In 2025, nearly 11.7 percent of the world population in extreme poverty, with the poverty threshold at 2.15 U.S. dollars a day, lived in Nigeria. Moreover, the Democratic Republic of the Congo accounted for around 11.7 percent of the global population in extreme poverty. Other African nations with a large poor population were Tanzania, Mozambique, and Madagascar. Poverty levels remain high despite the forecast decline Poverty is a widespread issue across Africa. Around 429 million people on the continent were living below the extreme poverty line of 2.15 U.S. dollars a day in 2024. Since the continent had approximately 1.4 billion inhabitants, roughly a third of Africa’s population was in extreme poverty that year. Mozambique, Malawi, Central African Republic, and Niger had Africa’s highest extreme poverty rates based on the 2.15 U.S. dollars per day extreme poverty indicator (updated from 1.90 U.S. dollars in September 2022). Although the levels of poverty on the continent are forecast to decrease in the coming years, Africa will remain the poorest region compared to the rest of the world. Prevalence of poverty and malnutrition across Africa Multiple factors are linked to increased poverty. Regions with critical situations of employment, education, health, nutrition, war, and conflict usually have larger poor populations. Consequently, poverty tends to be more prevalent in least-developed and developing countries worldwide. For similar reasons, rural households also face higher poverty levels. In 2024, the extreme poverty rate in Africa stood at around 45 percent among the rural population, compared to seven percent in urban areas. Together with poverty, malnutrition is also widespread in Africa. Limited access to food leads to low health conditions, increasing the poverty risk. At the same time, poverty can determine inadequate nutrition. Almost 38.3 percent of the global undernourished population lived in Africa in 2022.
This dataset was uploaded to support the Data Science For Good Kiva crowdfunding challenge. In particular, in uploading this dataset, I intend to assist with mapping subnational locations in the Kiva dataset to more accurate geocodes.
This dataset contains poverty data at the administrative unit level 1, based on national poverty line(s). Administrative unit level 1 refers to the highest subnational unit level (examples include ‘state’, ‘governorate’, ‘province’). This dataset also provides data and methodology for distinguishing between poverty rates in urban and rural regions.
This dataset includes one main .csv file: Subnational-PovertyData.csv, which includes a set of poverty indicators at the national and subnational level between the years 1996-2013. Many countries are missing data for multiple years, and no country has data for the years 1997-1999.
It also includes three metadata .csv files:
1. Subnational-PovertyCountry.csv
, which describes the country codes and subregions.
2.Subnational-PovertySeries.csv
, which describes the three series indicators for national, urban, and rural poverty headcount ratios. This metadata file also including limitations, statistical methodologies, and development relevance for these metrics.
3. Subnational-Povertyfootnote.csv
, which describes the years and sources for all of the country-series combinations.
This dataset is provided openly by the World Bank. Individual sources for the different data series are available in Subnational-Povertyfootnote.csv.
This dataset is classified as Public under the Access to Information Classification Policy. Users inside and outside the World Bank can access this dataset. It is licensed under CC-BY 4.0.
Type: Time Series Topics: Economic Growth Poverty Economy Coverage: IBRD Languages Supported: English Number of Economies: 60 Geographical Coverage: World Access Options: Download, Query Tool Temporal Coverage: 1996 - 2013 Last Updated: April 27, 2015
Attribution-NonCommercial-ShareAlike 3.0 (CC BY-NC-SA 3.0)https://creativecommons.org/licenses/by-nc-sa/3.0/
License information was derived automatically
The FGGD extreme poverty map is a global vector datalayer at scale 1:5 000 000. The map depicts the differences among countries with respect to the national population estimated to be living in extreme poverty as of the latest year for which data was available in 2005. Data have been compiled by FAO from data reported in World Bank, WDI Online, as of April 2005.
Data publication: 2007-06-25
Supplemental Information:
This dataset is contained in Module 3 "Socio-economics and nutrition indicators" of Food Insecurity, Poverty and Environment Global GIS Database (FGGD) (FAO, 2007).
Contact points:
Metadata Contact: FAO-Data
Resource Contact: Mirella Salvatore
Resource constraints:
copyright
Online resources:
Share of population living in extreme poverty, by country, varying years
Attribution-NonCommercial-ShareAlike 4.0 (CC BY-NC-SA 4.0)https://creativecommons.org/licenses/by-nc-sa/4.0/
License information was derived automatically
This dashboard is part of SDGs Today. Please see sdgstoday.orgExtreme poverty poses a major challenge to the livelihood of current and future generations everywhere and threatens Agenda 2030’s promise of leaving no one behind. The World Poverty Clock developed by the World Data Lab provides real-time poverty estimates through 2030 for nearly all countries. The World Poverty Clock uses publicly available data on income distributions, production factors, and household consumption provided by various international organizations, including the World Bank and the International Monetary Fund (IMF). These organizations compile data provided to them by the local governments, and when this information is not available, the World Poverty Clock uses specific models to estimate poverty in these countries. The models include how individual incomes might change over time using IMF growth forecasts for the medium-term complemented by long-term “shared socio-economic pathways” developed by the International Institute for Applied Systems Analysis (IIASA) and similar analysis developed by the OECD. The World Poverty Clock dataset was updated in February 2021, taking into consideration the COVID-19 pandemic effects on the economy.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Analysis of ‘Extreme poverty’ provided by Analyst-2 (analyst-2.ai), based on source dataset retrieved from https://www.kaggle.com/mathurinache/extreme-poverty on 28 January 2022.
--- Dataset description provided by original source is as follows ---
Two centuries ago the majority of the world population was extremely poor. Back then it was widely believed that widespread poverty was inevitable. But this turned out to be wrong. Economic growth is possible and poverty can decline. The world has made immense progress against extreme poverty.
But even after two centuries of progress, extreme poverty is still the reality for every tenth person in the world. This is what the ‘international poverty line’ highlights – this metric plays an important (and successful) role in focusing the world’s attention on these very poorest people in the world.
The poorest people today live in countries which have achieved no growth. This stagnation of the world’s poorest economies is one of the largest problems of our time. Unless this changes millions of people will continue to live in extreme poverty.
Data comes from https://ourworldindata.org/extreme-poverty-in-brief Thanks to them to aggregate this kind of informations!
https://media.globalcitizen.org/thumbnails/90/19/90190c20-1182-47d6-a86e-3a2dcc912e73/extreme-poverty-un-explainer-social-share.jpg_1500x670_q85_ALIAS-hero_image_crop_subsampling-2.jpg" alt="Extreme Poverty">
Compare country, by year the % of persons in extreme poverty
--- Original source retains full ownership of the source dataset ---
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Poverty Headcount Ratio at Societal Poverty Lines: % of Population data was reported at 8.000 % in 2021. This records an increase from the previous number of 7.500 % for 2020. Poverty Headcount Ratio at Societal Poverty Lines: % of Population data is updated yearly, averaging 7.100 % from Dec 1987 (Median) to 2021, with 23 observations. The data reached an all-time high of 8.200 % in 2010 and a record low of 5.000 % in 1995. Poverty Headcount Ratio at Societal Poverty Lines: % of Population data remains active status in CEIC and is reported by World Bank. The data is categorized under Global Database’s Denmark – Table DK.World Bank.WDI: Social: Poverty and Inequality. The poverty headcount ratio at societal poverty line is the percentage of a population living in poverty according to the World Bank's Societal Poverty Line. The Societal Poverty Line is expressed in purchasing power adjusted 2017 U.S. dollars and defined as max($2.15, $1.15 + 0.5*Median). This means that when the national median is sufficiently low, the Societal Poverty line is equivalent to the extreme poverty line, $2.15. For countries with a sufficiently high national median, the Societal Poverty Line grows as countries’ median income grows.;World Bank, Poverty and Inequality Platform. Data are based on primary household survey data obtained from government statistical agencies and World Bank country departments. Data for high-income economies are mostly from the Luxembourg Income Study database. For more information and methodology, please see http://pip.worldbank.org.;;The World Bank’s internationally comparable poverty monitoring database now draws on income or detailed consumption data from more than 2000 household surveys across 169 countries. See the Poverty and Inequality Platform (PIP) for details (www.pip.worldbank.org).
Latest poverty and inequality indicators compiled from officially recognized international sources. Poverty indicators include the poverty headcount ratio, poverty gap, and number of poor at both international and national poverty lines. Inequality indicators include the Gini index and income or consumption distributions. The database includes national, regional and global estimates.
This database is maintained by the Gloabl Poverty Working Group (GPWG), a team of poverty measurement experts from the Poverty Reduction and Equity Network, the Development Research Group, and the Development Data Group.
This is a dataset hosted by the World Bank. The organization has an open data platform found here and they update their information according the amount of data that is brought in. Explore the World Bank using Kaggle and all of the data sources available through the World Bank organization page!
This dataset is maintained using the World Bank's APIs and Kaggle's API.
Cover photo by Yanni Panesa on Unsplash
Unsplash Images are distributed under a unique Unsplash License.
In 2023, the around 11.1 percent of the population was living below the national poverty line in the United States. Poverty in the United StatesAs shown in the statistic above, the poverty rate among all people living in the United States has shifted within the last 15 years. The United Nations Educational, Scientific and Cultural Organization (UNESCO) defines poverty as follows: “Absolute poverty measures poverty in relation to the amount of money necessary to meet basic needs such as food, clothing, and shelter. The concept of absolute poverty is not concerned with broader quality of life issues or with the overall level of inequality in society.” The poverty rate in the United States varies widely across different ethnic groups. American Indians and Alaska Natives are the ethnic group with the most people living in poverty in 2022, with about 25 percent of the population earning an income below the poverty line. In comparison to that, only 8.6 percent of the White (non-Hispanic) population and the Asian population were living below the poverty line in 2022. Children are one of the most poverty endangered population groups in the U.S. between 1990 and 2022. Child poverty peaked in 1993 with 22.7 percent of children living in poverty in that year in the United States. Between 2000 and 2010, the child poverty rate in the United States was increasing every year; however,this rate was down to 15 percent in 2022. The number of people living in poverty in the U.S. varies from state to state. Compared to California, where about 4.44 million people were living in poverty in 2022, the state of Minnesota had about 429,000 people living in poverty.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Multidimensional Poverty Index (MPI): countries where the MPI is below 0.6. Pixels with a value lower than the specified threshold (0.6) were given a value of 1 (YES response)
The 2020 Global MPI data and publication "Charting pathways out of multidimensional poverty: Achieving the SDGs" released on 16 July 2020 by the Oxford Poverty and Human Development Initiative (OPHI) at the University of Oxford and the Human Development Report Office of the United Nations Development Programme (UNDP). The global MPI measures the complexities of poor people’s lives, individually and collectively, each year. This report focuses on how multidimensional poverty has declined. It provides a comprehensive picture of global trends in multidimensional poverty, covering 5 billion people. It probes patterns between and within countries and by indicator, showcasing different ways of making progress. Together with data on the $1.90 a day poverty rate, the trends monitor global poverty in different forms.
Data revision: 2020-07-16
Contact points:
Contact: Admir Jahic UNDP
Metadata contact: OCB Environment FAO-UN
Resource constraints:
license
Online resources:
Global Multidimensional Poverty Index
Charting pathways out of multidimensional poverty: Achieving the SDGs
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Poverty Headcount Ratio at Societal Poverty Lines: % of Population data was reported at 19.000 % in 2021. This records a decrease from the previous number of 20.900 % for 2020. Poverty Headcount Ratio at Societal Poverty Lines: % of Population data is updated yearly, averaging 31.700 % from Dec 1990 (Median) to 2021, with 19 observations. The data reached an all-time high of 72.000 % in 1990 and a record low of 19.000 % in 2021. Poverty Headcount Ratio at Societal Poverty Lines: % of Population data remains active status in CEIC and is reported by World Bank. The data is categorized under Global Database’s China – Table CN.World Bank.WDI: Social: Poverty and Inequality. The poverty headcount ratio at societal poverty line is the percentage of a population living in poverty according to the World Bank's Societal Poverty Line. The Societal Poverty Line is expressed in purchasing power adjusted 2017 U.S. dollars and defined as max($2.15, $1.15 + 0.5*Median). This means that when the national median is sufficiently low, the Societal Poverty line is equivalent to the extreme poverty line, $2.15. For countries with a sufficiently high national median, the Societal Poverty Line grows as countries’ median income grows.;World Bank, Poverty and Inequality Platform. Data are based on primary household survey data obtained from government statistical agencies and World Bank country departments. Data for high-income economies are mostly from the Luxembourg Income Study database. For more information and methodology, please see http://pip.worldbank.org.;;The World Bank’s internationally comparable poverty monitoring database now draws on income or detailed consumption data from more than 2000 household surveys across 169 countries. See the Poverty and Inequality Platform (PIP) for details (www.pip.worldbank.org).
https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
The World Bank is an international financial institution that provides loans to countries of the world for capital projects. The World Bank's stated goal is the reduction of poverty. Source: https://en.wikipedia.org/wiki/World_Bank
This dataset combines key education statistics from a variety of sources to provide a look at global literacy, spending, and access.
For more information, see the World Bank website.
Fork this kernel to get started with this dataset.
https://bigquery.cloud.google.com/dataset/bigquery-public-data:world_bank_health_population
http://data.worldbank.org/data-catalog/ed-stats
https://cloud.google.com/bigquery/public-data/world-bank-education
Citation: The World Bank: Education Statistics
Dataset Source: World Bank. This dataset is publicly available for anyone to use under the following terms provided by the Dataset Source - http://www.data.gov/privacy-policy#data_policy - and is provided "AS IS" without any warranty, express or implied, from Google. Google disclaims all liability for any damages, direct or indirect, resulting from the use of the dataset.
Banner Photo by @till_indeman from Unplash.
Of total government spending, what percentage is spent on education?
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
IT: Proportion of People Living Below 50 Percent Of Median Income: % data was reported at 15.300 % in 2021. This records a decrease from the previous number of 15.600 % for 2020. IT: Proportion of People Living Below 50 Percent Of Median Income: % data is updated yearly, averaging 14.050 % from Dec 1977 (Median) to 2021, with 36 observations. The data reached an all-time high of 16.200 % in 1993 and a record low of 9.700 % in 1982. IT: Proportion of People Living Below 50 Percent Of Median Income: % data remains active status in CEIC and is reported by World Bank. The data is categorized under Global Database’s Italy – Table IT.World Bank.WDI: Social: Poverty and Inequality. The percentage of people in the population who live in households whose per capita income or consumption is below half of the median income or consumption per capita. The median is measured at 2017 Purchasing Power Parity (PPP) using the Poverty and Inequality Platform (http://www.pip.worldbank.org). For some countries, medians are not reported due to grouped and/or confidential data. The reference year is the year in which the underlying household survey data was collected. In cases for which the data collection period bridged two calendar years, the first year in which data were collected is reported.;World Bank, Poverty and Inequality Platform. Data are based on primary household survey data obtained from government statistical agencies and World Bank country departments. Data for high-income economies are mostly from the Luxembourg Income Study database. For more information and methodology, please see http://pip.worldbank.org.;;The World Bank’s internationally comparable poverty monitoring database now draws on income or detailed consumption data from more than 2000 household surveys across 169 countries. See the Poverty and Inequality Platform (PIP) for details (www.pip.worldbank.org).
https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
The World Bank is an international financial institution that provides loans to countries of the world for capital projects. The World Bank's stated goal is the reduction of poverty. Source: https://en.wikipedia.org/wiki/World_Bank
This dataset combines key health statistics from a variety of sources to provide a look at global health and population trends. It includes information on nutrition, reproductive health, education, immunization, and diseases from over 200 countries.
Update Frequency: Biannual
For more information, see the World Bank website.
Fork this kernel to get started with this dataset.
https://datacatalog.worldbank.org/dataset/health-nutrition-and-population-statistics
https://cloud.google.com/bigquery/public-data/world-bank-hnp
Dataset Source: World Bank. This dataset is publicly available for anyone to use under the following terms provided by the Dataset Source - http://www.data.gov/privacy-policy#data_policy - and is provided "AS IS" without any warranty, express or implied, from Google. Google disclaims all liability for any damages, direct or indirect, resulting from the use of the dataset.
Citation: The World Bank: Health Nutrition and Population Statistics
Banner Photo by @till_indeman from Unplash.
What’s the average age of first marriages for females around the world?
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
United States US: Proportion of People Living Below 50 Percent Of Median Income: % data was reported at 15.500 % in 2021. This records a decrease from the previous number of 17.000 % for 2020. United States US: Proportion of People Living Below 50 Percent Of Median Income: % data is updated yearly, averaging 17.700 % from Dec 1963 (Median) to 2021, with 59 observations. The data reached an all-time high of 19.000 % in 1993 and a record low of 15.500 % in 2021. United States US: Proportion of People Living Below 50 Percent Of Median Income: % data remains active status in CEIC and is reported by World Bank. The data is categorized under Global Database’s United States – Table US.World Bank.WDI: Social: Poverty and Inequality. The percentage of people in the population who live in households whose per capita income or consumption is below half of the median income or consumption per capita. The median is measured at 2017 Purchasing Power Parity (PPP) using the Poverty and Inequality Platform (http://www.pip.worldbank.org). For some countries, medians are not reported due to grouped and/or confidential data. The reference year is the year in which the underlying household survey data was collected. In cases for which the data collection period bridged two calendar years, the first year in which data were collected is reported.;World Bank, Poverty and Inequality Platform. Data are based on primary household survey data obtained from government statistical agencies and World Bank country departments. Data for high-income economies are mostly from the Luxembourg Income Study database. For more information and methodology, please see http://pip.worldbank.org.;;The World Bank’s internationally comparable poverty monitoring database now draws on income or detailed consumption data from more than 2000 household surveys across 169 countries. See the Poverty and Inequality Platform (PIP) for details (www.pip.worldbank.org).
This dataset was created by Sudhanshu Singh
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The most common poverty measures, including that used by the OECD, focus on income based approaches. One of the most common measures of income poverty is the proportion of households with income less than half median equivalised disposable household income (which is set as the poverty line); this is a relative income poverty measure as poverty is measured by reference to the income of others rather than in some absolute sense. Australia has one of the highest household disposable incomes in the world, which means that an Australian relative income poverty line is set at a high level of income compared to most other countries.
OECD statistics on Australian poverty 2013–2014 (based on ABS Survey of Income and Housing data and applying a poverty line of 50% of median income) determined the Australian poverty rate was over 26% before taxes and transfers, but falls to just under 13% after taxes and transfers. Though measuring poverty through application of solely an income measure is not considered comprehensive for an Australian context, however, it does demonstrate that the Australian welfare system more than halves the number of Australians that would otherwise be considered as at risk of living in poverty under that measure.
It is important to consider a range of indicators of persistent disadvantage to understand poverty and hardship and its multidimensional nature. Different indicators point to different dimensions of poverty.
While transient poverty is a problem, the experience of persistent poverty is of deeper concern, particularly where families experience intergenerational disadvantage and long-term welfare reliance. HILDA data from the Melbourne Institute of Applied Economic and Social Research shows the Distribution of number of years in poverty 2001–2015. The figure focuses on the longer term experience of working age adults and shows that while people do fall into poverty, only a small proportion of people are persistently poor.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Sweden SE: Proportion of People Living Below 50 Percent Of Median Income: % data was reported at 11.100 % in 2021. This records an increase from the previous number of 10.100 % for 2020. Sweden SE: Proportion of People Living Below 50 Percent Of Median Income: % data is updated yearly, averaging 8.900 % from Dec 1975 (Median) to 2021, with 27 observations. The data reached an all-time high of 11.100 % in 2021 and a record low of 5.200 % in 1987. Sweden SE: Proportion of People Living Below 50 Percent Of Median Income: % data remains active status in CEIC and is reported by World Bank. The data is categorized under Global Database’s Sweden – Table SE.World Bank.WDI: Social: Poverty and Inequality. The percentage of people in the population who live in households whose per capita income or consumption is below half of the median income or consumption per capita. The median is measured at 2017 Purchasing Power Parity (PPP) using the Poverty and Inequality Platform (http://www.pip.worldbank.org). For some countries, medians are not reported due to grouped and/or confidential data. The reference year is the year in which the underlying household survey data was collected. In cases for which the data collection period bridged two calendar years, the first year in which data were collected is reported.;World Bank, Poverty and Inequality Platform. Data are based on primary household survey data obtained from government statistical agencies and World Bank country departments. Data for high-income economies are mostly from the Luxembourg Income Study database. For more information and methodology, please see http://pip.worldbank.org.;;The World Bank’s internationally comparable poverty monitoring database now draws on income or detailed consumption data from more than 2000 household surveys across 169 countries. See the Poverty and Inequality Platform (PIP) for details (www.pip.worldbank.org).
Goal 1End poverty in all its forms everywhereTarget 1.1: By 2030, eradicate extreme poverty for all people everywhere, currently measured as people living on less than $1.25 a dayIndicator 1.1.1: Proportion of the population living below the international poverty line by sex, age, employment status and geographic location (urban/rural)SI_POV_DAY1: Proportion of population below international poverty line (%)SI_POV_EMP1: Employed population below international poverty line, by sex and age (%)Target 1.2: By 2030, reduce at least by half the proportion of men, women and children of all ages living in poverty in all its dimensions according to national definitionsIndicator 1.2.1: Proportion of population living below the national poverty line, by sex and ageSI_POV_NAHC: Proportion of population living below the national poverty line (%)Indicator 1.2.2: Proportion of men, women and children of all ages living in poverty in all its dimensions according to national definitionsSD_MDP_MUHC: Proportion of population living in multidimensional poverty (%)SD_MDP_ANDI: Average proportion of deprivations for people multidimensionally poor (%)SD_MDP_MUHHC: Proportion of households living in multidimensional poverty (%)SD_MDP_CSMP: Proportion of children living in child-specific multidimensional poverty (%)Target 1.3: Implement nationally appropriate social protection systems and measures for all, including floors, and by 2030 achieve substantial coverage of the poor and the vulnerableIndicator 1.3.1: Proportion of population covered by social protection floors/systems, by sex, distinguishing children, unemployed persons, older persons, persons with disabilities, pregnant women, newborns, work-injury victims and the poor and the vulnerableSI_COV_MATNL: [ILO] Proportion of mothers with newborns receiving maternity cash benefit (%)SI_COV_POOR: [ILO] Proportion of poor population receiving social assistance cash benefit, by sex (%)SI_COV_SOCAST: [World Bank] Proportion of population covered by social assistance programs (%)SI_COV_SOCINS: [World Bank] Proportion of population covered by social insurance programs (%)SI_COV_CHLD: [ILO] Proportion of children/households receiving child/family cash benefit, by sex (%)SI_COV_UEMP: [ILO] Proportion of unemployed persons receiving unemployment cash benefit, by sex (%)SI_COV_VULN: [ILO] Proportion of vulnerable population receiving social assistance cash benefit, by sex (%)SI_COV_WKINJRY: [ILO] Proportion of employed population covered in the event of work injury, by sex (%)SI_COV_BENFTS: [ILO] Proportion of population covered by at least one social protection benefit, by sex (%)SI_COV_DISAB: [ILO] Proportion of population with severe disabilities receiving disability cash benefit, by sex (%)SI_COV_LMKT: [World Bank] Proportion of population covered by labour market programs (%)SI_COV_PENSN: [ILO] Proportion of population above statutory pensionable age receiving a pension, by sex (%)Target 1.4: By 2030, ensure that all men and women, in particular the poor and the vulnerable, have equal rights to economic resources, as well as access to basic services, ownership and control over land and other forms of property, inheritance, natural resources, appropriate new technology and financial services, including microfinanceIndicator 1.4.1: Proportion of population living in households with access to basic servicesSP_ACS_BSRVH2O: Proportion of population using basic drinking water services, by location (%)SP_ACS_BSRVSAN: Proportion of population using basic sanitation services, by location (%)Indicator 1.4.2: Proportion of total adult population with secure tenure rights to land, (a) with legally recognized documentation, and (b) who perceive their rights to land as secure, by sex and type of tenureSP_LGL_LNDDOC: Proportion of people with legally recognized documentation of their rights to land out of total adult population, by sex (%)SP_LGL_LNDSEC: Proportion of people who perceive their rights to land as secure out of total adult population, by sex (%)SP_LGL_LNDSTR: Proportion of people with secure tenure rights to land out of total adult population, by sex (%)Target 1.5: By 2030, build the resilience of the poor and those in vulnerable situations and reduce their exposure and vulnerability to climate-related extreme events and other economic, social and environmental shocks and disastersIndicator 1.5.1: Number of deaths, missing persons and directly affected persons attributed to disasters per 100,000 populationVC_DSR_MISS: Number of missing persons due to disaster (number)VC_DSR_AFFCT: Number of people affected by disaster (number)VC_DSR_MORT: Number of deaths due to disaster (number)VC_DSR_MTMP: Number of deaths and missing persons attributed to disasters per 100,000 population (number)VC_DSR_MMHN: Number of deaths and missing persons attributed to disasters (number)VC_DSR_DAFF: Number of directly affected persons attributed to disasters per 100,000 population (number)VC_DSR_IJILN: Number of injured or ill people attributed to disasters (number)VC_DSR_PDAN: Number of people whose damaged dwellings were attributed to disasters (number)VC_DSR_PDYN: Number of people whose destroyed dwellings were attributed to disasters (number)VC_DSR_PDLN: Number of people whose livelihoods were disrupted or destroyed, attributed to disasters (number)Indicator 1.5.2: Direct economic loss attributed to disasters in relation to global gross domestic product (GDP)VC_DSR_GDPLS: Direct economic loss attributed to disasters (current United States dollars)VC_DSR_LSGP: Direct economic loss attributed to disasters relative to GDP (%)VC_DSR_AGLH: Direct agriculture loss attributed to disasters (current United States dollars)VC_DSR_HOLH: Direct economic loss in the housing sector attributed to disasters (current United States dollars)VC_DSR_CILN: Direct economic loss resulting from damaged or destroyed critical infrastructure attributed to disasters (current United States dollars)VC_DSR_CHLN: Direct economic loss to cultural heritage damaged or destroyed attributed to disasters (millions of current United States dollars)VC_DSR_DDPA: Direct economic loss to other damaged or destroyed productive assets attributed to disasters (current United States dollars)Indicator 1.5.3: Number of countries that adopt and implement national disaster risk reduction strategies in line with the Sendai Framework for Disaster Risk Reduction 2015–2030SG_DSR_LGRGSR: Score of adoption and implementation of national DRR strategies in line with the Sendai FrameworkSG_DSR_SFDRR: Number of countries that reported having a National DRR Strategy which is aligned to the Sendai FrameworkIndicator 1.5.4: Proportion of local governments that adopt and implement local disaster risk reduction strategies in line with national disaster risk reduction strategiesSG_DSR_SILS: Proportion of local governments that adopt and implement local disaster risk reduction strategies in line with national disaster risk reduction strategies (%)SG_DSR_SILN: Number of local governments that adopt and implement local DRR strategies in line with national strategies (number)SG_GOV_LOGV: Number of local governments (number)Target 1.a: Ensure significant mobilization of resources from a variety of sources, including through enhanced development cooperation, in order to provide adequate and predictable means for developing countries, in particular least developed countries, to implement programmes and policies to end poverty in all its dimensionsIndicator 1.a.1: Total official development assistance grants from all donors that focus on poverty reduction as a share of the recipient country’s gross national incomeDC_ODA_POVLG: Official development assistance grants for poverty reduction, by recipient countries (percentage of GNI)DC_ODA_POVDLG: Official development assistance grants for poverty reduction, by donor countries (percentage of GNI)DC_ODA_POVG: Official development assistance grants for poverty reduction (percentage of GNI)Indicator 1.a.2: Proportion of total government spending on essential services (education, health and social protection)SD_XPD_ESED: Proportion of total government spending on essential services, education (%)Target 1.b: Create sound policy frameworks at the national, regional and international levels, based on pro-poor and gender-sensitive development strategies, to support accelerated investment in poverty eradication actionsIndicator 1.b.1: Pro-poor public social spending
Attribution-NonCommercial-ShareAlike 3.0 (CC BY-NC-SA 3.0)https://creativecommons.org/licenses/by-nc-sa/3.0/
License information was derived automatically
The “richness index” represents the level of economical wellbeing a country certain area in 2010. Regions with higher income per capita and low poverty rate and more access to market are wealthier and are therefore better able to prepare for and respond to adversity. The index results from the second cluster of the Principal Component Analysis preformed among 9 potential variables. The analysis identifies four dominant variables, namely “GDPppp per capita”, “agriculture share GDP per agriculture sector worker”, “poverty rate” and “market accessibility”, assigning weights of 0.33, 0.26, 0.25 and 0.16, respectively. Before to perform the analysis all variables were log transformed (except the “agriculture share GDP per agriculture sector worker”) to shorten the extreme variation and then were score-standardized (converted to distribution with average of 0 and standard deviation of 1; inverse method was applied for the “poverty rate” and “market accessibility”) in order to be comparable. The 0.5 arc-minute grid total GDPppp is based on the night time light satellite imagery of NOAA (see Ghosh, T., Powell, R., Elvidge, C. D., Baugh, K. E., Sutton, P. C., & Anderson, S. (2010).Shedding light on the global distribution of economic activity. The Open Geography Journal (3), 148-161) and adjusted to national total as recorded by International Monetary Fund for 2010. The “GDPppp per capita” was calculated dividing the total GDPppp by the population in each pixel. Further, a focal statistic ran to determine mean values within 10 km. This had a smoothing effect and represents some of the extended influence of intense economic activity for the local people. Country based data for “agriculture share GDP per agriculture sector worker” were calculated from GDPppp (data from International Monetary Fund) fraction from agriculture activity (measured by World Bank) divided by the number of worker in the agriculture sector (data from World Bank). The tabular data represents the average of the period 2008-2012 and were linked by country unit to the national boundaries shapefile (FAO/GAUL) and then converted into raster format (resolution 0.5 arc-minute). The first administrative level data for the “poverty rate” were estimated by NOAA for 2003 using nighttime lights satellite imagery. Tabular data were linked by first administrative unit to the first administrative boundaries shapefile (FAO/GAUL) and then converted into raster format (resolution 0.5 arc-minute). The 0.5 arc-minute grid “market accessibility” measures the travel distance in minutes to large cities (with population greater than 50,000 people). This dataset was developed by the European Commission and the World Bank to represent access to markets, schools, hospitals, etc.. The dataset capture the connectivity and the concentration of economic activity (in 2000). Markets may be important for a variety of reasons, including their abilities to spread risk and increase incomes. Markets are a means of linking people both spatially and over time. That is, they allow shocks (and risks) to be spread over wider areas. In particular, markets should make households less vulnerable to (localized) covariate shocks. This dataset has been produced in the framework of the “Climate change predictions in Sub-Saharan Africa: impacts and adaptations (ClimAfrica)” project, Work Package 4 (WP4). More information on ClimAfrica project is provided in the Supplemental Information section of this metadata.
Data publication: 2014-05-15
Supplemental Information:
ClimAfrica was an international project funded by European Commission under the 7th Framework Programme (FP7) for the period 2010-2014. The ClimAfrica consortium was formed by 18 institutions, 9 from Europe, 8 from Africa, and the Food and Agriculture Organization of United Nations (FAO).
ClimAfrica was conceived to respond to the urgent international need for the most appropriate and up-to-date tools and methodologies to better understand and predict climate change, assess its impact on African ecosystems and population, and develop the correct adaptation strategies. Africa is probably the most vulnerable continent to climate change and climate variability and shows diverse range of agro-ecological and geographical features. Thus the impacts of climate change can be very high and can greatly differ across the continent, and even within countries.
The project focused on the following specific objectives:
Develop improved climate predictions on seasonal to decadal climatic scales, especially relevant to SSA;
Assess climate impacts in key sectors of SSA livelihood and economy, especially water resources and agriculture;
Evaluate the vulnerability of ecosystems and civil population to inter-annual variations and longer trends (10 years) in climate;
Suggest and analyse new suited adaptation strategies, focused on local needs;
Develop a new concept of 10 years monitoring and forecasting warning system, useful for food security, risk management and civil protection in SSA;
Analyse the economic impacts of climate change on agriculture and water resources in SSA and the cost-effectiveness of potential adaptation measures.
The work of ClimAfrica project was broken down into the following work packages (WPs) closely connected. All the activities described in WP1, WP2, WP3, WP4, WP5 consider the domain of the entire South Sahara Africa region. Only WP6 has a country specific (watershed) spatial scale where models validation and detailed processes analysis are carried out.
Contact points:
Metadata Contact: FAO-Data
Resource Contact: Selvaraju Ramasamy
Resource constraints:
copyright
Online resources:
Project deliverable D4.1 - Scenarios of major production systems in Africa
Climafrica Website - Climate Change Predictions In Sub-Saharan Africa: Impacts And Adaptations
https://www.worldbank.org/en/about/legal/terms-of-use-for-datasetshttps://www.worldbank.org/en/about/legal/terms-of-use-for-datasets
This dataset was created by Mhamed Jabri
Released under World Bank Dataset Terms of Use
In 2025, nearly 11.7 percent of the world population in extreme poverty, with the poverty threshold at 2.15 U.S. dollars a day, lived in Nigeria. Moreover, the Democratic Republic of the Congo accounted for around 11.7 percent of the global population in extreme poverty. Other African nations with a large poor population were Tanzania, Mozambique, and Madagascar. Poverty levels remain high despite the forecast decline Poverty is a widespread issue across Africa. Around 429 million people on the continent were living below the extreme poverty line of 2.15 U.S. dollars a day in 2024. Since the continent had approximately 1.4 billion inhabitants, roughly a third of Africa’s population was in extreme poverty that year. Mozambique, Malawi, Central African Republic, and Niger had Africa’s highest extreme poverty rates based on the 2.15 U.S. dollars per day extreme poverty indicator (updated from 1.90 U.S. dollars in September 2022). Although the levels of poverty on the continent are forecast to decrease in the coming years, Africa will remain the poorest region compared to the rest of the world. Prevalence of poverty and malnutrition across Africa Multiple factors are linked to increased poverty. Regions with critical situations of employment, education, health, nutrition, war, and conflict usually have larger poor populations. Consequently, poverty tends to be more prevalent in least-developed and developing countries worldwide. For similar reasons, rural households also face higher poverty levels. In 2024, the extreme poverty rate in Africa stood at around 45 percent among the rural population, compared to seven percent in urban areas. Together with poverty, malnutrition is also widespread in Africa. Limited access to food leads to low health conditions, increasing the poverty risk. At the same time, poverty can determine inadequate nutrition. Almost 38.3 percent of the global undernourished population lived in Africa in 2022.