
 Facebook
Facebook Twitter
Twitter Email
Email
https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
The Health Insurance Marketplace Public Use Files contain data on health and dental plans offered to individuals and small businesses through the US Health Insurance Marketplace.
To help get you started, here are some data exploration ideas:
See this forum thread for more ideas, and post there if you want to add your own ideas or answer some of the open questions!
This data was originally prepared and released by the Centers for Medicare & Medicaid Services (CMS). Please read the CMS Disclaimer-User Agreement before using this data.
Here, we've processed the data to facilitate analytics. This processed version has three components:
The original versions of the 2014, 2015, 2016 data are available in the "raw" directory of the download and "../input/raw" on Kaggle Scripts. Search for "dictionaries" on this page to find the data dictionaries describing the individual raw files.
In the top level directory of the download ("../input" on Kaggle Scripts), there are six CSV files that contain the combined at across all years:
Additionally, there are two CSV files that facilitate joining data across years:
The "database.sqlite" file contains tables corresponding to each of the processed CSV files.
The code to create the processed version of this data is available on GitHub.

 Facebook
Facebook Twitter
Twitter Email
Email
https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
The venerable insurance industry is no stranger to data driven decision making. Yet in today's rapidly transforming digital landscape, Insurance is struggling to adapt and benefit from new technologies compared to other industries, even within the BFSI sphere (compared to the Banking sector for example.) Extremely complex underwriting rule-sets that are radically different in different product lines, many non-KYC environments with a lack of centralized customer information base, complex relationship with consumers in traditional risk underwriting where sometimes customer centricity runs reverse to business profit, inertia of regulatory compliance - are some of the unique challenges faced by Insurance Business.
Despite this, emergent technologies like AI and Block Chain have brought a radical change in Insurance, and Data Analytics sits at the core of this transformation. We can identify 4 key factors behind the emergence of Analytics as a crucial part of InsurTech:
This dataset can be helpful in a simple yet illuminating study in understanding the risk underwriting in Health Insurance, the interplay of various attributes of the insured and see how they affect the insurance premium.
This dataset contains 1338 rows of insured data, where the Insurance charges are given against the following attributes of the insured: Age, Sex, BMI, Number of Children, Smoker and Region. There are no missing or undefined values in the dataset.
This relatively simple dataset should be an excellent starting point for EDA, Statistical Analysis and Hypothesis testing and training Linear Regression models for predicting Insurance Premium Charges.
Proposed Tasks: - Exploratory Data Analytics - Statistical hypothesis testing - Statistical Modeling - Linear Regression

 Facebook
Facebook Twitter
Twitter Email
Email
This dataset contains estimates of health insured and uninsured population for 2020 at county and state level based on US Census Bureau program, The Small Area Health Insurance Estimates (SAHIE) program. For every state and county for each demographic group, defined by age, gender, race/ethnicity and income relative to poverty, the estimated number of persons insured and uninsured is given along with the margin of error.

 Facebook
Facebook Twitter
Twitter Email
Email
The U.S. Census Bureau, in collaboration with five federal agencies, launched the Household Pulse Survey to produce data on the social and economic impacts of Covid-19 on American households. The Household Pulse Survey was designed to gauge the impact of the pandemic on employment status, consumer spending, food security, housing, education disruptions, and dimensions of physical and mental wellness. The survey was designed to meet the goal of accurate and timely weekly estimates. It was conducted by an internet questionnaire, with invitations to participate sent by email and text message. The sample frame is the Census Bureau Master Address File Data. Housing units linked to one or more email addresses or cell phone numbers were randomly selected to participate, and one respondent from each housing unit was selected to respond for him or herself. Estimates are weighted to adjust for nonresponse and to match Census Bureau estimates of the population by age, sex, race and ethnicity, and educational attainment. All estimates shown meet the NCHS Data Presentation Standards for Proportions.

 Facebook
Facebook Twitter
Twitter Email
Email
This dataset provides an estimate of the percent of Detroit residents who reported having health insurance at the time they completed the American Community Survey (ACS). The data is averaged over 5 years. This data can be also be accessed in Table S2701 on the American FactFinder website.Note that the data is provided by ZIP Code Tabulation Area (ZCTA), which may not exactly match USPS ZIP Code service areas. For more information: https://web.archive.org/web/20130617034846/http://www.census.gov/geo/reference/zctas.html

 Facebook
Facebook Twitter
Twitter Email
Email
This dataset includes information regarding civilian noninstitutionalized population without health Insurance coverage for persons under the age of 65 years in the United States and Puerto Rico by territory, state and age from year 2009 through 2016.

 Facebook
Facebook Twitter
Twitter Email
Email
CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
Key Table Information.Table Title.Health Insurance Coverage Status by Age (White Alone).Table ID.ACSDT1Y2024.C27001A.Survey/Program.American Community Survey.Year.2024.Dataset.ACS 1-Year Estimates Detailed Tables.Source.U.S. Census Bureau, 2024 American Community Survey, 1-Year Estimates.Dataset Universe.The dataset universe of the American Community Survey (ACS) is the U.S. resident population and housing. For more information about ACS residence rules, see the ACS Design and Methodology Report. Note that each table describes the specific universe of interest for that set of estimates..Methodology.Unit(s) of Observation.American Community Survey (ACS) data are collected from individuals living in housing units and group quarters, and about housing units whether occupied or vacant. For more information about ACS sampling and data collection, see the ACS Design and Methodology Report..Geography Coverage.ACS data generally reflect the geographic boundaries of legal and statistical areas as of January 1 of the estimate year. For more information, see Geography Boundaries by Year.Estimates of urban and rural populations, housing units, and characteristics reflect boundaries of urban areas defined based on 2020 Census data. As a result, data for urban and rural areas from the ACS do not necessarily reflect the results of ongoing urbanization..Sampling.The ACS consists of two separate samples: housing unit addresses and group quarters facilities. Independent housing unit address samples are selected for each county or county-equivalent in the U.S. and Puerto Rico, with sampling rates depending on a measure of size for the area. For more information on sampling in the ACS, see the Accuracy of the Data document..Confidentiality.The Census Bureau has modified or suppressed some estimates in ACS data products to protect respondents' confidentiality. Title 13 United States Code, Section 9, prohibits the Census Bureau from publishing results in which an individual's data can be identified. For more information on confidentiality protection in the ACS, see the Accuracy of the Data document..Technical Documentation/Methodology.Information about the American Community Survey (ACS) can be found on the ACS website. Supporting documentation including code lists, subject definitions, data accuracy, and statistical testing, and a full list of ACS tables and table shells (without estimates) can be found on the Technical Documentation section of the ACS website.Sample size and data quality measures (including coverage rates, allocation rates, and response rates) can be found on the American Community Survey website in the Methodology section.Data are based on a sample and are subject to sampling variability. The degree of uncertainty for an estimate arising from sampling variability is represented through the use of a margin of error. The value shown here is the 90 percent margin of error. The margin of error can be interpreted roughly as providing a 90 percent probability that the interval defined by the estimate minus the margin of error and the estimate plus the margin of error (the lower and upper confidence bounds) contains the true value. In addition to sampling variability, the ACS estimates are subject to nonsampling error (for a discussion of nonsampling variability, see ACS Technical Documentation). The effect of nonsampling error is not represented in these tables.Users must consider potential differences in geographic boundaries, questionnaire content or coding, or other methodological issues when comparing ACS data from different years. Statistically significant differences shown in ACS Comparison Profiles, or in data users' own analysis, may be the result of these differences and thus might not necessarily reflect changes to the social, economic, housing, or demographic characteristics being compared. For more information, see Comparing ACS Data..Weights.ACS estimates are obtained from a raking ratio estimation procedure that results in the assignment of two sets of weights: a weight to each sample person record and a weight to each sample housing unit record. Estimates of person characteristics are based on the person weight. Estimates of family, household, and housing unit characteristics are based on the housing unit weight. For any given geographic area, a characteristic total is estimated by summing the weights assigned to the persons, households, families or housing units possessing the characteristic in the geographic area. For more information on weighting and estimation in the ACS, see the Accuracy of the Data document.Although the American Community Survey (ACS) produces population, demographic and housing unit estimates, the decennial census is the official source of population totals for April 1st of each decennial year. In between censuses, the Census Bureau's Population Estimates Program produces and disseminates the official estimates of the population for the nation, states, counties, cities, a...

 Facebook
Facebook Twitter
Twitter Email
Email
This layer shows health insurance coverage by type and by age group. This is shown by tract, county, and state centroids. This service is updated annually to contain the most currently released American Community Survey (ACS) 5-year data, and contains estimates and margins of error. There are also additional calculated attributes related to this topic, which can be mapped or used within analysis. This layer is symbolized to show the count and percent uninsured. To see the full list of attributes available in this service, go to the "Data" tab, and choose "Fields" at the top right. Current Vintage: 2019-2023ACS Table(s): B27010 (Not all lines of this ACS table are available in this feature layer.)Data downloaded from: Census Bureau's API for American Community Survey Date of API call: December 12, 2024National Figures: data.census.govThe United States Census Bureau's American Community Survey (ACS):About the SurveyGeography & ACSTechnical DocumentationNews & UpdatesThis ready-to-use layer can be used within ArcGIS Pro, ArcGIS Online, its configurable apps, dashboards, Story Maps, custom apps, and mobile apps. Data can also be exported for offline workflows. For more information about ACS layers, visit the FAQ. Please cite the Census and ACS when using this data.Data Note from the Census:Data are based on a sample and are subject to sampling variability. The degree of uncertainty for an estimate arising from sampling variability is represented through the use of a margin of error. The value shown here is the 90 percent margin of error. The margin of error can be interpreted as providing a 90 percent probability that the interval defined by the estimate minus the margin of error and the estimate plus the margin of error (the lower and upper confidence bounds) contains the true value. In addition to sampling variability, the ACS estimates are subject to nonsampling error (for a discussion of nonsampling variability, see Accuracy of the Data). The effect of nonsampling error is not represented in these tables.Data Processing Notes:This layer is updated automatically when the most current vintage of ACS data is released each year, usually in December. The layer always contains the latest available ACS 5-year estimates. It is updated annually within days of the Census Bureau's release schedule. Click here to learn more about ACS data releases.Boundaries come from the US Census TIGER geodatabases, specifically, the National Sub-State Geography Database (named tlgdb_(year)_a_us_substategeo.gdb). Boundaries are updated at the same time as the data updates (annually), and the boundary vintage appropriately matches the data vintage as specified by the Census. These are Census boundaries with water and/or coastlines erased for cartographic and mapping purposes. For census tracts, the water cutouts are derived from a subset of the 2020 Areal Hydrography boundaries offered by TIGER. Water bodies and rivers which are 50 million square meters or larger (mid to large sized water bodies) are erased from the tract level boundaries, as well as additional important features. For state and county boundaries, the water and coastlines are derived from the coastlines of the 2023 500k TIGER Cartographic Boundary Shapefiles. These are erased to more accurately portray the coastlines and Great Lakes. The original AWATER and ALAND fields are still available as attributes within the data table (units are square meters).The States layer contains 52 records - all US states, Washington D.C., and Puerto RicoCensus tracts with no population that occur in areas of water, such as oceans, are removed from this data service (Census Tracts beginning with 99).Percentages and derived counts, and associated margins of error, are calculated values (that can be identified by the "_calc_" stub in the field name), and abide by the specifications defined by the American Community Survey.Field alias names were created based on the Table Shells file available from the American Community Survey Summary File Documentation page.Negative values (e.g., -4444...) have been set to null, with the exception of -5555... which has been set to zero. These negative values exist in the raw API data to indicate the following situations:The margin of error column indicates that either no sample observations or too few sample observations were available to compute a standard error and thus the margin of error. A statistical test is not appropriate.Either no sample observations or too few sample observations were available to compute an estimate, or a ratio of medians cannot be calculated because one or both of the median estimates falls in the lowest interval or upper interval of an open-ended distribution.The median falls in the lowest interval of an open-ended distribution, or in the upper interval of an open-ended distribution. A statistical test is not appropriate.The estimate is controlled. A statistical test for sampling variability is not appropriate.The data for this geographic area cannot be displayed because the number of sample cases is too small.

 Facebook
Facebook Twitter
Twitter Email
Email
The Health Insurance Questions and Answers dataset provides a comprehensive collection of common inquiries related to health insurance, along with informative responses. This resource offers individuals, healthcare professionals, and organizations valuable insights into the complex world of health insurance. It covers topics such as the fundamentals of health insurance, its significance, obtaining coverage, covered services, and explanations of key terms like premium, deductible, and copayment. The dataset also delves into various types of health insurance plans, including Health Maintenance Organizations (HMOs), Preferred Provider Organizations (PPOs), and Exclusive Provider Organizations (EPOs). Moreover, it addresses the impact of pre-existing conditions on coverage eligibility and discusses options for adding family members to insurance plans. Additionally, it explores the concept of open enrollment periods and the benefits of Health Savings Accounts (HSAs) and Flexible Spending Accounts (FSAs) for managing healthcare expenses. This dataset is a valuable resource for anyone seeking to understand, compare, and make informed decisions about health insurance.

 Facebook
Facebook Twitter
Twitter Email
Email
Data Description: The data at hand contains medical costs of people characterized by certain attributes. Domain: Healthcare Context: Leveraging customer information is paramount for most businesses. In the case of an insurance company, attributes of customers like the ones mentioned below can be crucial in making business decisions. Hence, knowing to explore and generate value out of such data can be an invaluable skill to have. Attribute Information: age: age of primary beneficiary sex: insurance contractor gender, female, male bmi: Body mass index, providing an understanding of body, weights that are relatively high or low relative to height, objective index of body weight (kg / m ^ 2) using the ratio of height to weight, ideally 18.5 to 24.9 children: Number of children covered by health insurance / Number of dependents smoker: Smoking region: the beneficiary's residential area in the US, northeast, southeast, southwest, northwest. charges: Individual medical costs billed by health insurance. Learning Outcomes: ď‚· Exploratory Data Analysis ď‚· Practicing statistics using Python ď‚· Hypothesis testing

 Facebook
Facebook Twitter
Twitter Email
Email
CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
Key Table Information.Table Title.Private Health Insurance Status by Sex by Age.Table ID.ACSDT1Y2024.B27002.Survey/Program.American Community Survey.Year.2024.Dataset.ACS 1-Year Estimates Detailed Tables.Source.U.S. Census Bureau, 2024 American Community Survey, 1-Year Estimates.Dataset Universe.The dataset universe of the American Community Survey (ACS) is the U.S. resident population and housing. For more information about ACS residence rules, see the ACS Design and Methodology Report. Note that each table describes the specific universe of interest for that set of estimates..Methodology.Unit(s) of Observation.American Community Survey (ACS) data are collected from individuals living in housing units and group quarters, and about housing units whether occupied or vacant. For more information about ACS sampling and data collection, see the ACS Design and Methodology Report..Geography Coverage.ACS data generally reflect the geographic boundaries of legal and statistical areas as of January 1 of the estimate year. For more information, see Geography Boundaries by Year.Estimates of urban and rural populations, housing units, and characteristics reflect boundaries of urban areas defined based on 2020 Census data. As a result, data for urban and rural areas from the ACS do not necessarily reflect the results of ongoing urbanization..Sampling.The ACS consists of two separate samples: housing unit addresses and group quarters facilities. Independent housing unit address samples are selected for each county or county-equivalent in the U.S. and Puerto Rico, with sampling rates depending on a measure of size for the area. For more information on sampling in the ACS, see the Accuracy of the Data document..Confidentiality.The Census Bureau has modified or suppressed some estimates in ACS data products to protect respondents' confidentiality. Title 13 United States Code, Section 9, prohibits the Census Bureau from publishing results in which an individual's data can be identified. For more information on confidentiality protection in the ACS, see the Accuracy of the Data document..Technical Documentation/Methodology.Information about the American Community Survey (ACS) can be found on the ACS website. Supporting documentation including code lists, subject definitions, data accuracy, and statistical testing, and a full list of ACS tables and table shells (without estimates) can be found on the Technical Documentation section of the ACS website.Sample size and data quality measures (including coverage rates, allocation rates, and response rates) can be found on the American Community Survey website in the Methodology section.Data are based on a sample and are subject to sampling variability. The degree of uncertainty for an estimate arising from sampling variability is represented through the use of a margin of error. The value shown here is the 90 percent margin of error. The margin of error can be interpreted roughly as providing a 90 percent probability that the interval defined by the estimate minus the margin of error and the estimate plus the margin of error (the lower and upper confidence bounds) contains the true value. In addition to sampling variability, the ACS estimates are subject to nonsampling error (for a discussion of nonsampling variability, see ACS Technical Documentation). The effect of nonsampling error is not represented in these tables.Users must consider potential differences in geographic boundaries, questionnaire content or coding, or other methodological issues when comparing ACS data from different years. Statistically significant differences shown in ACS Comparison Profiles, or in data users' own analysis, may be the result of these differences and thus might not necessarily reflect changes to the social, economic, housing, or demographic characteristics being compared. For more information, see Comparing ACS Data..Weights.ACS estimates are obtained from a raking ratio estimation procedure that results in the assignment of two sets of weights: a weight to each sample person record and a weight to each sample housing unit record. Estimates of person characteristics are based on the person weight. Estimates of family, household, and housing unit characteristics are based on the housing unit weight. For any given geographic area, a characteristic total is estimated by summing the weights assigned to the persons, households, families or housing units possessing the characteristic in the geographic area. For more information on weighting and estimation in the ACS, see the Accuracy of the Data document.Although the American Community Survey (ACS) produces population, demographic and housing unit estimates, the decennial census is the official source of population totals for April 1st of each decennial year. In between censuses, the Census Bureau's Population Estimates Program produces and disseminates the official estimates of the population for the nation, states, counties, cities, and towns ...

 Facebook
Facebook Twitter
Twitter Email
Email
Data on Medicaid coverage among persons under age 65 by selected population characteristics. Please refer to the PDF or Excel version of this table in the HUS 2019 Data Finder (https://www.cdc.gov/nchs/hus/contents2019.htm) for critical information about measures, definitions, and changes over time. SOURCE: NCHS, National Health Interview Survey, health insurance supplements (1984, 1989, 1994-1996). Starting with 1997, data are from the family core and the sample adult questionnaires. Data for level of difficulty are from the 2010 Quality of Life, 2011-2017 Functioning and Disability, and 2018 Sample Adult questionnaires. For more information on the National Health Interview Survey, see the corresponding Appendix entry at https://www.cdc.gov/nchs/data/hus/hus19-appendix-508.pdf.

 Facebook
Facebook Twitter
Twitter Email
Email
This layer shows health insurance coverage by type and by age group. This is shown by tract, county, and state boundaries. This service is updated annually to contain the most currently released American Community Survey (ACS) 5-year data, and contains estimates and margins of error. There are also additional calculated attributes related to this topic, which can be mapped or used within analysis. This layer is symbolized to show the percent uninsured. To see the full list of attributes available in this service, go to the "Data" tab, and choose "Fields" at the top right. Current Vintage: 2019-2023ACS Table(s): B27010 (Not all lines of this ACS table are available in this feature layer.)Data downloaded from: Census Bureau's API for American Community Survey Date of API call: December 12, 2024National Figures: data.census.govThe United States Census Bureau's American Community Survey (ACS):About the SurveyGeography & ACSTechnical DocumentationNews & UpdatesThis ready-to-use layer can be used within ArcGIS Pro, ArcGIS Online, its configurable apps, dashboards, Story Maps, custom apps, and mobile apps. Data can also be exported for offline workflows. For more information about ACS layers, visit the FAQ. Please cite the Census and ACS when using this data.Data Note from the Census:Data are based on a sample and are subject to sampling variability. The degree of uncertainty for an estimate arising from sampling variability is represented through the use of a margin of error. The value shown here is the 90 percent margin of error. The margin of error can be interpreted as providing a 90 percent probability that the interval defined by the estimate minus the margin of error and the estimate plus the margin of error (the lower and upper confidence bounds) contains the true value. In addition to sampling variability, the ACS estimates are subject to nonsampling error (for a discussion of nonsampling variability, see Accuracy of the Data). The effect of nonsampling error is not represented in these tables.Data Processing Notes:This layer is updated automatically when the most current vintage of ACS data is released each year, usually in December. The layer always contains the latest available ACS 5-year estimates. It is updated annually within days of the Census Bureau's release schedule. Click here to learn more about ACS data releases.Boundaries come from the US Census TIGER geodatabases, specifically, the National Sub-State Geography Database (named tlgdb_(year)_a_us_substategeo.gdb). Boundaries are updated at the same time as the data updates (annually), and the boundary vintage appropriately matches the data vintage as specified by the Census. These are Census boundaries with water and/or coastlines erased for cartographic and mapping purposes. For census tracts, the water cutouts are derived from a subset of the 2020 Areal Hydrography boundaries offered by TIGER. Water bodies and rivers which are 50 million square meters or larger (mid to large sized water bodies) are erased from the tract level boundaries, as well as additional important features. For state and county boundaries, the water and coastlines are derived from the coastlines of the 2023 500k TIGER Cartographic Boundary Shapefiles. These are erased to more accurately portray the coastlines and Great Lakes. The original AWATER and ALAND fields are still available as attributes within the data table (units are square meters).The States layer contains 52 records - all US states, Washington D.C., and Puerto RicoCensus tracts with no population that occur in areas of water, such as oceans, are removed from this data service (Census Tracts beginning with 99).Percentages and derived counts, and associated margins of error, are calculated values (that can be identified by the "_calc_" stub in the field name), and abide by the specifications defined by the American Community Survey.Field alias names were created based on the Table Shells file available from the American Community Survey Summary File Documentation page.Negative values (e.g., -4444...) have been set to null, with the exception of -5555... which has been set to zero. These negative values exist in the raw API data to indicate the following situations:The margin of error column indicates that either no sample observations or too few sample observations were available to compute a standard error and thus the margin of error. A statistical test is not appropriate.Either no sample observations or too few sample observations were available to compute an estimate, or a ratio of medians cannot be calculated because one or both of the median estimates falls in the lowest interval or upper interval of an open-ended distribution.The median falls in the lowest interval of an open-ended distribution, or in the upper interval of an open-ended distribution. A statistical test is not appropriate.The estimate is controlled. A statistical test for sampling variability is not appropriate.The data for this geographic area cannot be displayed because the number of sample cases is too small.

 Facebook
Facebook Twitter
Twitter Email
Email
https://www.icpsr.umich.edu/web/ICPSR/studies/6168/termshttps://www.icpsr.umich.edu/web/ICPSR/studies/6168/terms
The National Medical Expenditure Survey (NMES) series provides information on health expenditures by or on behalf of families and individuals, the financing of these expenditures, and each person's use of services. Public Use Tape 16 is the second public use data release from the NMES Health Insurance Plans Survey (HIPS). The purpose of the HIPS was to verify information reported by respondents to two components of the NMES, the Household Survey and the Survey of American Indians and Alaska Natives (SAIAN), about their health insurance coverage. Additional details were also obtained from the employers, unions, and insurance companies through which coverage was provided. Parts 1 and 2 of Public Use Tape 16 are files that can be used to link data to Household Survey policyholders in NATIONAL MEDICAL EXPENDITURE SURVEY, 1987: POLICYHOLDERS OF PRIVATE INSURANCE: PREMIUMS, PAYMENT SOURCES, AND TYPES AND SOURCE OF COVERAGE PUBLIC USE TAPE 15. These link files permit identification of the records in the Private Health Insurance Benefit Database (Parts 3-17 of this collection) that describe the specific benefits held by the policyholders. These files also permit linkage to the personal and socioeconomic characteristics for these policyholders found in NATIONAL MEDICAL EXPENDITURE SURVEY, 1987: HOUSEHOLD SURVEY, POPULATION CHARACTERISTICS AND PERSON-LEVEL UTILIZATION, ROUNDS 1-4 PUBLIC USE TAPE 13. Future link files will permit linkage of the Benefit Database to persons in the SAIAN and to dependents of policyholders in the Household Survey. The section files of the Benefit Database, Parts 4-13, contain information on Health Maintenance Organizations (HMOs), copayments, basic coverage, hospital and medical services, cost-containment provisions, major medical coverage, dental care, prescription drugs, vision and hearing care, and Medicare benefits. The schedule files, Parts 14-17, contain specific deductible amounts, dollar benefits, coinsurance provisions, maximum benefits, and benefit periods. Wherever possible, copies of policies or booklets describing the coverage and benefits were obtained in order to abstract this information.

 Facebook
Facebook Twitter
Twitter Email
Email
CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
Key Table Information.Table Title.Direct-Purchase Health Insurance by Sex by Age.Table ID.ACSDT1Y2024.B27005.Survey/Program.American Community Survey.Year.2024.Dataset.ACS 1-Year Estimates Detailed Tables.Source.U.S. Census Bureau, 2024 American Community Survey, 1-Year Estimates.Dataset Universe.The dataset universe of the American Community Survey (ACS) is the U.S. resident population and housing. For more information about ACS residence rules, see the ACS Design and Methodology Report. Note that each table describes the specific universe of interest for that set of estimates..Methodology.Unit(s) of Observation.American Community Survey (ACS) data are collected from individuals living in housing units and group quarters, and about housing units whether occupied or vacant. For more information about ACS sampling and data collection, see the ACS Design and Methodology Report..Geography Coverage.ACS data generally reflect the geographic boundaries of legal and statistical areas as of January 1 of the estimate year. For more information, see Geography Boundaries by Year.Estimates of urban and rural populations, housing units, and characteristics reflect boundaries of urban areas defined based on 2020 Census data. As a result, data for urban and rural areas from the ACS do not necessarily reflect the results of ongoing urbanization..Sampling.The ACS consists of two separate samples: housing unit addresses and group quarters facilities. Independent housing unit address samples are selected for each county or county-equivalent in the U.S. and Puerto Rico, with sampling rates depending on a measure of size for the area. For more information on sampling in the ACS, see the Accuracy of the Data document..Confidentiality.The Census Bureau has modified or suppressed some estimates in ACS data products to protect respondents' confidentiality. Title 13 United States Code, Section 9, prohibits the Census Bureau from publishing results in which an individual's data can be identified. For more information on confidentiality protection in the ACS, see the Accuracy of the Data document..Technical Documentation/Methodology.Information about the American Community Survey (ACS) can be found on the ACS website. Supporting documentation including code lists, subject definitions, data accuracy, and statistical testing, and a full list of ACS tables and table shells (without estimates) can be found on the Technical Documentation section of the ACS website.Sample size and data quality measures (including coverage rates, allocation rates, and response rates) can be found on the American Community Survey website in the Methodology section.Data are based on a sample and are subject to sampling variability. The degree of uncertainty for an estimate arising from sampling variability is represented through the use of a margin of error. The value shown here is the 90 percent margin of error. The margin of error can be interpreted roughly as providing a 90 percent probability that the interval defined by the estimate minus the margin of error and the estimate plus the margin of error (the lower and upper confidence bounds) contains the true value. In addition to sampling variability, the ACS estimates are subject to nonsampling error (for a discussion of nonsampling variability, see ACS Technical Documentation). The effect of nonsampling error is not represented in these tables.Users must consider potential differences in geographic boundaries, questionnaire content or coding, or other methodological issues when comparing ACS data from different years. Statistically significant differences shown in ACS Comparison Profiles, or in data users' own analysis, may be the result of these differences and thus might not necessarily reflect changes to the social, economic, housing, or demographic characteristics being compared. For more information, see Comparing ACS Data..Weights.ACS estimates are obtained from a raking ratio estimation procedure that results in the assignment of two sets of weights: a weight to each sample person record and a weight to each sample housing unit record. Estimates of person characteristics are based on the person weight. Estimates of family, household, and housing unit characteristics are based on the housing unit weight. For any given geographic area, a characteristic total is estimated by summing the weights assigned to the persons, households, families or housing units possessing the characteristic in the geographic area. For more information on weighting and estimation in the ACS, see the Accuracy of the Data document.Although the American Community Survey (ACS) produces population, demographic and housing unit estimates, the decennial census is the official source of population totals for April 1st of each decennial year. In between censuses, the Census Bureau's Population Estimates Program produces and disseminates the official estimates of the population for the nation, states, counties, cities, and towns...

 Facebook
Facebook Twitter
Twitter Email
Email
NOTE: This dataset has been retired and marked as historical-only. The recommended dataset to use in its place is https://data.cityofchicago.org/Health-Human-Services/COVID-19-Vaccination-Coverage-Region-HCEZ-/5sc6-ey97.
COVID-19 vaccinations administered to Chicago residents by Healthy Chicago Equity Zones (HCEZ) based on the reported address, race-ethnicity, and age group of the person vaccinated, as provided by the medical provider in the Illinois Comprehensive Automated Immunization Registry Exchange (I-CARE).
Healthy Chicago Equity Zones is an initiative of the Chicago Department of Public Health to organize and support hyperlocal, community-led efforts that promote health and racial equity. Chicago is divided into six HCEZs. Combinations of Chicago’s 77 community areas make up each HCEZ, based on geography. For more information about HCEZs including which community areas are in each zone see: https://data.cityofchicago.org/Health-Human-Services/Healthy-Chicago-Equity-Zones/nk2j-663f
Vaccination Status Definitions:
·People with at least one vaccine dose: Number of people who have received at least one dose of any COVID-19 vaccine, including the single-dose Johnson & Johnson COVID-19 vaccine.
·People with a completed vaccine series: Number of people who have completed a primary COVID-19 vaccine series. Requirements vary depending on age and type of primary vaccine series received.
·People with a bivalent dose: Number of people who received a bivalent (updated) dose of vaccine. Updated, bivalent doses became available in Fall 2022 and were created with the original strain of COVID-19 and newer Omicron variant strains.
Weekly cumulative totals by vaccination status are shown for each combination of race-ethnicity and age group within an HCEZ. Note that each HCEZ has a row where HCEZ is “Citywide” and each HCEZ has a row where age is "All" so care should be taken when summing rows.
Vaccinations are counted based on the date on which they were administered. Weekly cumulative totals are reported from the week ending Saturday, December 19, 2020 onward (after December 15, when vaccines were first administered in Chicago) through the Saturday prior to the dataset being updated.
Population counts are from the U.S. Census Bureau American Community Survey (ACS) 2017-2021 5-year estimates.
Coverage percentages are calculated based on the cumulative number of people in each population subgroup (age group by race-ethnicity within an HCEZ) who have each vaccination status as of the date, divided by the estimated number of people in that subgroup.
Actual counts may exceed population estimates and lead to >100% coverage, especially in small race-ethnicity subgroups of each age group within an HCEZ. All coverage percentages are capped at 99%.
All data are provisional and subject to change. Information is updated as additional details are received and it is, in fact, very common for recent dates to be incomplete and to be updated as time goes on. At any given time, this dataset reflects data currently known to CDPH.
Numbers in this dataset may differ from other public sources due to when data are reported and how City of Chicago boundaries are defined.
CDPH uses the most complete data available to estimate COVID-19 vaccination coverage among Chicagoans, but there are several limitations that impact its estimates. Data reported in I-CARE only includes doses administered in Illinois and some doses administered outside of Illinois reported historically by Illinois providers. Doses administered by the federal Bureau of Prisons and Department of Defense are also not currently reported in I-CARE. The Veterans Health Administration began reporting doses in I-CARE beginning September 2022. Due to people receiving vaccinations that are not recorded in I-CARE that can be linked to their record, such as someone receiving a vaccine dose in another state, the number of people with a completed series or a booster dose is underesti

 Facebook
Facebook Twitter
Twitter Email
Email
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This dataset was developed by the Research & Analytics Group at the Atlanta Regional Commission using data from the U.S. Census Bureau.For a deep dive into the data model including every specific metric, see the Infrastructure Manifest. The manifest details ARC-defined naming conventions, field names/descriptions and topics, summary levels; source tables; notes and so forth for all metrics.Naming conventions:Prefixes: None Countp Percentr Ratem Mediana Mean (average)t Aggregate (total)ch Change in absolute terms (value in t2 - value in t1)pch Percent change ((value in t2 - value in t1) / value in t1)chp Change in percent (percent in t2 - percent in t1)s Significance flag for change: 1 = statistically significant with a 90% CI, 0 = not statistically significant, blank = cannot be computed Suffixes: _e19 Estimate from 2014-19 ACS_m19 Margin of Error from 2014-19 ACS_00_v19 Decennial 2000, re-estimated to 2019 geography_00_19 Change, 2000-19_e10_v19 2006-10 ACS, re-estimated to 2019 geography_m10_v19 Margin of Error from 2006-10 ACS, re-estimated to 2019 geography_e10_19 Change, 2010-19The user should note that American Community Survey data represent estimates derived from a surveyed sample of the population, which creates some level of uncertainty, as opposed to an exact measure of the entire population (the full census count is only conducted once every 10 years and does not cover as many detailed characteristics of the population). Therefore, any measure reported by ACS should not be taken as an exact number – this is why a corresponding margin of error (MOE) is also given for ACS measures. The size of the MOE relative to its corresponding estimate value provides an indication of confidence in the accuracy of each estimate. Each MOE is expressed in the same units as its corresponding measure; for example, if the estimate value is expressed as a number, then its MOE will also be a number; if the estimate value is expressed as a percent, then its MOE will also be a percent. The user should also note that for relatively small geographic areas, such as census tracts shown here, ACS only releases combined 5-year estimates, meaning these estimates represent rolling averages of survey results that were collected over a 5-year span (in this case 2015-2019). Therefore, these data do not represent any one specific point in time or even one specific year. For geographic areas with larger populations, 3-year and 1-year estimates are also available. For further explanation of ACS estimates and margin of error, visit Census ACS website.Source: U.S. Census Bureau, Atlanta Regional CommissionDate: 2015-2019Data License: Creative Commons Attribution 4.0 International (CC by 4.0)Link to the manifest: https://www.arcgis.com/sharing/rest/content/items/3d489c725bb24f52a987b302147c46ee/data

 Facebook
Facebook Twitter
Twitter Email
Email
NOTE: This dataset replaces two previous ones. Please see below. Chicago residents who are up to date with COVID-19 vaccines, based on the reported address, race-ethnicity, sex, and age group of the person vaccinated, as provided by the medical provider in the Illinois Comprehensive Automated Immunization Registry Exchange (I-CARE). “Up to date” refers to individuals who meet the CDC’s updated COVID-19 vaccination criteria based on their age and prior vaccination history. For surveillance purposes, up to date is defined based on the following criteria: People ages 5 years and older: · Are up to date when they receive 1+ doses of a COVID-19 vaccine during the current season. Children ages 6 months to 4 years: · Children who have received at least two prior COVID-19 vaccine doses are up to date when they receive one additional dose of COVID-19 vaccine during the current season, regardless of vaccine product. · Children who have received only one prior COVID-19 vaccine dose are up to date when they receive one additional dose of the current season's Moderna COVID-19 vaccine or two additional doses of the current season's Pfizer-BioNTech COVID-19 vaccine. · Children who have never received a COVID-19 vaccination are up to date when they receive either two doses of the current season's Moderna vaccine or three doses of the current season's Pfizer-BioNTech vaccine. This dataset takes the place of two previous datasets, which cover doses administered from December 15, 2020 through September 13, 2023 and are marked has historical: - https://data.cityofchicago.org/Health-Human-Services/COVID-19-Daily-Vaccinations-Chicago-Residents/2vhs-cf6b - https://data.cityofchicago.org/Health-Human-Services/COVID-19-Vaccinations-by-Age-and-Race-Ethnicity/37ac-bbe3. Data Notes: Weekly cumulative totals of people up to date are shown for each combination of race-ethnicity, sex, and age group. Note that race-ethnicity, age, and sex all have an option for “All” so care should be taken when summing rows. Coverage percentages are calculated based on the cumulative number of people in each race-ethnicity/age/sex population subgroup who are considered up to date as of the week ending date divided by the estimated number of people in that subgroup. Population counts are obtained from the 2020 U.S. Decennial Census. Actual counts may exceed population estimates and lead to coverage estimates that are greater than 100%, especially in smaller demographic groupings with smaller populations. Additionally, the medical provider may report incorrect demographic information for the person receiving the vaccination, which may lead to over- or underestimation of vaccination coverage. All coverage percentages are capped at 99%. Weekly cumulative counts and coverage percentages are reported from the week ending Saturday, September 16, 2023 onward through the Saturday prior to the dataset being updated. All data are provisional and subject to change. Information is updated as additional details are received and it is, in fact, very common for recent dates to be incomplete and to be updated as time goes on. At any given time, this dataset reflects data currently known to CDPH. Numbers in this dataset may differ from other public sources due to when data are reported and how City of Chicago boundaries are defined. The Chicago Department of Public Health uses the most complete data available to estimate COVID-19 vaccination coverage among Chicagoans, but there are several limitations that impact our estimates. Individuals may receive vaccinations that are not recorded in the Illinois immunization registry, I-CARE, such as those administered in another state, causing underestimation of the number individuals who are up to date. Inconsistencies in records of separate doses administered to the same person, such as slight variations in dates of birth, can result in duplicate records for a person and underestimate the number of people who are up to date.

 Facebook
Facebook Twitter
Twitter Email
Email
This data set includes annual counts and percentages of Medicaid and Children’s Health Insurance Program (CHIP) enrollees who received mental health (MH) or substance use disorder (SUD) services, overall and by six subpopulation topics: age group, sex or gender identity, race and ethnicity, urban or rural residence, eligibility category, and primary language. These results were generated using Transformed Medicaid Statistical Information System (T-MSIS) Analytic Files (TAF) Release 1 data and the Race/Ethnicity Imputation Companion File. This data set includes Medicaid and CHIP enrollees in all 50 states, the District of Columbia, Puerto Rico, and the U.S. Virgin Islands, ages 12 to 64 at the end of the calendar year, who were not dually eligible for Medicare and were continuously enrolled with comprehensive benefits for 12 months, with no more than one gap in enrollment exceeding 45 days. Enrollees who received services for both an MH condition and SUD in the year are counted toward both condition categories. Enrollees in Guam, American Samoa, the Northern Mariana Islands, and select states with TAF data quality issues are not included. Results shown for the race and ethnicity subpopulation topic exclude enrollees in the U.S. Virgin Islands. Results shown for the primary language subpopulation topic exclude select states with data quality issues with the primary language variable in TAF. Some rows in the data set have a value of "DS," which indicates that data were suppressed according to the Centers for Medicare & Medicaid Services’ Cell Suppression Policy for values between 1 and 10. This data set is based on the brief: "Medicaid and CHIP enrollees who received mental health or SUD services in 2020." Enrollees are assigned to an age group subpopulation using age as of December 31st of the calendar year. Enrollees are assigned to a sex or gender identity subpopulation using their latest reported sex in the calendar year. Enrollees are assigned to a race and ethnicity subpopulation using the state-reported race and ethnicity information in TAF when it is available and of good quality; if it is missing or unreliable, race and ethnicity is indirectly estimated using an enhanced version of Bayesian Improved Surname Geocoding (BISG) (Race and ethnicity of the national Medicaid and CHIP population in 2020). Enrollees are assigned to an urban or rural subpopulation based on the 2010 Rural-Urban Commuting Area (RUCA) code associated with their home or mailing address ZIP code in TAF (Rural Medicaid and CHIP enrollees in 2020). Enrollees are assigned to an eligibility category subpopulation using their latest reported eligibility group code, CHIP code, and age in the calendar year. Enrollees are assigned to a primary language subpopulation based on their reported ISO language code in TAF (English/missing, Spanish, and all other language codes) (Primary Language). Please refer to the full brief for additional context about the methodology and detailed findings. Future updates to this data set will include more recent data years as the TAF data become available.

 Facebook
Facebook Twitter
Twitter Email
Email
https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
According to a recent study published in the US News and World Report the cost of medical malpractice in the United States is $55.6 billion a year, which is 2.4 percent of annual health-care spending. Another 2011 study published in the New England Journal of Medicine revealed that annually, during the period 1991 to 2005, 7.4% of all physicians licensed in the US had a malpractice claim. These staggering numbers not only contribute to the high cost of health care, but the size of successful malpractice claims also contributes to high premiums for medical malpractice insurance.
The data set contains information about the last 79210 claim payments made. - Amount - Amount of the claim payment in dollars - Severity - The severity rating of damage to the patient, from 1 (emotional trauma) to 9 (death) - Age - Age of the claimant in years - Private Attorney - Whether the claimant was represented by a private attorney - Marital Status - Marital status of the claimant - Specialty - Specialty of the physician involved in the lawsuit - Insurance - Type of medical insurance carried by the patient - Gender - Patient Gender

 Facebook
Facebook Twitter
Twitter Email
Email
https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
The Health Insurance Marketplace Public Use Files contain data on health and dental plans offered to individuals and small businesses through the US Health Insurance Marketplace.
To help get you started, here are some data exploration ideas:
See this forum thread for more ideas, and post there if you want to add your own ideas or answer some of the open questions!
This data was originally prepared and released by the Centers for Medicare & Medicaid Services (CMS). Please read the CMS Disclaimer-User Agreement before using this data.
Here, we've processed the data to facilitate analytics. This processed version has three components:
The original versions of the 2014, 2015, 2016 data are available in the "raw" directory of the download and "../input/raw" on Kaggle Scripts. Search for "dictionaries" on this page to find the data dictionaries describing the individual raw files.
In the top level directory of the download ("../input" on Kaggle Scripts), there are six CSV files that contain the combined at across all years:
Additionally, there are two CSV files that facilitate joining data across years:
The "database.sqlite" file contains tables corresponding to each of the processed CSV files.
The code to create the processed version of this data is available on GitHub.