn Profile, Experience, Education, Technographic Data, Languages, Certifications, Industry, Publications & Awards.
Use Cases Across Industries: Success.ai’s B2B data solution is incredibly versatile and can support various enterprise use cases, including: B2B Marketing Campaigns: Reach high-value professionals in industries such as technology, finance, and healthcare. Enterprise Sales Outreach: Build targeted B2B contact lists to improve sales efforts and increase conversions. Talent Acquisition: Accelerate hiring by sourcing top talent with accurate and updated employee data, filtered by job title, industry, and location. Market Research: Gain insights into employment trends and company profiles to enrich market research. CRM Data Enrichment: Ensure your CRM stays accurate by integrating updated B2B contact data. Event Targeting: Create lists for webinars, conferences, and product launches by targeting professionals in key industries.
Use Cases for Success.ai's Contact Data - Targeted B2B Marketing: Create precise campaigns by targeting key professionals in industries like tech and finance. - Sales Outreach: Build focused sales lists of decision-makers and C-suite executives for faster deal cycles. - Recruiting Top Talent: Easily find and hire qualified professionals with updated employee profiles. - CRM Enrichment: Keep your CRM current with verified, accurate employee data. - Event Targeting: Create attendee lists for events by targeting relevant professionals in key sectors. - Market Research: Gain insights into employment trends and company profiles for better business decisions. - Executive Search: Source senior executives and leaders for headhunting and recruitment. - Partnership Building: Find the right companies and key people to develop strategic partnerships.
Why Choose Success.ai’s Employee Data? Success.ai is the top choice for enterprises looking for comprehensive and affordable B2B data solutions. Here’s why: Unmatched Accuracy: Our AI-powered validation process ensures 99% accuracy across all data points, resulting in higher engagement and fewer bounces. Global Scale: With 150M+ employee profiles and 170M veri...
Facebook
TwitterSuccess.ai’s Phone Number Data offers direct access to over 50 million verified phone numbers for professionals worldwide, extracted from our expansive collection of 170 million profiles. This robust dataset includes work emails and key decision-maker profiles, making it an essential resource for companies aiming to enhance their communication strategies and outreach efficiency. Whether you're launching targeted marketing campaigns, setting up sales calls, or conducting market research, our phone number data ensures you're connected to the right professionals at the right time.
Why Choose Success.ai’s Phone Number Data?
Direct Communication: Reach out directly to professionals with verified phone numbers and work emails, ensuring your message gets to the right person without delay. Global Coverage: Our data spans across continents, providing phone numbers for professionals in North America, Europe, APAC, and emerging markets. Continuously Updated: We regularly refresh our dataset to maintain accuracy and relevance, reflecting changes like promotions, company moves, or industry shifts. Comprehensive Data Points:
Verified Phone Numbers: Direct lines and mobile numbers of professionals across various industries. Work Emails: Reliable email addresses to complement phone communications. Professional Profiles: Decision-makers’ profiles including job titles, company details, and industry information. Flexible Delivery and Integration: Success.ai offers this dataset in various formats suitable for seamless integration into your CRM or sales platform. Whether you prefer API access for real-time data retrieval or static files for periodic updates, we tailor the delivery to meet your operational needs.
Competitive Pricing with Best Price Guarantee: We provide this essential data at the most competitive prices in the industry, ensuring you receive the best value for your investment. Our best price guarantee means you can trust that you are getting the highest quality data at the lowest possible cost.
Targeted Applications for Phone Number Data:
Sales and Telemarketing: Enhance your telemarketing campaigns by reaching out directly to potential customers, bypassing gatekeepers. Market Research: Conduct surveys and research directly with industry professionals to gather insights that can shape your business strategy. Event Promotion: Invite prospects to webinars, conferences, and seminars directly through personal calls or SMS. Customer Support: Improve customer service by integrating accurate contact information into your support systems. Quality Assurance and Compliance:
Data Accuracy: Our data is verified for accuracy to ensure over 99% deliverability rates. Compliance: Fully compliant with GDPR and other international data protection regulations, allowing you to use the data with confidence globally. Customization and Support:
Tailored Data Solutions: Customize the data according to geographic, industry-specific, or job role filters to match your unique business needs. Dedicated Support: Our team is on hand to assist with data integration, usage, and any questions you may have. Start with Success.ai Today: Engage with Success.ai to leverage our Phone Number Data and connect with global professionals effectively. Schedule a consultation or request a sample through our dedicated client portal and begin transforming your outreach and communication strategies today.
Remember, with Success.ai, you don’t just buy data; you invest in a partnership that grows with your business needs, backed by our commitment to quality and affordability.
Facebook
TwitterColumns for Brand, Sub-brand, and Descriptions are inconsistent in their formatting. (i.e. brand names found in Descriptions column instead of Brand column). Left as is from the original USDA datasets.
Column Serving Size Unit is inconsistent in its descriptions. (Attempted to make this uniform, but found incorrect units alongside values (MG =? g)). Left as is from the original datasets.
Column Amount does NOT equal to the nutrient amount per serving. To find the nutrient amount per serving, I used the following equation:
(Nutrient amounts based on 100g or 100 ml according to USDA):
[Nutrient Amount per Serving = (Amount)*(Serving Size) / 100]
This should be considered a tentative solution and may not apply to all listed values. For this reason, I excluded a column which uses this formula.
This dataset does not include the household servings (servings per container).
Column V1 can be ignored.
-Contains +20 million rows, 15 columns of nutritional data typically found on food labels for the various brand foods in the United States. -Combination of original datasets with minimal changes.
Facebook
Twitterhttps://cdla.io/sharing-1-0/https://cdla.io/sharing-1-0/
This dataset simulates a set of key economic, social, and environmental indicators for 20 countries over the period from 2010 to 2019. The dataset is designed to reflect typical World Bank metrics, which are used for analysis, policy-making, and forecasting. It includes the following variables:
Country Name: The country for which the data is recorded. Year: The specific year of the observation (from 2010 to 2019). GDP (USD): Gross Domestic Product in billions of US dollars, indicating the economic output of a country. Population: The total population of the country in millions. Life Expectancy (in years): The average life expectancy at birth for the country’s population. Unemployment Rate (%): The percentage of the total labor force that is unemployed but actively seeking employment. CO2 Emissions (metric tons per capita): The per capita carbon dioxide emissions, reflecting environmental impact. Access to Electricity (% of population): The percentage of the population with access to electricity, representing infrastructure development. Country:
Description: Name of the country for which the data is recorded. Data Type: String Example: "United States", "India", "Brazil" Year:
Description: The year in which the data is observed. Data Type: Integer Range: 2010 to 2019 Example: 2012, 2015 GDP (USD):
Description: The Gross Domestic Product of the country in billions of US dollars, indicating the economic output. Data Type: Float (billions of USD) Example: 14200.56 (represents 14,200.56 billion USD) Population:
Description: The total population of the country in millions. Data Type: Float (millions of people) Example: 331.42 (represents 331.42 million people) Life Expectancy (in years):
Description: The average number of years a newborn is expected to live, assuming that current mortality rates remain constant throughout their life. Data Type: Float (years) Range: Typically between 50 and 85 years Example: 78.5 years Unemployment Rate (%):
Description: The percentage of the total labor force that is unemployed but actively seeking employment. Data Type: Float (percentage) Range: Typically between 2% and 25% Example: 6.25% CO2 Emissions (metric tons per capita):
Description: The amount of carbon dioxide emissions per person in the country, measured in metric tons. Data Type: Float (metric tons) Range: Typically between 0.5 and 20 metric tons per capita Example: 4.32 metric tons per capita Access to Electricity (%):
Description: The percentage of the population with access to electricity. Data Type: Float (percentage) Range: Typically between 50% and 100% Example: 95.7%
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This dataset contains 999,999 rows of synthetic movie data designed to simulate real-world movie industry metrics and characteristics, with a variety of numeric, categorical, and date fields.
The dataset is ideal for: - Analytical reporting and dashboarding (Power BI, Tableau, Excel) - Exploratory data analysis (EDA), machine learning model development, and visualisation exercises - Understanding relationships between movie metrics, ratings, release timing, and personnel - Building interactive dashboards with filters like genre, release year, and country
| Column Name | Description |
|---|---|
| MovieID | Unique identifier for each movie (integer from 1 to 999,999) |
| Title | Synthetic movie title with natural language style |
| Genre | Primary movie genre (Drama, Action, Comedy, etc.) |
| ReleaseYear | Year of release (1950 to 2025) |
| ReleaseDate | Randomised full release date within the release year (YYYY-MM-DD) |
| Country | Country of production origin |
| BudgetUSD | Estimated production budget in US dollars (range $100k to $300 million) |
| US_BoxOfficeUSD | Gross box office revenue from the US market |
| Global_BoxOfficeUSD | Total global box office revenue |
| Opening_Day_SalesUSD | Estimated US ticket sales revenue on opening day |
| One_Week_SalesUSD | Estimated US ticket sales revenue in first week |
| IMDbRating | IMDb rating on a 1.0 to 10.0 scale |
| RottenTomatoesScore | Rotten Tomatoes rating (percentage between 0 and 100) |
| NumVotesIMDb | Number of user votes on IMDb platform |
| NumVotesRT | Number of user votes on Rotten Tomatoes platform |
| Director | Synthetic name of movie director |
| LeadActor | Synthetic name of lead actor |
Load the dataset in your preferred data analysis tool to: - Explore trends in movie production, box office, and ratings over time - Analyze the impact of budget and talent on movie success - Segment movies by genre, decade, or country - Build predictive models or dashboards highlighting key performance indicators
This dataset was synthetically generated for educational and demonstration purposes, inspired by real-world movie industry datasets like IMDb and Box Office Mojo.
Feel free to contact the author for questions or collaboration!
Not seeing a result you expected?
Learn how you can add new datasets to our index.
Facebook
TwitterBytemine offers access to over 100 million verified personal email addresses for US consumers and professionals. This extensive B2C contact database is designed to support modern outreach, digital marketing, lead generation, and customer engagement across channels that reach people where they are most responsive — their personal inbox.
Unlike traditional work email databases that limit outreach to business hours or corporate filters, personal emails enable more flexible, direct, and often higher-converting communication. Whether you're running direct-to-consumer campaigns, re-engaging inactive users, or enriching existing contact records, Bytemine provides the scale and data quality you need to connect effectively.
Our personal email dataset includes:
100 million+ verified personal email addresses (Gmail, Yahoo, Outlook, etc.) Matched with names, phone numbers, location, and demographic attributes 50+ enriched fields including age range, gender, location, occupation, and consumer behavior signals Optional inclusion of job title, company, and professional details for dual B2B-B2C targeting
All emails are verified and regularly updated to ensure deliverability, reduce bounce rates, and improve sender reputation. Contacts are sourced through direct data licensing agreements with consumer platforms, B2C applications, and verified aggregators, ensuring compliance and reliability.
This data is ideal for:
B2C marketing campaigns (email newsletters, promotions, lifecycle emails) Direct-to-consumer product launches and brand activations Customer re-engagement and loyalty campaigns Lookalike audience creation for paid media CRM enrichment with consumer-facing contact info Identity resolution and cross-channel targeting Data onboarding for ad platforms or audience segmentation Consumer surveys, polling, and research
Bytemine’s personal email dataset empowers your marketing, growth, and data teams with clean, structured, and highly scalable contact information. Each record can be enriched with behavioral and demographic data, enabling advanced personalization and segmentation strategies.
Access is available through:
With flexible delivery options and scalable pricing, Bytemine supports startups, growth teams, agencies, and enterprise platforms looking to expand their reach and drive performance with verified consumer data.
If you're looking to power outreach across consumer inboxes, enrich B2C data, or build a scalable, compliant contact database, Bytemine’s personal email dataset is the fastest way to connect with real people across the United States.