100+ datasets found
  1. N

    United States Age Group Population Dataset: A Complete Breakdown of United...

    • neilsberg.com
    csv, json
    Updated Feb 22, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Neilsberg Research (2025). United States Age Group Population Dataset: A Complete Breakdown of United States Age Demographics from 0 to 85 Years and Over, Distributed Across 18 Age Groups // 2025 Edition [Dataset]. https://www.neilsberg.com/research/datasets/454c7ad4-f122-11ef-8c1b-3860777c1fe6/
    Explore at:
    csv, jsonAvailable download formats
    Dataset updated
    Feb 22, 2025
    Dataset authored and provided by
    Neilsberg Research
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    United States
    Variables measured
    Population Under 5 Years, Population over 85 years, Population Between 5 and 9 years, Population Between 10 and 14 years, Population Between 15 and 19 years, Population Between 20 and 24 years, Population Between 25 and 29 years, Population Between 30 and 34 years, Population Between 35 and 39 years, Population Between 40 and 44 years, and 9 more
    Measurement technique
    The data presented in this dataset is derived from the latest U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates. To measure the two variables, namely (a) population and (b) population as a percentage of the total population, we initially analyzed and categorized the data for each of the age groups. For age groups we divided it into roughly a 5 year bucket for ages between 0 and 85. For over 85, we aggregated data into a single group for all ages. For further information regarding these estimates, please feel free to reach out to us via email at research@neilsberg.com.
    Dataset funded by
    Neilsberg Research
    Description
    About this dataset

    Context

    The dataset tabulates the United States population distribution across 18 age groups. It lists the population in each age group along with the percentage population relative of the total population for United States. The dataset can be utilized to understand the population distribution of United States by age. For example, using this dataset, we can identify the largest age group in United States.

    Key observations

    The largest age group in United States was for the group of age 30 to 34 years years with a population of 23.06 million (6.94%), according to the ACS 2019-2023 5-Year Estimates. At the same time, the smallest age group in United States was the 80 to 84 years years with a population of 6.34 million (1.91%). Source: U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates

    Content

    When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates

    Age groups:

    • Under 5 years
    • 5 to 9 years
    • 10 to 14 years
    • 15 to 19 years
    • 20 to 24 years
    • 25 to 29 years
    • 30 to 34 years
    • 35 to 39 years
    • 40 to 44 years
    • 45 to 49 years
    • 50 to 54 years
    • 55 to 59 years
    • 60 to 64 years
    • 65 to 69 years
    • 70 to 74 years
    • 75 to 79 years
    • 80 to 84 years
    • 85 years and over

    Variables / Data Columns

    • Age Group: This column displays the age group in consideration
    • Population: The population for the specific age group in the United States is shown in this column.
    • % of Total Population: This column displays the population of each age group as a proportion of United States total population. Please note that the sum of all percentages may not equal one due to rounding of values.

    Good to know

    Margin of Error

    Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.

    Custom data

    If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.

    Inspiration

    Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.

    Recommended for further research

    This dataset is a part of the main dataset for United States Population by Age. You can refer the same here

  2. N

    United States Annual Population and Growth Analysis Dataset: A Comprehensive...

    • neilsberg.com
    csv, json
    Updated Feb 24, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Neilsberg Research (2025). United States Annual Population and Growth Analysis Dataset: A Comprehensive Overview of Population Changes and Yearly Growth Rates in United States from 2000 to 2024 // 2025 Edition [Dataset]. https://www.neilsberg.com/insights/united-states-population-by-year/
    Explore at:
    csv, jsonAvailable download formats
    Dataset updated
    Feb 24, 2025
    Dataset authored and provided by
    Neilsberg Research
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    United States
    Variables measured
    Annual Population Growth Rate, Population Between 2000 and 2024, Annual Population Growth Rate Percent
    Measurement technique
    The data presented in this dataset is derived from the 20 years data of U.S. Census Bureau Population Estimates Program (PEP) 2000 - 2024. To measure the variables, namely (a) population and (b) population change in ( absolute and as a percentage ), we initially analyzed and tabulated the data for each of the years between 2000 and 2024. For further information regarding these estimates, please feel free to reach out to us via email at research@neilsberg.com.
    Dataset funded by
    Neilsberg Research
    Description
    About this dataset

    Context

    The dataset tabulates the United States population over the last 20 plus years. It lists the population for each year, along with the year on year change in population, as well as the change in percentage terms for each year. The dataset can be utilized to understand the population change of United States across the last two decades. For example, using this dataset, we can identify if the population is declining or increasing. If there is a change, when the population peaked, or if it is still growing and has not reached its peak. We can also compare the trend with the overall trend of United States population over the same period of time.

    Key observations

    In 2024, the population of United States was 340.11 million, a 0.98% increase year-by-year from 2023. Previously, in 2023, United States population was 336.81 million, an increase of 0.83% compared to a population of 334.02 million in 2022. Over the last 20 plus years, between 2000 and 2024, population of United States increased by 57.95 million. In this period, the peak population was 340.11 million in the year 2024. The numbers suggest that the population has not reached its peak yet and is showing a trend of further growth. Source: U.S. Census Bureau Population Estimates Program (PEP).

    Content

    When available, the data consists of estimates from the U.S. Census Bureau Population Estimates Program (PEP).

    Data Coverage:

    • From 2000 to 2024

    Variables / Data Columns

    • Year: This column displays the data year (Measured annually and for years 2000 to 2024)
    • Population: The population for the specific year for the United States is shown in this column.
    • Year on Year Change: This column displays the change in United States population for each year compared to the previous year.
    • Change in Percent: This column displays the year on year change as a percentage. Please note that the sum of all percentages may not equal one due to rounding of values.

    Good to know

    Margin of Error

    Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.

    Custom data

    If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.

    Inspiration

    Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.

    Recommended for further research

    This dataset is a part of the main dataset for United States Population by Year. You can refer the same here

  3. US Broadband Usage Across Counties

    • kaggle.com
    Updated Jan 6, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    The Devastator (2023). US Broadband Usage Across Counties [Dataset]. https://www.kaggle.com/datasets/thedevastator/us-broadband-usage-across-counties-and-zip-codes
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Jan 6, 2023
    Dataset provided by
    Kagglehttp://kaggle.com/
    Authors
    The Devastator
    Area covered
    United States
    Description

    US Broadband Usage Across Counties

    Utilizing Microsoft's Data to Estimate Access

    By Amber Thomas [source]

    About this dataset

    This dataset provides an estimation of broadband usage in the United States, focusing on how many people have access to broadband and how many are actually using it at broadband speeds. Through data collected by Microsoft from our services, including package size and total time of download, we can estimate the throughput speed of devices connecting to the internet across zip codes and counties.

    According to Federal Communications Commission (FCC) estimates, 14.5 million people don't have access to any kind of broadband connection. This data set aims to address this contrast between those with estimated availability but no actual use by providing more accurate usage numbers downscaled to county and zip code levels. Who gets counted as having access is vastly important -- it determines who gets included in public funding opportunities dedicated solely toward closing this digital divide gap. The implications can be huge: millions around this country could remain invisible if these number aren't accurately reported or used properly in decision-making processes.

    This dataset includes aggregated information about these locations with less than 20 devices for increased accuracy when estimating Broadband Usage in the United States-- allowing others to use it for developing solutions that improve internet access or label problem areas accurately where no real or reliable connectivity exists among citizens within communities large and small throughout the US mainland.. Please review the license terms before using these data so that you may adhere appropriately with stipulations set forth under Microsoft's Open Use Of Data Agreement v1.0 agreement prior to utilizing this dataset for your needs-- both professional and educational endeavors alike!

    More Datasets

    For more datasets, click here.

    Featured Notebooks

    • 🚨 Your notebook can be here! 🚨!

    How to use the dataset

    How to Use the US Broadband Usage Dataset

    This dataset provides broadband usage estimates in the United States by county and zip code. It is ideally suited for research into how broadband connects households, towns and cities. Understanding this information is vital for closing existing disparities in access to high-speed internet, and for devising strategies for making sure all Americans can stay connected in a digital world.

    The dataset contains six columns: - County – The name of the county for which usage statistics are provided. - Zip Code (5-Digit) – The 5-digit zip code from which usage data was collected from within that county or metropolitan area/micro area/divisions within states as reported by the US Census Bureau in 2018[2].
    - Population (Households) – Estimated number of households defined according to [3] based on data from the US Census Bureau American Community Survey's 5 Year Estimates[4].
    - Average Throughput (Mbps)- Average Mbps download speed derived from a combination of data collected anonymous devices connected through Microsoft services such as Windows Update, Office 365, Xbox Live Core Services, etc.[5]
    - Percent Fast (> 25 Mbps)- Percentage of machines with throughput greater than 25 Mbps calculated using [6]. 6) Percent Slow (< 3 Mbps)- Percentage of machines with throughput less than 3Mbps calculated using [7].

    Research Ideas

    • Targeting marketing campaigns based on broadband use. Companies can use the geographic and demographic data in this dataset to create targeted advertising campaigns that are tailored to individuals living in areas where broadband access is scarce or lacking.
    • Creating an educational platform for those without reliable access to broadband internet. By leveraging existing technologies such as satellite internet, media streaming services like Netflix, and platforms such as Khan Academy or EdX, those with limited access could gain access to new educational options from home.
    • Establishing public-private partnerships between local governments and telecom providers need better data about gaps in service coverage and usage levels in order to make decisions about investments into new infrastructure buildouts for better connectivity options for rural communities

    Acknowledgements

    If you use this dataset in your research, please credit the original authors. Data Source

    License

    See the dataset description for more information.

    Columns

    File: broadband_data_2020October.csv

    Acknowledgements

    If you use this dataset in your research,...

  4. K

    US Places (Population More than 1 Million)

    • koordinates.com
    csv, dwg, geodatabase +6
    Updated Aug 28, 2018
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    US Bureau of Transportation Statistics (BTS) (2018). US Places (Population More than 1 Million) [Dataset]. https://koordinates.com/layer/22836-us-places-population-more-than-1-million/
    Explore at:
    dwg, geopackage / sqlite, mapinfo mif, pdf, shapefile, geodatabase, kml, mapinfo tab, csvAvailable download formats
    Dataset updated
    Aug 28, 2018
    Dataset authored and provided by
    US Bureau of Transportation Statistics (BTS)
    Area covered
    Description

    This data set includes cities in the United States, Puerto Rico and the U.S. Virgin Islands. These cities were collected from the 1970 National Atlas of the United States. Where applicable, U.S. Census Bureau codes for named populated places were associated with each name to allow additional information to be attached. The Geographic Names Information System (GNIS) was also used as a source for additional information. This is a revised version of the December, 2003, data set.

    This layer is sourced from maps.bts.dot.gov.

  5. Historic US census - 1930

    • redivis.com
    application/jsonl +7
    Updated Jan 10, 2020
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Stanford Center for Population Health Sciences (2020). Historic US census - 1930 [Dataset]. http://doi.org/10.57761/6e5q-rh85
    Explore at:
    application/jsonl, parquet, spss, csv, arrow, stata, avro, sasAvailable download formats
    Dataset updated
    Jan 10, 2020
    Dataset provided by
    Redivis Inc.
    Authors
    Stanford Center for Population Health Sciences
    Time period covered
    Jan 1, 1930 - Dec 31, 1930
    Area covered
    United States
    Description

    Abstract

    The Integrated Public Use Microdata Series (IPUMS) Complete Count Data include more than 650 million individual-level and 7.5 million household-level records. The microdata are the result of collaboration between IPUMS and the nation’s two largest genealogical organizations—Ancestry.com and FamilySearch—and provides the largest and richest source of individual level and household data.

    Before Manuscript Submission

    All manuscripts (and other items you'd like to publish) must be submitted to

    phsdatacore@stanford.edu for approval prior to journal submission.

    We will check your cell sizes and citations.

    For more information about how to cite PHS and PHS datasets, please visit:

    https:/phsdocs.developerhub.io/need-help/citing-phs-data-core

    Documentation

    This dataset was created on 2020-01-10 22:52:11.461 by merging multiple datasets together. The source datasets for this version were:

    IPUMS 1930 households: This dataset includes all households from the 1930 US census.

    IPUMS 1930 persons: This dataset includes all individuals from the 1930 US census.

    IPUMS 1930 Lookup: This dataset includes variable names, variable labels, variable values, and corresponding variable value labels for the IPUMS 1930 datasets.

    Section 2

    Historic data are scarce and often only exists in aggregate tables. The key advantage of historic US census data is the availability of individual and household level characteristics that researchers can tabulate in ways that benefits their specific research questions. The data contain demographic variables, economic variables, migration variables and family variables. Within households, it is possible to create relational data as all relations between household members are known. For example, having data on the mother and her children in a household enables researchers to calculate the mother’s age at birth. Another advantage of the Complete Count data is the possibility to follow individuals over time using a historical identifier.

    In sum: the historic US census data are a unique source for research on social and economic change and can provide population health researchers with information about social and economic determinants.Historic data are scarce and often only exists in aggregate tables. The key advantage of historic US census data is the availability of individual and household level characteristics that researchers can tabulate in ways that benefits their specific research questions. The data contain demographic variables, economic variables, migration variables and family variables. Within households, it is possible to create relational data as all relations between household members are known. For example, having data on the mother and her children in a household enables researchers to calculate the mother’s age at birth. Another advantage of the Complete Count data is the possibility to follow individuals over time using a historical identifier. In sum: the historic US census data are a unique source for research on social and economic change and can provide population health researchers with information about social and economic determinants.

    The historic US 1930 census data was collected in April 1930. Enumerators collected data traveling to households and counting the residents who regularly slept at the household. Individuals lacking permanent housing were counted as residents of the place where they were when the data was collected. Household members absent on the day of data collected were either listed to the household with the help of other household members or were scheduled for the last census subdivision.

    Notes

    • We provide IPUMS household and person data separately so that it is convenient to explore the descriptive statistics on each level. In order to obtain a full dataset, merge the household and person on the variables SERIAL and SERIALP. In order to create a longitudinal dataset, merge datasets on the variable HISTID.

    • Households with more than 60 people in the original data were broken up for processing purposes. Every person in the large households are considered to be in their own household. The original large households can be identified using the variable SPLIT, reconstructed using the variable SPLITHID, and the original count is found in the variable SPLITNUM.

    • Coded variables derived from string variables are still in progress. These variables include: occupation and industry.

    • Missing observations have been allocated and some inconsistencies have been edited for the following variables: SPEAKENG, YRIMMIG, CITIZEN, AGEMARR, AGE, BPL, MBPL, FBPL, LIT, SCHOOL, OWNERSHP, FARM, EMPSTAT, OCC1950, IND1950, MTONGUE, MARST, RACE, SEX, RELATE, CLASSWKR. The flag variables indicating an allocated observation for the associated variables can be included in your extract by clicking the ‘Select data quality flags’ box on the extract summary page.

    • Most inconsistent information was not edite

  6. LinkedIn Dataset - US People Profiles

    • kaggle.com
    Updated May 16, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Joseph from Proxycurl (2023). LinkedIn Dataset - US People Profiles [Dataset]. https://www.kaggle.com/datasets/proxycurl/10000-us-people-profiles/discussion
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    May 16, 2023
    Dataset provided by
    Kagglehttp://kaggle.com/
    Authors
    Joseph from Proxycurl
    Description

    Full profile of 10,000 people in the US - download here, data schema here, with more than 40 data points including - Full Name - Education - Location - Work Experience History and many more!

    There are additionally 258+ Million US people profiles available, visit the LinkDB product page here.

    Our LinkDB database is an exhaustive database of publicly accessible LinkedIn people and companies profiles. It contains close to 500 Million people and companies profiles globally.

  7. d

    PREDIK Data-Driven I Geographic Data I USA I Address Data I +50 million US...

    • datarade.ai
    Updated Sep 13, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Predik Data-driven (2023). PREDIK Data-Driven I Geographic Data I USA I Address Data I +50 million US addresses I Retail & Industrial Locations [Dataset]. https://datarade.ai/data-products/redik-data-driven-us-commercial-and-industrial-address-data-predik-data-driven
    Explore at:
    .json, .xml, .csv, .xls, .txtAvailable download formats
    Dataset updated
    Sep 13, 2023
    Dataset authored and provided by
    Predik Data-driven
    Area covered
    United States
    Description

    Empower your machine learning models with a curated dataset containing more than 50 million commercial and industrial addresses in the USA.

    Featured attributes of the data - Visualization data: Number of devices detected, time spent, income level, possible workers, trucks, among others. - Structure data: Built areas, parking lots areas, POIs. - Activity data: Commercial/Industrial activities at each address. - Device count data: Device count for every commercial and industrial location in the US. - Visitation data: Visitation data for every address in the US.

    This dataset has proven successful in enriching machine learning models for defining POI/land parcel activity, sales prediction, site selection, red flags systems, procurement, and commercial/industrial activity measurement, among others.

    The dataset includes 54 attributes for each of the 50 million addresses/parcels. Some of them are:

    • Lat and long.
    • Ave. sq ft.
    • Ave. sq ft. per POI within the parcel.
    • Significant Dwell time of the visitors.
    • Ave. visitor stay time.
    • POIs in facility.
    • Trucks.
    • Possible workers.
    • Income of the visitors (percentile).

    How have our clients used this dataset?

    Cold Storage Company: - Data requirement: Our client needed more data about company locations that provided cold storage solutions, as part of their sales & marketing strategy. - Solution: They ingested the US address dataset in their ML model to enhance the process of identifying all facilities within the US with cold storage solutions (From Specialized Cold Storage facilities to Distribution Centers that handle refrigerated products).

    Tax Advisory firm: - Data requirement: Our client needed information regarding commercial activity to ingest in a machine learning model that generates Red Flags for potential tax evasion. - Solution: Our dataset provided detailed information with several data attributes for each of their target addresses. Also, our client received crucial insight for their investigation process, such as visitation rates, people working, proximity to other commercial locations and visitor's income level.

  8. N

    Arkansas annual income distribution by work experience and gender dataset:...

    • neilsberg.com
    csv, json
    Updated Feb 27, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Neilsberg Research (2025). Arkansas annual income distribution by work experience and gender dataset: Number of individuals ages 15+ with income, 2023 // 2025 Edition [Dataset]. https://www.neilsberg.com/research/datasets/ba93b2e4-f4ce-11ef-8577-3860777c1fe6/
    Explore at:
    csv, jsonAvailable download formats
    Dataset updated
    Feb 27, 2025
    Dataset authored and provided by
    Neilsberg Research
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Arkansas
    Variables measured
    Income for Male Population, Income for Female Population, Income for Male Population working full time, Income for Male Population working part time, Income for Female Population working full time, Income for Female Population working part time, Number of males working full time for a given income bracket, Number of males working part time for a given income bracket, Number of females working full time for a given income bracket, Number of females working part time for a given income bracket
    Measurement technique
    The data presented in this dataset is derived from the latest U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates. To portray the number of individuals for both the genders (Male and Female), within each income bracket we conducted an initial analysis and categorization of the American Community Survey data. Households are categorized, and median incomes are reported based on the self-identified gender of the head of the household. For additional information about these estimations, please contact us via email at research@neilsberg.com
    Dataset funded by
    Neilsberg Research
    Description
    About this dataset

    Context

    The dataset presents the detailed breakdown of the count of individuals within distinct income brackets, categorizing them by gender (men and women) and employment type - full-time (FT) and part-time (PT), offering valuable insights into the diverse income landscapes within Arkansas. The dataset can be utilized to gain insights into gender-based income distribution within the Arkansas population, aiding in data analysis and decision-making..

    Key observations

    • Employment patterns: Within Arkansas, among individuals aged 15 years and older with income, there were 1.05 million men and 1.05 million women in the workforce. Among them, 556.08 thousand men were engaged in full-time, year-round employment, while 446.59 thousand women were in full-time, year-round roles.
    • Annual income under $24,999: Of the male population working full-time, 9.84% fell within the income range of under $24,999, while 14.81% of the female population working full-time was represented in the same income bracket.
    • Annual income above $100,000: 19.32% of men in full-time roles earned incomes exceeding $100,000, while 9.65% of women in full-time positions earned within this income bracket.
    • Refer to the research insights for more key observations on more income brackets ( Annual income under $24,999, Annual income between $25,000 and $49,999, Annual income between $50,000 and $74,999, Annual income between $75,000 and $99,999 and Annual income above $100,000) and employment types (full-time year-round and part-time)
    Content

    When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates.

    Income brackets:

    • $1 to $2,499 or loss
    • $2,500 to $4,999
    • $5,000 to $7,499
    • $7,500 to $9,999
    • $10,000 to $12,499
    • $12,500 to $14,999
    • $15,000 to $17,499
    • $17,500 to $19,999
    • $20,000 to $22,499
    • $22,500 to $24,999
    • $25,000 to $29,999
    • $30,000 to $34,999
    • $35,000 to $39,999
    • $40,000 to $44,999
    • $45,000 to $49,999
    • $50,000 to $54,999
    • $55,000 to $64,999
    • $65,000 to $74,999
    • $75,000 to $99,999
    • $100,000 or more

    Variables / Data Columns

    • Income Bracket: This column showcases 20 income brackets ranging from $1 to $100,000+..
    • Full-Time Males: The count of males employed full-time year-round and earning within a specified income bracket
    • Part-Time Males: The count of males employed part-time and earning within a specified income bracket
    • Full-Time Females: The count of females employed full-time year-round and earning within a specified income bracket
    • Part-Time Females: The count of females employed part-time and earning within a specified income bracket

    Employment type classifications include:

    • Full-time, year-round: A full-time, year-round worker is a person who worked full time (35 or more hours per week) and 50 or more weeks during the previous calendar year.
    • Part-time: A part-time worker is a person who worked less than 35 hours per week during the previous calendar year.

    Good to know

    Margin of Error

    Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.

    Custom data

    If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.

    Inspiration

    Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.

    Recommended for further research

    This dataset is a part of the main dataset for Arkansas median household income by race. You can refer the same here

  9. World cities database

    • kaggle.com
    Updated May 25, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Juanma Hernández (2025). World cities database [Dataset]. http://doi.org/10.34740/kaggle/dsv/11944536
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    May 25, 2025
    Dataset provided by
    Kagglehttp://kaggle.com/
    Authors
    Juanma Hernández
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    The data is from:

    https://simplemaps.com/data/world-cities

    We're proud to offer a simple, accurate and up-to-date database of the world's cities and towns. We've built it from the ground up using authoritative sources such as the NGIA, US Geological Survey, US Census Bureau, and NASA.

    Our database is:

    • Up-to-date: It was last refreshed on May 11, 2025.
    • Comprehensive: Over 4 million unique cities and towns from every country in the world (about 48 thousand in basic database).
    • Accurate: Cleaned and aggregated from official sources. Includes latitude and longitude coordinates.
    • Simple: A single CSV file, concise field names, only one entry per city.
  10. Data from: The Opportunity Atlas

    • redivis.com
    application/jsonl +7
    Updated Apr 22, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Stanford Center for Population Health Sciences (2020). The Opportunity Atlas [Dataset]. http://doi.org/10.57761/aw9b-jd83
    Explore at:
    arrow, spss, stata, avro, csv, sas, application/jsonl, parquetAvailable download formats
    Dataset updated
    Apr 22, 2020
    Dataset provided by
    Redivis Inc.
    Authors
    Stanford Center for Population Health Sciences
    Description

    Abstract

    The Opportunity Atlas has collected contextual data by county and tract. Rather than providing contextual socioeconomic data of where people currently live, the data represents average socioeconomic indicators (e.g., earnings) of where people grew up.

    Documentation

    A core element of Population Health Science is that health outcomes can only be fully understood when they are studied within their context. Therefore, we have a copy of The Opportunity Atlas, a dataset that provides socioeconomic data by county and tract.

    Several studies have shown that especially childhood neighborhoods drive adult outcomes and that residential areas lived in through adulthood have much smaller effects. The focus of the Opportunity Atlas is therefore on contextual data of where people grew up:

    %3E Traditional measures of poverty and neighborhood conditions provide snapshots of income and other variables for residents in an area at a given point in time. But to study how economic opportunity varies across neighborhoods, we really need to follow people over many years and see how one’s outcomes depend upon family circumstances and where on grew up. The Opportunity Atlas is the first dataset that provides such longitudinal information at a detailed neighborhood level. Using the Atlas, you can see not just where the rich and poor currently live – which was possible in previously available data from the Census Bureau – but whether children in a given area tend to grow up to become rich of poor. This focus on mobility out of poverty across generations allows us to trace the roots of outcomes such as poverty and incarceration back to where kids grew up, potentially permitting much more effective interventions.

    As such, The Opportunity Atlas data provides a rich source of data for researchers who wish to overlay health data with contextual data.

    Methodology

    Three sources of Census Bureau are linked to compute the data

    1. The 2000 and 2010 Decennial Census short form
    2. Federal income tax returns for 1989, 1994, 1995, 1998-2015
    3. The 2000 Decennial Census long form and the 2005-2015 American Community Surveys (ACS).

    %3C!-- --%3E

    20.5 million Americans born between 1987-1983 are sampled from these data and mapped back to the Census tracts they lived in through age 23. After that step, a range of outcomes are then estimated for each of the 70,000 tracts. In order to comply with federal data disclosure standards and protect the privacy of individuals no estimates in tracts with 20 or fewer children are published and noise (small random numbers) is added to all the estimates.

    For more information on the data collection and methodology, please visit:

    Website

    Documentation

    Data availability

    Some variables are available for counties only. The table below gives you an overview. Open the table in a new tab for a larger view.

    https://redivis.com/fileUploads/ee6544ef-e1b1-473d-a75d-36618c91f4a5%3E" alt="data availability.png">

  11. T

    United States Population

    • tradingeconomics.com
    • es.tradingeconomics.com
    • +13more
    csv, excel, json, xml
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    TRADING ECONOMICS, United States Population [Dataset]. https://tradingeconomics.com/united-states/population
    Explore at:
    excel, xml, csv, jsonAvailable download formats
    Dataset authored and provided by
    TRADING ECONOMICS
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Dec 31, 1900 - Dec 31, 2024
    Area covered
    United States
    Description

    The total population in the United States was estimated at 341.2 million people in 2024, according to the latest census figures and projections from Trading Economics. This dataset provides - United States Population - actual values, historical data, forecast, chart, statistics, economic calendar and news.

  12. United States Commutes

    • kaggle.com
    Updated Nov 18, 2019
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    figshare (2019). United States Commutes [Dataset]. https://www.kaggle.com/datasets/figshare/united-states-commutes/discussion?sort=undefined
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Nov 18, 2019
    Dataset provided by
    Kagglehttp://kaggle.com/
    Authors
    figshare
    License

    https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/

    Area covered
    United States
    Description

    Context

    The emergence in the United States of large-scale “megaregions” centered on major metropolitan areas is a phenomenon often taken for granted in both scholarly studies and popular accounts of contemporary economic geography.

    This dataset comes from a paper (Nelson & Rae, 2016. An Economic Geography of the United States: From Commutes to Megaregions) that uses a data set of more than 4,000,000 commuter flows as the basis for an empirical approach to the identification of such megaregions.

    Content

    This dataset consists of two files: one contains the commuting data, and one is a gazetteer describing the population and locations of the census tracts referred to by the commuting data. The fields Ofips and Dfips (FIPS codes for the originating and destination census tracts, respectively) in commute_data.csv refer to the GEOID field in census_tracts_2010.csv.

    commute_data

    This file contains information on over 4 million commute flows. It has the following fields:

    • Ofips: the full FIPS code for the origin census tract of an individual flow line
    • **Dfips **: the full FIPS code for the destination census tract of an individual flow line
    • Ostfips: the FIPS code for the origin state of an individual flow line
    • Octfips: the FIPS code for the origin county of an individual flow line
    • Otrfips: the FIPS code for the destination census tract of an individual flow line
    • Dstfips: the FIPS code for the destination state of an individual flow line
    • Dctfips: the FIPS code for the destination county of an individual flow line
    • Dtrfips: the FIPS code for the destination census tract of an individual flow line
    • Flow: the total number of commuters associated with this individual point to point flow line (i.e. the total number of journeys to work)
    • Moe: margin of error of the Flow value above
    • LenKM: length of each flow line, in Kilometers
    • ESTDIVMOE: the Flow value divided by the Margin of Error of the estimate

    census_tracts_2010

    This file contains the following fields, which represent information about different U.S. Census Tracts:

    • USPS: United States Postal Service State Abbreviation
    • GEOID: Geographic Identifier - fully concatenated geographic code (State FIPS and County FIPS)
    • ANSICODE: American National Standards Institute code
    • NAME: Name
    • POP10: 2010 Census population count.
    • HU10: 2010 Census housing unit count.
    • ALAND: Land Area (square meters) - Created for statistical purposes only.
    • AWATER: Water Area (square meters) - Created for statistical purposes only.
    • ALAND_SQMI: Land Area (square miles) - Created for statistical purposes only.
    • AWATER_SQMI: Water Area (square miles) - Created for statistical purposes only.
    • INTPTLAT: Latitude (decimal degrees) First character is blank or "-" denoting North or South latitude respectively.
    • INTPTLONG: Longitude (decimal degrees) First character is blank or "-" denoting East or West longitude respectively.

    Acknowledgements

    This dataset comes from the following article:

    Nelson & Rae, 2016. An Economic Geography of the United States: From Commutes to Megaregions

    The full dataset (in GIS shapefile format) can be found on figshare here

  13. d

    Input Digital Datasets for the Soil-Water Balance Groundwater Recharge Model...

    • catalog.data.gov
    • data.usgs.gov
    • +1more
    Updated Aug 15, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Geological Survey (2025). Input Digital Datasets for the Soil-Water Balance Groundwater Recharge Model of the Upper Colorado River Basin [Dataset]. https://catalog.data.gov/dataset/input-digital-datasets-for-the-soil-water-balance-groundwater-recharge-model-of-the-upper-
    Explore at:
    Dataset updated
    Aug 15, 2025
    Dataset provided by
    United States Geological Surveyhttp://www.usgs.gov/
    Area covered
    Colorado River
    Description

    The Colorado River and its tributaries supply water to more than 35 million people in the United States and 3 million people in Mexico, irrigating more than 4.5 million acres of farmland, and generating about 12 billion kilowatt hours of hydroelectric power annually. Planning for the sustainable management of the Colorado River in future climates requires an understanding of the Upper Colorado River Basin groundwater system. The Upper Colorado River Basin, encompassing more than 110,000 square miles (mi2), contains the headwaters of the Colorado River and is an important source of snowmelt runoff to the River. Groundwater discharge also is an important source of water in the River and its tributaries, with estimates ranging from 21 to 58 percent of streamflow in the upper basin. A study by Castle and others (2014) using remotely sensed gravity observations from the NASA Gravity Recovery and Climate Experiment (GRACE) mission found that UCRB groundwater was depleted by more than 17 million acre-feet (ft) from December 2004 to November 2013. Understanding groundwater-budget components, including groundwater recharge, is important to sustainably manage both groundwater and surface-water supplies in the Colorado River Basin.

  14. Dataset for modeling spatial and temporal variation in natural background...

    • catalog.data.gov
    Updated Nov 12, 2020
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. EPA Office of Research and Development (ORD) (2020). Dataset for modeling spatial and temporal variation in natural background specific conductivity [Dataset]. https://catalog.data.gov/dataset/dataset-for-modeling-spatial-and-temporal-variation-in-natural-background-specific-conduct
    Explore at:
    Dataset updated
    Nov 12, 2020
    Dataset provided by
    United States Environmental Protection Agencyhttp://www.epa.gov/
    Description

    This file contains the data set used to develop a random forest model predict background specific conductivity for stream segments in the contiguous United States. This Excel readable file contains 56 columns of parameters evaluated during development. The data dictionary provides the definition of the abbreviations and the measurement units. Each row is a unique sample described as R** which indicates the NHD Hydrologic Unit (underscore), up to a 7-digit COMID, (underscore) sequential sample month. To develop models that make stream-specific predictions across the contiguous United States, we used StreamCat data set and process (Hill et al. 2016; https://github.com/USEPA/StreamCat). The StreamCat data set is based on a network of stream segments from NHD+ (McKay et al. 2012). These stream segments drain an average area of 3.1 km2 and thus define the spatial grain size of this data set. The data set consists of minimally disturbed sites representing the natural variation in environmental conditions that occur in the contiguous 48 United States. More than 2.4 million SC observations were obtained from STORET (USEPA 2016b), state natural resource agencies, the U.S. Geological Survey (USGS) National Water Information System (NWIS) system (USGS 2016), and data used in Olson and Hawkins (2012) (Table S1). Data include observations made between 1 January 2001 and 31 December 2015 thus coincident with Moderate Resolution Imaging Spectroradiometer (MODIS) satellite data (https://modis.gsfc.nasa.gov/data/). Each observation was related to the nearest stream segment in the NHD+. Data were limited to one observation per stream segment per month. SC observations with ambiguous locations and repeat measurements along a stream segment in the same month were discarded. Using estimates of anthropogenic stress derived from the StreamCat database (Hill et al. 2016), segments were selected with minimal amounts of human activity (Stoddard et al. 2006) using criteria developed for each Level II Ecoregion (Omernik and Griffith 2014). Segments were considered as potentially minimally stressed where watersheds had 0 - 0.5% impervious surface, 0 – 5% urban, 0 – 10% agriculture, and population densities from 0.8 – 30 people/km2 (Table S3). Watersheds with observations with large residuals in initial models were identified and inspected for evidence of other human activities not represented in StreamCat (e.g., mining, logging, grazing, or oil/gas extraction). Observations were removed from disturbed watersheds, with a tidal influence or unusual geologic conditions such as hot springs. About 5% of SC observations in each National Rivers and Stream Assessment (NRSA) region were then randomly selected as independent validation data. The remaining observations became the large training data set for model calibration. This dataset is associated with the following publication: Olson, J., and S. Cormier. Modeling spatial and temporal variation in natural background specific conductivity. ENVIRONMENTAL SCIENCE & TECHNOLOGY. American Chemical Society, Washington, DC, USA, 53(8): 4316-4325, (2019).

  15. Success.ai | | US Premium B2B Emails & Phone Numbers Dataset - APIs and flat...

    • datarade.ai
    Updated Oct 12, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Success.ai (2024). Success.ai | | US Premium B2B Emails & Phone Numbers Dataset - APIs and flat files available – 170M+, Verified Profiles - Best Price Guarantee [Dataset]. https://datarade.ai/data-products/success-ai-us-premium-b2b-emails-phone-numbers-dataset-success-ai
    Explore at:
    .bin, .json, .xml, .csv, .xls, .sql, .txtAvailable download formats
    Dataset updated
    Oct 12, 2024
    Dataset provided by
    Area covered
    United States
    Description

    Success.ai offers a comprehensive, enterprise-ready B2B leads data solution, ideal for businesses seeking access to over 150 million verified employee profiles and 170 million work emails. Our data empowers organizations across industries to target key decision-makers, optimize recruitment, and fuel B2B marketing efforts. Whether you're looking for UK B2B data, B2B marketing data, or global B2B contact data, Success.ai provides the insights you need with pinpoint accuracy.

    Tailored for B2B Sales, Marketing, Recruitment and more: Our B2B contact data and B2B email data solutions are designed to enhance your lead generation, sales, and recruitment efforts. Build hyper-targeted lists based on job title, industry, seniority, and geographic location. Whether you’re reaching mid-level professionals or C-suite executives, Success.ai delivers the data you need to connect with the right people.

    API Features:

    • Real-Time Updates: Our APIs deliver real-time updates, ensuring that the contact data your business relies on is always current and accurate.
    • High Volume Handling: Designed to support up to 860k API calls per day, our system is built for scalability and responsiveness, catering to enterprises of all sizes.
    • Flexible Integration: Easily integrate with CRM systems, marketing automation tools, and other enterprise applications to streamline your workflows and enhance productivity.

    Key Categories Served: B2B sales leads – Identify decision-makers in key industries, B2B marketing data – Target professionals for your marketing campaigns, Recruitment data – Source top talent efficiently and reduce hiring times, CRM enrichment – Update and enhance your CRM with verified, updated data, Global reach – Coverage across 195 countries, including the United States, United Kingdom, Germany, India, Singapore, and more.

    Global Coverage with Real-Time Accuracy: Success.ai’s dataset spans a wide range of industries such as technology, finance, healthcare, and manufacturing. With continuous real-time updates, your team can rely on the most accurate data available: 150M+ Employee Profiles: Access professional profiles worldwide with insights including full name, job title, seniority, and industry. 170M Verified Work Emails: Reach decision-makers directly with verified work emails, available across industries and geographies, including Singapore and UK B2B data. GDPR-Compliant: Our data is fully compliant with GDPR and other global privacy regulations, ensuring safe and legal use of B2B marketing data.

    Key Data Points for Every Employee Profile: Every profile in Success.ai’s database includes over 20 critical data points, providing the information needed to power B2B sales and marketing campaigns: Full Name, Job Title, Company, Work Email, Location, Phone Number, LinkedIn Profile, Experience, Education, Technographic Data, Languages, Certifications, Industry, Publications & Awards.

    Use Cases Across Industries: Success.ai’s B2B data solution is incredibly versatile and can support various enterprise use cases, including: B2B Marketing Campaigns: Reach high-value professionals in industries such as technology, finance, and healthcare. Enterprise Sales Outreach: Build targeted B2B contact lists to improve sales efforts and increase conversions. Talent Acquisition: Accelerate hiring by sourcing top talent with accurate and updated employee data, filtered by job title, industry, and location. Market Research: Gain insights into employment trends and company profiles to enrich market research. CRM Data Enrichment: Ensure your CRM stays accurate by integrating updated B2B contact data. Event Targeting: Create lists for webinars, conferences, and product launches by targeting professionals in key industries.

    Use Cases for Success.ai's Contact Data - Targeted B2B Marketing: Create precise campaigns by targeting key professionals in industries like tech and finance. - Sales Outreach: Build focused sales lists of decision-makers and C-suite executives for faster deal cycles. - Recruiting Top Talent: Easily find and hire qualified professionals with updated employee profiles. - CRM Enrichment: Keep your CRM current with verified, accurate employee data. - Event Targeting: Create attendee lists for events by targeting relevant professionals in key sectors. - Market Research: Gain insights into employment trends and company profiles for better business decisions. - Executive Search: Source senior executives and leaders for headhunting and recruitment. - Partnership Building: Find the right companies and key people to develop strategic partnerships.

    Why Choose Success.ai’s Employee Data? Success.ai is the top choice for enterprises looking for comprehensive and affordable B2B data solutions. Here’s why: Unmatched Accuracy: Our AI-powered validation process ensures 99% accuracy across all data points, resulting in higher engagement and fewer bounces. Global Scale: With 150M+ employee profiles and 170M veri...

  16. Complete U.S. Database 2017

    • aura.american.edu
    Updated Feb 12, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Woods & Poole Economics, Inc. (2025). Complete U.S. Database 2017 [Dataset]. http://doi.org/10.57912/24442786.v1
    Explore at:
    Dataset updated
    Feb 12, 2025
    Dataset provided by
    Authors
    Woods & Poole Economics, Inc.
    License

    http://rightsstatements.org/vocab/InC/1.0/http://rightsstatements.org/vocab/InC/1.0/

    Description

    Site-licensed "Complete U.S. Database" 2017 from Woods & Poole Economics. The downloadable ZIP file contains all folders and files as distributed on the DVD. From their description: "The Complete U.S. Database contains, on DVD, annual historical data from 1970 (some variables begin in 1990) and annual projections to 2050 of population by race, sex, and age, employment by industry, earnings of employees by industry, personal income by source, households by income bracket and retail sales by kind of business. The Complete U.S. Database contains annual data, 1970 (some variables begin in 1990) to 2050, for all economic and demographic variables for all geographic areas in the Woods & Poole database (the U.S. total, and all regions, states, counties, and CBSAs) – more than 130 million statistics. The Complete U.S. Database differs from CEDDS in that it has the population data by single year of age cross tabulated by sex and by race – more than 1,500 demographic variables."

  17. Climate Change: Earth Surface Temperature Data

    • kaggle.com
    • redivis.com
    zip
    Updated May 1, 2017
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Berkeley Earth (2017). Climate Change: Earth Surface Temperature Data [Dataset]. https://www.kaggle.com/datasets/berkeleyearth/climate-change-earth-surface-temperature-data
    Explore at:
    zip(88843537 bytes)Available download formats
    Dataset updated
    May 1, 2017
    Dataset authored and provided by
    Berkeley Earthhttp://berkeleyearth.org/
    License

    Attribution-NonCommercial-ShareAlike 4.0 (CC BY-NC-SA 4.0)https://creativecommons.org/licenses/by-nc-sa/4.0/
    License information was derived automatically

    Area covered
    Earth
    Description

    Some say climate change is the biggest threat of our age while others say it’s a myth based on dodgy science. We are turning some of the data over to you so you can form your own view.

    us-climate-change

    Even more than with other data sets that Kaggle has featured, there’s a huge amount of data cleaning and preparation that goes into putting together a long-time study of climate trends. Early data was collected by technicians using mercury thermometers, where any variation in the visit time impacted measurements. In the 1940s, the construction of airports caused many weather stations to be moved. In the 1980s, there was a move to electronic thermometers that are said to have a cooling bias.

    Given this complexity, there are a range of organizations that collate climate trends data. The three most cited land and ocean temperature data sets are NOAA’s MLOST, NASA’s GISTEMP and the UK’s HadCrut.

    We have repackaged the data from a newer compilation put together by the Berkeley Earth, which is affiliated with Lawrence Berkeley National Laboratory. The Berkeley Earth Surface Temperature Study combines 1.6 billion temperature reports from 16 pre-existing archives. It is nicely packaged and allows for slicing into interesting subsets (for example by country). They publish the source data and the code for the transformations they applied. They also use methods that allow weather observations from shorter time series to be included, meaning fewer observations need to be thrown away.

    In this dataset, we have include several files:

    Global Land and Ocean-and-Land Temperatures (GlobalTemperatures.csv):

    • Date: starts in 1750 for average land temperature and 1850 for max and min land temperatures and global ocean and land temperatures
    • LandAverageTemperature: global average land temperature in celsius
    • LandAverageTemperatureUncertainty: the 95% confidence interval around the average
    • LandMaxTemperature: global average maximum land temperature in celsius
    • LandMaxTemperatureUncertainty: the 95% confidence interval around the maximum land temperature
    • LandMinTemperature: global average minimum land temperature in celsius
    • LandMinTemperatureUncertainty: the 95% confidence interval around the minimum land temperature
    • LandAndOceanAverageTemperature: global average land and ocean temperature in celsius
    • LandAndOceanAverageTemperatureUncertainty: the 95% confidence interval around the global average land and ocean temperature

    Other files include:

    • Global Average Land Temperature by Country (GlobalLandTemperaturesByCountry.csv)
    • Global Average Land Temperature by State (GlobalLandTemperaturesByState.csv)
    • Global Land Temperatures By Major City (GlobalLandTemperaturesByMajorCity.csv)
    • Global Land Temperatures By City (GlobalLandTemperaturesByCity.csv)

    The raw data comes from the Berkeley Earth data page.

  18. d

    Spring Season Habitat Categories for Greater Sage-grouse in Nevada and...

    • catalog.data.gov
    • data.usgs.gov
    • +2more
    Updated Jul 6, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Geological Survey (2024). Spring Season Habitat Categories for Greater Sage-grouse in Nevada and northeastern California [Dataset]. https://catalog.data.gov/dataset/spring-season-habitat-categories-for-greater-sage-grouse-in-nevada-and-northeastern-califo
    Explore at:
    Dataset updated
    Jul 6, 2024
    Dataset provided by
    United States Geological Surveyhttp://www.usgs.gov/
    Area covered
    California, Nevada
    Description

    This shapefile represents habitat suitability categories (High, Moderate, Low, and Non-Habitat) derived from a composite, continuous surface of sage-grouse habitat suitability index (HSI) values for Nevada and northeastern California during spring, which is a surrogate for habitat conditions during the sage-grouse breeding and nesting period. Summary of steps to create Habitat Categories: HABITAT SUITABILITY INDEX: The HSI was derived from a generalized linear mixed model (specified by binomial distribution) that contrasted data from multiple environmental factors at used sites (telemetry locations) and available sites (random locations). Predictor variables for the model represented vegetation communities at multiple spatial scales, water resources, habitat configuration, urbanization, roads, elevation, ruggedness, and slope. Vegetation data was derived from various mapping products, which included NV SynthMap (Petersen 2008, SageStitch (Comer et al. 2002, LANDFIRE (Landfire 2010), and the CA Fire and Resource Assessment Program (CFRAP 2006). The analysis was updated to include high resolution percent cover within 30 x 30 m pixels for Sagebrush, non-sagebrush, herbaceous vegetation, and bare ground (C. Homer, unpublished; based on the methods of Homer et al. 2014, Xian et al. 2015 ) and conifer (primarily pinyon-juniper, P. Coates, unpublished). The pool of telemetry data included the same data from 1998 - 2013 used by Coates et al. (2014); additional telemetry location data from field sites in 2014 were added to the dataset. The dataset was then split according calendar date into three seasons (spring, summer, winter). Spring included telemetry locations (n = 14,058) from mid-March to June, and is a surrogate for habitat conditions during the sage-grouse breeding and nesting period. All age and sex classes of marked grouse were used in the analysis. Sufficient data (i.e., a minimum of 100 locations from at least 20 marked Sage-grouse) for modeling existed in 10 subregions for spring and summer, and seven subregions in winter, using all age and sex classes of marked grouse. It is important to note that although this map is composed of HSI values derived from the seasonal data, it does not explicitly represent habitat suitability for reproductive females (i.e., nesting). Insufficient data were available to allow for estimation of this habitat type for all seasons throughout the study area extent. A Resource Selection Function (RSF) was calculated for each subregion and using generalized linear models to derive model-averaged parameter estimates for each covariate across a set of additive models. Subregional RSFs were transformed into Habitat Suitability Indices, and averaged together to produce an overall statewide HSI whereby a relative probability of occurrence was calculated for each raster cell during the spring season. In order to account for discrepancies in HSI values caused by varying ecoregions within Nevada, the HSI was divided into north and south extents using a slightly modified flood region boundary (Mason 1999) that was designed to represent respective mesic and xeric regions of the state. North and south HSI rasters were each relativized according to their maximum value to rescale between zero and one, then mosaicked once more into a state-wide extent. HABITAT CATEGORIZATION: Using the same ecoregion boundaries described above, the habitat classification dataset (an independent data set comprising 10% of the total telemetry location sample) was split into locations falling within respective north and south regions. HSI values from the composite and relativized statewide HSI surface were then extracted to each classification dataset location within the north and south region. The distribution of these values were used to identify class break values corresponding to 0.5 (high), 1.0 (moderate), and 1.5 (low) standard deviations (SD) from the mean HSI. These class breaks were used to classify the HSI surface into four discrete categories of habitat suitability: High, Moderate, Low, and Non-Habitat. In terms of percentiles, High habitat comprised greater than 30.9 % of the HSI values, Moderate comprised 15 – 30.9%, Low comprised 6.7 – 15%, and Non-Habitat comprised less than 6.7%.The classified north and south regions were then clipped by the boundary layer and mosaicked to create a statewide categorical surface for habitat selection. Each habitat suitability category was converted to a vector output where gaps within polygons less than 1.2 million square meters were eliminated, polygons within 500 meters of each other were connected to create corridors and polygons less than 1.2 million square meters in one category were incorporated to the adjacent category. The final step was to mask major roads that were buffered by 50m (Census, 2014), lakes (Peterson, 2008) and urban areas, and place those masked areas into the non-habitat category. The existing urban layer (Census 2010) was not sufficient for our needs because it excluded towns with a population lower than 1,500. Hence, we masked smaller towns (populations of 100 to 1500) and development with Census Block polygons (Census 2015) that had at least 50% urban development within their boundaries when viewed with reference imagery (ArcGIS World Imagery Service Layer). REFERENCES: California Forest and Resource Assessment Program (CFRAP). 2006. Statewide Land Use / Land Cover Mosaic. [Geospatial data.] California Department of Forestry and Fire Protection, http://frap.cdf.ca.gov/data/frapgisdata-sw-rangeland-assessment_data.php Census 2010. TIGER/Line Shapefiles. Urban Areas [Geospatial data.] U.S. Census Bureau, Washington D.C., https://www.census.gov/geo/maps-data/data/tiger-line.html Census 2014. TIGER/Line Shapefiles. Roads [Geospatial data.] U.S. Census Bureau, Washington D.C., https://www.census.gov/geo/maps-data/data/tiger-line.html Census 2015. TIGER/Line Shapefiles. Blocks [Geospatial data.] U.S. Census Bureau, Washington D.C., https://www.census.gov/geo/maps-data/data/tiger-line.html Coates, P.S., Casazza, M.L., Brussee, B.E., Ricca, M.A., Gustafson, K.B., Overton, C.T., Sanchez-Chopitea, E., Kroger, T., Mauch, K., Niell, L., Howe, K., Gardner, S., Espinosa, S., and Delehanty, D.J. 2014, Spatially explicit modeling of greater sage-grouse (Centrocercus urophasianus) habitat in Nevada and northeastern California—A decision-support tool for management: U.S. Geological Survey Open-File Report 2014-1163, 83 p., http://dx.doi.org/10.3133/ofr20141163. ISSN 2331-1258 (online) Comer, P., Kagen, J., Heiner, M., and Tobalske, C. 2002. Current distribution of sagebrush and associated vegetation in the western United States (excluding NM). [Geospatial data.] Interagency Sagebrush Working Group, http://sagemap.wr.usgs.gov Homer, C.G., Aldridge, C.L., Meyer, D.K., and Schell, S.J. 2014. Multi-Scale Remote Sensing Sagebrush Characterization with Regression Trees over Wyoming, USA; Laying a Foundation for Monitoring. International Journal of Applied Earth Observation and Geoinformation 14, Elsevier, US. LANDFIRE. 2010. 1.2.0 Existing Vegetation Type Layer. [Geospatial data.] U.S. Department of the Interior, Geological Survey, http://landfire.cr.usgs.gov/viewer/ Mason, R.R. 1999. The National Flood-Frequency Program—Methods For Estimating Flood Magnitude And Frequency In Rural Areas In Nevada U.S. Geological Survey Fact Sheet 123-98 September, 1999, Prepared by Robert R. Mason, Jr. and Kernell G. Ries III, of the U.S. Geological Survey; and Jeffrey N. King and Wilbert O. Thomas, Jr., of Michael Baker, Jr., Inc. http://pubs.usgs.gov/fs/fs-123-98/ Peterson, E. B. 2008. A Synthesis of Vegetation Maps for Nevada (Initiating a 'Living' Vegetation Map). Documentation and geospatial data, Nevada Natural Heritage Program, Carson City, Nevada, http://www.heritage.nv.gov/gis Xian, G., Homer, C., Rigge, M., Shi, H., and Meyer, D. 2015. Characterization of shrubland ecosystem components as continuous fields in the northwest United States. Remote Sensing of Environment 168:286-300. NOTE: This file does not include habitat areas for the Bi-State management area and the spatial extent is modified in comparison to Coates et al. 2014

  19. d

    Voter Registration by Census Tract

    • catalog.data.gov
    • data.kingcounty.gov
    • +1more
    Updated Jun 29, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    data.kingcounty.gov (2025). Voter Registration by Census Tract [Dataset]. https://catalog.data.gov/dataset/voter-registration-by-census-tract
    Explore at:
    Dataset updated
    Jun 29, 2025
    Dataset provided by
    data.kingcounty.gov
    Description

    This web map displays data from the voter registration database as the percent of registered voters by census tract in King County, Washington. The data for this web map is compiled from King County Elections voter registration data for the years 2013-2019. The total number of registered voters is based on the geo-location of the voter's registered address at the time of the general election for each year. The eligible voting population, age 18 and over, is based on the estimated population increase from the US Census Bureau and the Washington Office of Financial Management and was calculated as a projected 6 percent population increase for the years 2010-2013, 7 percent population increase for the years 2010-2014, 9 percent population increase for the years 2010-2015, 11 percent population increase for the years 2010-2016 & 2017, 14 percent population increase for the years 2010-2018 and 17 percent population increase for the years 2010-2019. The total population 18 and over in 2010 was 1,517,747 in King County, Washington. The percentage of registered voters represents the number of people who are registered to vote as compared to the eligible voting population, age 18 and over. The voter registration data by census tract was grouped into six percentage range estimates: 50% or below, 51-60%, 61-70%, 71-80%, 81-90% and 91% or above with an overall 84 percent registration rate. In the map the lighter colors represent a relatively low percentage range of voter registration and the darker colors represent a relatively high percentage range of voter registration. PDF maps of these data can be viewed at King County Elections downloadable voter registration maps. The 2019 General Election Voter Turnout layer is voter turnout data by historical precinct boundaries for the corresponding year. The data is grouped into six percentage ranges: 0-30%, 31-40%, 41-50% 51-60%, 61-70%, and 71-100%. The lighter colors represent lower turnout and the darker colors represent higher turnout. The King County Demographics Layer is census data for language, income, poverty, race and ethnicity at the census tract level and is based on the 2010-2014 American Community Survey 5 year Average provided by the United States Census Bureau. Since the data is based on a survey, they are considered to be estimates and should be used with that understanding. The demographic data sets were developed and are maintained by King County Staff to support the King County Equity and Social Justice program. Other data for this map is located in the King County GIS Spatial Data Catalog, where data is managed by the King County GIS Center, a multi-department enterprise GIS in King County, Washington. King County has nearly 1.3 million registered voters and is the largest jurisdiction in the United States to conduct all elections by mail. In the map you can view the percent of registered voters by census tract, compare registration within political districts, compare registration and demographic data, verify your voter registration or register to vote through a link to the VoteWA, Washington State Online Voter Registration web page.

  20. o

    Geonames - All Cities with a population > 1000

    • public.opendatasoft.com
    • data.smartidf.services
    • +2more
    csv, excel, geojson +1
    Updated Mar 10, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2024). Geonames - All Cities with a population > 1000 [Dataset]. https://public.opendatasoft.com/explore/dataset/geonames-all-cities-with-a-population-1000/
    Explore at:
    csv, json, geojson, excelAvailable download formats
    Dataset updated
    Mar 10, 2024
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    All cities with a population > 1000 or seats of adm div (ca 80.000)Sources and ContributionsSources : GeoNames is aggregating over hundred different data sources. Ambassadors : GeoNames Ambassadors help in many countries. Wiki : A wiki allows to view the data and quickly fix error and add missing places. Donations and Sponsoring : Costs for running GeoNames are covered by donations and sponsoring.Enrichment:add country name

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Neilsberg Research (2025). United States Age Group Population Dataset: A Complete Breakdown of United States Age Demographics from 0 to 85 Years and Over, Distributed Across 18 Age Groups // 2025 Edition [Dataset]. https://www.neilsberg.com/research/datasets/454c7ad4-f122-11ef-8c1b-3860777c1fe6/

United States Age Group Population Dataset: A Complete Breakdown of United States Age Demographics from 0 to 85 Years and Over, Distributed Across 18 Age Groups // 2025 Edition

Explore at:
csv, jsonAvailable download formats
Dataset updated
Feb 22, 2025
Dataset authored and provided by
Neilsberg Research
License

Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically

Area covered
United States
Variables measured
Population Under 5 Years, Population over 85 years, Population Between 5 and 9 years, Population Between 10 and 14 years, Population Between 15 and 19 years, Population Between 20 and 24 years, Population Between 25 and 29 years, Population Between 30 and 34 years, Population Between 35 and 39 years, Population Between 40 and 44 years, and 9 more
Measurement technique
The data presented in this dataset is derived from the latest U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates. To measure the two variables, namely (a) population and (b) population as a percentage of the total population, we initially analyzed and categorized the data for each of the age groups. For age groups we divided it into roughly a 5 year bucket for ages between 0 and 85. For over 85, we aggregated data into a single group for all ages. For further information regarding these estimates, please feel free to reach out to us via email at research@neilsberg.com.
Dataset funded by
Neilsberg Research
Description
About this dataset

Context

The dataset tabulates the United States population distribution across 18 age groups. It lists the population in each age group along with the percentage population relative of the total population for United States. The dataset can be utilized to understand the population distribution of United States by age. For example, using this dataset, we can identify the largest age group in United States.

Key observations

The largest age group in United States was for the group of age 30 to 34 years years with a population of 23.06 million (6.94%), according to the ACS 2019-2023 5-Year Estimates. At the same time, the smallest age group in United States was the 80 to 84 years years with a population of 6.34 million (1.91%). Source: U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates

Content

When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates

Age groups:

  • Under 5 years
  • 5 to 9 years
  • 10 to 14 years
  • 15 to 19 years
  • 20 to 24 years
  • 25 to 29 years
  • 30 to 34 years
  • 35 to 39 years
  • 40 to 44 years
  • 45 to 49 years
  • 50 to 54 years
  • 55 to 59 years
  • 60 to 64 years
  • 65 to 69 years
  • 70 to 74 years
  • 75 to 79 years
  • 80 to 84 years
  • 85 years and over

Variables / Data Columns

  • Age Group: This column displays the age group in consideration
  • Population: The population for the specific age group in the United States is shown in this column.
  • % of Total Population: This column displays the population of each age group as a proportion of United States total population. Please note that the sum of all percentages may not equal one due to rounding of values.

Good to know

Margin of Error

Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.

Custom data

If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.

Inspiration

Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.

Recommended for further research

This dataset is a part of the main dataset for United States Population by Age. You can refer the same here

Search
Clear search
Close search
Google apps
Main menu