96 datasets found
  1. T

    World Coronavirus COVID-19 Deaths

    • tradingeconomics.com
    csv, excel, json, xml
    Updated Mar 9, 2020
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    TRADING ECONOMICS (2020). World Coronavirus COVID-19 Deaths [Dataset]. https://tradingeconomics.com/world/coronavirus-deaths
    Explore at:
    excel, csv, xml, jsonAvailable download formats
    Dataset updated
    Mar 9, 2020
    Dataset authored and provided by
    TRADING ECONOMICS
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Jan 4, 2020 - May 17, 2023
    Area covered
    World
    Description

    The World Health Organization reported 6932591 Coronavirus Deaths since the epidemic began. In addition, countries reported 766440796 Coronavirus Cases. This dataset provides - World Coronavirus Deaths- actual values, historical data, forecast, chart, statistics, economic calendar and news.

  2. Worldwide COVID-19 Data from WHO (2025 Edition)

    • kaggle.com
    Updated Jul 3, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Adil Shamim (2025). Worldwide COVID-19 Data from WHO (2025 Edition) [Dataset]. https://www.kaggle.com/datasets/adilshamim8/worldwide-covid-19-data-from-who
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Jul 3, 2025
    Dataset provided by
    Kaggle
    Authors
    Adil Shamim
    Description

    Dataset Overview

    This dataset contains global COVID-19 case and death data by country, collected directly from the official World Health Organization (WHO) COVID-19 Dashboard. It provides a comprehensive view of the pandemic’s impact worldwide, covering the period up to 2025. The dataset is intended for researchers, analysts, and anyone interested in understanding the progression and global effects of COVID-19 through reliable, up-to-date information.

    Source Information

    • Website: WHO COVID-19 Dashboard
    • Organization: World Health Organization (WHO)
    • Data Coverage: Global (by country/territory)
    • Time Period: Up to 2025

    The World Health Organization is the United Nations agency responsible for international public health. The WHO COVID-19 Dashboard is a trusted source that aggregates official reports from countries and territories around the world, providing daily updates on cases, deaths, and other key metrics related to COVID-19.

    Dataset Contents

    • Country/Region: The name of the country or territory.
    • Date: Reporting date.
    • New Cases: Number of new confirmed COVID-19 cases.
    • Cumulative Cases: Total confirmed COVID-19 cases to date.
    • New Deaths: Number of new confirmed deaths due to COVID-19.
    • Cumulative Deaths: Total deaths reported to date.
    • Additional fields may include population, rates per 100,000, and more (see data files for details).

    How to Use

    This dataset can be used for: - Tracking the spread and trends of COVID-19 globally and by country - Modeling and forecasting pandemic progression - Comparative analysis of the pandemic’s impact across countries and regions - Visualization and reporting

    Data Reliability

    The data is sourced from the WHO, widely regarded as the most authoritative source for global health statistics. However, reporting practices and data completeness may vary by country and may be subject to revision as new information becomes available.

    Acknowledgements

    Special thanks to the WHO for making this data publicly available and to all those working to collect, verify, and report COVID-19 statistics.

  3. Provisional COVID-19 death counts, rates, and percent of total deaths, by...

    • catalog.data.gov
    • data.virginia.gov
    • +2more
    Updated Sep 5, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Centers for Disease Control and Prevention (2025). Provisional COVID-19 death counts, rates, and percent of total deaths, by jurisdiction of residence [Dataset]. https://catalog.data.gov/dataset/provisional-covid-19-death-counts-rates-and-percent-of-total-deaths-by-jurisdiction-of-res
    Explore at:
    Dataset updated
    Sep 5, 2025
    Dataset provided by
    Centers for Disease Control and Preventionhttp://www.cdc.gov/
    Description

    This file contains COVID-19 death counts, death rates, and percent of total deaths by jurisdiction of residence. The data is grouped by different time periods including 3-month period, weekly, and total (cumulative since January 1, 2020). United States death counts and rates include the 50 states, plus the District of Columbia and New York City. New York state estimates exclude New York City. Puerto Rico is included in HHS Region 2 estimates. Deaths with confirmed or presumed COVID-19, coded to ICD–10 code U07.1. Number of deaths reported in this file are the total number of COVID-19 deaths received and coded as of the date of analysis and may not represent all deaths that occurred in that period. Counts of deaths occurring before or after the reporting period are not included in the file. Data during recent periods are incomplete because of the lag in time between when the death occurred and when the death certificate is completed, submitted to NCHS and processed for reporting purposes. This delay can range from 1 week to 8 weeks or more, depending on the jurisdiction and cause of death. Death counts should not be compared across states. Data timeliness varies by state. Some states report deaths on a daily basis, while other states report deaths weekly or monthly. The ten (10) United States Department of Health and Human Services (HHS) regions include the following jurisdictions. Region 1: Connecticut, Maine, Massachusetts, New Hampshire, Rhode Island, Vermont; Region 2: New Jersey, New York, New York City, Puerto Rico; Region 3: Delaware, District of Columbia, Maryland, Pennsylvania, Virginia, West Virginia; Region 4: Alabama, Florida, Georgia, Kentucky, Mississippi, North Carolina, South Carolina, Tennessee; Region 5: Illinois, Indiana, Michigan, Minnesota, Ohio, Wisconsin; Region 6: Arkansas, Louisiana, New Mexico, Oklahoma, Texas; Region 7: Iowa, Kansas, Missouri, Nebraska; Region 8: Colorado, Montana, North Dakota, South Dakota, Utah, Wyoming; Region 9: Arizona, California, Hawaii, Nevada; Region 10: Alaska, Idaho, Oregon, Washington. Rates were calculated using the population estimates for 2021, which are estimated as of July 1, 2021 based on the Blended Base produced by the US Census Bureau in lieu of the April 1, 2020 decennial population count. The Blended Base consists of the blend of Vintage 2020 postcensal population estimates, 2020 Demographic Analysis Estimates, and 2020 Census PL 94-171 Redistricting File (see https://www2.census.gov/programs-surveys/popest/technical-documentation/methodology/2020-2021/methods-statement-v2021.pdf). Rates are based on deaths occurring in the specified week/month and are age-adjusted to the 2000 standard population using the direct method (see https://www.cdc.gov/nchs/data/nvsr/nvsr70/nvsr70-08-508.pdf). These rates differ from annual age-adjusted rates, typically presented in NCHS publications based on a full year of data and annualized weekly/monthly age-adjusted rates which have been adjusted to allow comparison with annual rates. Annualization rates presents deaths per year per 100,000 population that would be expected in a year if the observed period specific (weekly/monthly) rate prevailed for a full year. Sub-national death counts between 1-9 are suppressed in accordance with NCHS data confidentiality standards. Rates based on death counts less than 20 are suppressed in accordance with NCHS standards of reliability as specified in NCHS Data Presentation Standards for Proportions (available from: https://www.cdc.gov/nchs/data/series/sr_02/sr02_175.pdf.).

  4. g

    Coronavirus (Covid-19) Data in the United States

    • github.com
    • openicpsr.org
    • +2more
    csv
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    New York Times, Coronavirus (Covid-19) Data in the United States [Dataset]. https://github.com/nytimes/covid-19-data
    Explore at:
    csvAvailable download formats
    Dataset provided by
    New York Times
    License

    https://github.com/nytimes/covid-19-data/blob/master/LICENSEhttps://github.com/nytimes/covid-19-data/blob/master/LICENSE

    Description

    The New York Times is releasing a series of data files with cumulative counts of coronavirus cases in the United States, at the state and county level, over time. We are compiling this time series data from state and local governments and health departments in an attempt to provide a complete record of the ongoing outbreak.

    Since the first reported coronavirus case in Washington State on Jan. 21, 2020, The Times has tracked cases of coronavirus in real time as they were identified after testing. Because of the widespread shortage of testing, however, the data is necessarily limited in the picture it presents of the outbreak.

    We have used this data to power our maps and reporting tracking the outbreak, and it is now being made available to the public in response to requests from researchers, scientists and government officials who would like access to the data to better understand the outbreak.

    The data begins with the first reported coronavirus case in Washington State on Jan. 21, 2020. We will publish regular updates to the data in this repository.

  5. T

    CORONAVIRUS DEATH by Country Dataset

    • tradingeconomics.com
    csv, excel, json, xml
    Updated Aug 14, 2021
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    TRADING ECONOMICS (2021). CORONAVIRUS DEATH by Country Dataset [Dataset]. https://tradingeconomics.com/country-list/coronavirus-death
    Explore at:
    csv, xml, excel, jsonAvailable download formats
    Dataset updated
    Aug 14, 2021
    Dataset authored and provided by
    TRADING ECONOMICS
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    2025
    Area covered
    World
    Description

    This dataset provides values for CORONAVIRUS DEATH reported in several countries. The data includes current values, previous releases, historical highs and record lows, release frequency, reported unit and currency.

  6. d

    Johns Hopkins COVID-19 Case Tracker

    • data.world
    csv, zip
    Updated Sep 7, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    The Associated Press (2025). Johns Hopkins COVID-19 Case Tracker [Dataset]. https://data.world/associatedpress/johns-hopkins-coronavirus-case-tracker
    Explore at:
    zip, csvAvailable download formats
    Dataset updated
    Sep 7, 2025
    Authors
    The Associated Press
    Time period covered
    Jan 22, 2020 - Mar 9, 2023
    Area covered
    Description

    Updates

    • Notice of data discontinuation: Since the start of the pandemic, AP has reported case and death counts from data provided by Johns Hopkins University. Johns Hopkins University has announced that they will stop their daily data collection efforts after March 10. As Johns Hopkins stops providing data, the AP will also stop collecting daily numbers for COVID cases and deaths. The HHS and CDC now collect and visualize key metrics for the pandemic. AP advises using those resources when reporting on the pandemic going forward.

    • April 9, 2020

      • The population estimate data for New York County, NY has been updated to include all five New York City counties (Kings County, Queens County, Bronx County, Richmond County and New York County). This has been done to match the Johns Hopkins COVID-19 data, which aggregates counts for the five New York City counties to New York County.
    • April 20, 2020

      • Johns Hopkins death totals in the US now include confirmed and probable deaths in accordance with CDC guidelines as of April 14. One significant result of this change was an increase of more than 3,700 deaths in the New York City count. This change will likely result in increases for death counts elsewhere as well. The AP does not alter the Johns Hopkins source data, so probable deaths are included in this dataset as well.
    • April 29, 2020

      • The AP is now providing timeseries data for counts of COVID-19 cases and deaths. The raw counts are provided here unaltered, along with a population column with Census ACS-5 estimates and calculated daily case and death rates per 100,000 people. Please read the updated caveats section for more information.
    • September 1st, 2020

      • Johns Hopkins is now providing counts for the five New York City counties individually.
    • February 12, 2021

      • The Ohio Department of Health recently announced that as many as 4,000 COVID-19 deaths may have been underreported through the state’s reporting system, and that the "daily reported death counts will be high for a two to three-day period."
      • Because deaths data will be anomalous for consecutive days, we have chosen to freeze Ohio's rolling average for daily deaths at the last valid measure until Johns Hopkins is able to back-distribute the data. The raw daily death counts, as reported by Johns Hopkins and including the backlogged death data, will still be present in the new_deaths column.
    • February 16, 2021

      - Johns Hopkins has reconciled Ohio's historical deaths data with the state.

      Overview

    The AP is using data collected by the Johns Hopkins University Center for Systems Science and Engineering as our source for outbreak caseloads and death counts for the United States and globally.

    The Hopkins data is available at the county level in the United States. The AP has paired this data with population figures and county rural/urban designations, and has calculated caseload and death rates per 100,000 people. Be aware that caseloads may reflect the availability of tests -- and the ability to turn around test results quickly -- rather than actual disease spread or true infection rates.

    This data is from the Hopkins dashboard that is updated regularly throughout the day. Like all organizations dealing with data, Hopkins is constantly refining and cleaning up their feed, so there may be brief moments where data does not appear correctly. At this link, you’ll find the Hopkins daily data reports, and a clean version of their feed.

    The AP is updating this dataset hourly at 45 minutes past the hour.

    To learn more about AP's data journalism capabilities for publishers, corporations and financial institutions, go here or email kromano@ap.org.

    Queries

    Use AP's queries to filter the data or to join to other datasets we've made available to help cover the coronavirus pandemic

    Interactive

    The AP has designed an interactive map to track COVID-19 cases reported by Johns Hopkins.

    @(https://datawrapper.dwcdn.net/nRyaf/15/)

    Interactive Embed Code

    <iframe title="USA counties (2018) choropleth map Mapping COVID-19 cases by county" aria-describedby="" id="datawrapper-chart-nRyaf" src="https://datawrapper.dwcdn.net/nRyaf/10/" scrolling="no" frameborder="0" style="width: 0; min-width: 100% !important;" height="400"></iframe><script type="text/javascript">(function() {'use strict';window.addEventListener('message', function(event) {if (typeof event.data['datawrapper-height'] !== 'undefined') {for (var chartId in event.data['datawrapper-height']) {var iframe = document.getElementById('datawrapper-chart-' + chartId) || document.querySelector("iframe[src*='" + chartId + "']");if (!iframe) {continue;}iframe.style.height = event.data['datawrapper-height'][chartId] + 'px';}}});})();</script>
    

    Caveats

    • This data represents the number of cases and deaths reported by each state and has been collected by Johns Hopkins from a number of sources cited on their website.
    • In some cases, deaths or cases of people who've crossed state lines -- either to receive treatment or because they became sick and couldn't return home while traveling -- are reported in a state they aren't currently in, because of state reporting rules.
    • In some states, there are a number of cases not assigned to a specific county -- for those cases, the county name is "unassigned to a single county"
    • This data should be credited to Johns Hopkins University's COVID-19 tracking project. The AP is simply making it available here for ease of use for reporters and members.
    • Caseloads may reflect the availability of tests -- and the ability to turn around test results quickly -- rather than actual disease spread or true infection rates.
    • Population estimates at the county level are drawn from 2014-18 5-year estimates from the American Community Survey.
    • The Urban/Rural classification scheme is from the Center for Disease Control and Preventions's National Center for Health Statistics. It puts each county into one of six categories -- from Large Central Metro to Non-Core -- according to population and other characteristics. More details about the classifications can be found here.

    Johns Hopkins timeseries data - Johns Hopkins pulls data regularly to update their dashboard. Once a day, around 8pm EDT, Johns Hopkins adds the counts for all areas they cover to the timeseries file. These counts are snapshots of the latest cumulative counts provided by the source on that day. This can lead to inconsistencies if a source updates their historical data for accuracy, either increasing or decreasing the latest cumulative count. - Johns Hopkins periodically edits their historical timeseries data for accuracy. They provide a file documenting all errors in their timeseries files that they have identified and fixed here

    Attribution

    This data should be credited to Johns Hopkins University COVID-19 tracking project

  7. Deaths Involving COVID-19 by Vaccination Status

    • ouvert.canada.ca
    • datasets.ai
    • +3more
    csv, docx, html, xlsx
    Updated Jul 30, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Government of Ontario (2025). Deaths Involving COVID-19 by Vaccination Status [Dataset]. https://ouvert.canada.ca/data/dataset/1375bb00-6454-4d3e-a723-4ae9e849d655
    Explore at:
    xlsx, html, docx, csvAvailable download formats
    Dataset updated
    Jul 30, 2025
    Dataset provided by
    Government of Ontariohttps://www.ontario.ca/
    License

    Open Government Licence - Canada 2.0https://open.canada.ca/en/open-government-licence-canada
    License information was derived automatically

    Time period covered
    Mar 1, 2021 - Nov 12, 2024
    Description

    This dataset reports the daily reported number of the 7-day moving average rates of Deaths involving COVID-19 by vaccination status and by age group. Learn how the Government of Ontario is helping to keep Ontarians safe during the 2019 Novel Coronavirus outbreak. Effective November 14, 2024 this page will no longer be updated. Information about COVID-19 and other respiratory viruses is available on Public Health Ontario’s interactive respiratory virus tool: https://www.publichealthontario.ca/en/Data-and-Analysis/Infectious-Disease/Respiratory-Virus-Tool Data includes: * Date on which the death occurred * Age group * 7-day moving average of the last seven days of the death rate per 100,000 for those not fully vaccinated * 7-day moving average of the last seven days of the death rate per 100,000 for those fully vaccinated * 7-day moving average of the last seven days of the death rate per 100,000 for those vaccinated with at least one booster ##Additional notes As of June 16, all COVID-19 datasets will be updated weekly on Thursdays by 2pm. As of January 12, 2024, data from the date of January 1, 2024 onwards reflect updated population estimates. This update specifically impacts data for the 'not fully vaccinated' category. On November 30, 2023 the count of COVID-19 deaths was updated to include missing historical deaths from January 15, 2020 to March 31, 2023. CCM is a dynamic disease reporting system which allows ongoing update to data previously entered. As a result, data extracted from CCM represents a snapshot at the time of extraction and may differ from previous or subsequent results. Public Health Units continually clean up COVID-19 data, correcting for missing or overcounted cases and deaths. These corrections can result in data spikes and current totals being different from previously reported cases and deaths. Observed trends over time should be interpreted with caution for the most recent period due to reporting and/or data entry lags. The data does not include vaccination data for people who did not provide consent for vaccination records to be entered into the provincial COVaxON system. This includes individual records as well as records from some Indigenous communities where those communities have not consented to including vaccination information in COVaxON. “Not fully vaccinated” category includes people with no vaccine and one dose of double-dose vaccine. “People with one dose of double-dose vaccine” category has a small and constantly changing number. The combination will stabilize the results. Spikes, negative numbers and other data anomalies: Due to ongoing data entry and data quality assurance activities in Case and Contact Management system (CCM) file, Public Health Units continually clean up COVID-19, correcting for missing or overcounted cases and deaths. These corrections can result in data spikes, negative numbers and current totals being different from previously reported case and death counts. Public Health Units report cause of death in the CCM based on information available to them at the time of reporting and in accordance with definitions provided by Public Health Ontario. The medical certificate of death is the official record and the cause of death could be different. Deaths are defined per the outcome field in CCM marked as “Fatal”. Deaths in COVID-19 cases identified as unrelated to COVID-19 are not included in the Deaths involving COVID-19 reported. Rates for the most recent days are subject to reporting lags All data reflects totals from 8 p.m. the previous day. This dataset is subject to change.

  8. A

    ‘COVID vaccination vs. mortality ’ analyzed by Analyst-2

    • analyst-2.ai
    Updated Aug 4, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Analyst-2 (analyst-2.ai) / Inspirient GmbH (inspirient.com) (2020). ‘COVID vaccination vs. mortality ’ analyzed by Analyst-2 [Dataset]. https://analyst-2.ai/analysis/kaggle-covid-vaccination-vs-mortality-cbd8/06c8ccd2/?iid=010-492&v=presentation
    Explore at:
    Dataset updated
    Aug 4, 2020
    Dataset authored and provided by
    Analyst-2 (analyst-2.ai) / Inspirient GmbH (inspirient.com)
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Analysis of ‘COVID vaccination vs. mortality ’ provided by Analyst-2 (analyst-2.ai), based on source dataset retrieved from https://www.kaggle.com/sinakaraji/covid-vaccination-vs-death on 12 November 2021.

    --- Dataset description provided by original source is as follows ---

    Context

    The COVID-19 outbreak has brought the whole planet to its knees.More over 4.5 million people have died since the writing of this notebook, and the only acceptable way out of the disaster is to vaccinate all parts of society. Despite the fact that the benefits of vaccination have been proved to the world many times, anti-vaccine groups are springing up all over the world. This data set was generated to investigate the impact of coronavirus vaccinations on coronavirus mortality.

    Content

    countryiso_codedatetotal_vaccinationspeople_vaccinatedpeople_fully_vaccinatedNew_deathspopulationratio
    country nameiso code for each countrydate that this data belongnumber of all doses of COVID vaccine usage in that countrynumber of people who got at least one shot of COVID vaccinenumber of people who got full vaccine shotsnumber of daily new deaths2021 country population% of vaccinations in that country at that date = people_vaccinated/population * 100

    Data Collection

    This dataset is a combination of the following three datasets:

    1.https://www.kaggle.com/gpreda/covid-world-vaccination-progress

    2.https://covid19.who.int/WHO-COVID-19-global-data.csv

    3.https://www.kaggle.com/rsrishav/world-population

    you can find more detail about this dataset by reading this notebook:

    https://www.kaggle.com/sinakaraji/simple-linear-regression-covid-vaccination

    Countries in this dataset:

    AfghanistanAlbaniaAlgeriaAndorraAngola
    AnguillaAntigua and BarbudaArgentinaArmeniaAruba
    AustraliaAustriaAzerbaijanBahamasBahrain
    BangladeshBarbadosBelarusBelgiumBelize
    BeninBermudaBhutanBolivia (Plurinational State of)Brazil
    Bosnia and HerzegovinaBotswanaBrunei DarussalamBulgariaBurkina Faso
    CambodiaCameroonCanadaCabo VerdeCayman Islands
    Central African RepublicChadChileChinaColombia
    ComorosCook IslandsCosta RicaCroatiaCuba
    CuraçaoCyprusDenmarkDjiboutiDominica
    Dominican RepublicEcuadorEgyptEl SalvadorEquatorial Guinea
    EstoniaEthiopiaFalkland Islands (Malvinas)FijiFinland
    FranceFrench PolynesiaGabonGambiaGeorgia
    GermanyGhanaGibraltarGreeceGreenland
    GrenadaGuatemalaGuineaGuinea-BissauGuyana
    HaitiHondurasHungaryIcelandIndia
    IndonesiaIran (Islamic Republic of)IraqIrelandIsle of Man
    IsraelItalyJamaicaJapanJordan
    KazakhstanKenyaKiribatiKuwaitKyrgyzstan
    Lao People's Democratic RepublicLatviaLebanonLesothoLiberia
    LibyaLiechtensteinLithuaniaLuxembourgMadagascar
    MalawiMalaysiaMaldivesMaliMalta
    MauritaniaMauritiusMexicoRepublic of MoldovaMonaco
    MongoliaMontenegroMontserratMoroccoMozambique
    MyanmarNamibiaNauruNepalNetherlands
    New CaledoniaNew ZealandNicaraguaNigerNigeria
    NiueNorth MacedoniaNorwayOmanPakistan
    occupied Palestinian territory, including east Jerusalem
    PanamaPapua New GuineaParaguayPeruPhilippines
    PolandPortugalQatarRomaniaRussian Federation
    RwandaSaint Kitts and NevisSaint Lucia
    Saint Vincent and the GrenadinesSamoaSan MarinoSao Tome and PrincipeSaudi Arabia
    SenegalSerbiaSeychellesSierra LeoneSingapore
    SlovakiaSloveniaSolomon IslandsSomaliaSouth Africa
    Republic of KoreaSouth SudanSpainSri LankaSudan
    SurinameSwedenSwitzerlandSyrian Arab RepublicTajikistan
    United Republic of TanzaniaThailandTogoTongaTrinidad and Tobago
    TunisiaTurkeyTurkmenistanTurks and Caicos IslandsTuvalu
    UgandaUkraineUnited Arab EmiratesThe United KingdomUnited States of America
    UruguayUzbekistanVanuatuVenezuela (Bolivarian Republic of)Viet Nam
    Wallis and FutunaYemenZambiaZimbabwe

    --- Original source retains full ownership of the source dataset ---

  9. T

    United States Coronavirus COVID-19 Cases

    • tradingeconomics.com
    csv, excel, json, xml
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    TRADING ECONOMICS, United States Coronavirus COVID-19 Cases [Dataset]. https://tradingeconomics.com/united-states/coronavirus-cases
    Explore at:
    json, excel, xml, csvAvailable download formats
    Dataset authored and provided by
    TRADING ECONOMICS
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Jan 1, 2020 - May 17, 2023
    Area covered
    United States
    Description

    United States recorded 103436829 Coronavirus Cases since the epidemic began, according to the World Health Organization (WHO). In addition, United States reported 1127152 Coronavirus Deaths. This dataset includes a chart with historical data for the United States Coronavirus Cases.

  10. Real-time Covid 19 Data

    • kaggle.com
    Updated Aug 9, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Gaurav Dutta (2025). Real-time Covid 19 Data [Dataset]. https://www.kaggle.com/gauravduttakiit/covid-19/notebooks
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Aug 9, 2025
    Dataset provided by
    Kagglehttp://kaggle.com/
    Authors
    Gaurav Dutta
    License

    https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/

    Description

    Coronavirus disease 2019 (COVID-19) time series listing confirmed cases, reported deaths and reported recoveries. Data is disaggregated by country (and sometimes subregion). Coronavirus disease (COVID-19) is caused by the Severe acute respiratory syndrome Coronavirus 2 (SARS-CoV-2) and has had a worldwide effect. On March 11 2020, the World Health Organization (WHO) declared it a pandemic, pointing to the over 118,000 cases of the Coronavirus illness in over 110 countries and territories around the world at the time.

    This dataset includes time series data tracking the number of people affected by COVID-19 worldwide, including:

    1. - confirmed tested cases of Coronavirus infection
    2. the number of people who have reportedly died while sick with Coronavirus
    3. the number of people who have reportedly recovered from it
  11. d

    The Marshall Project: COVID Cases in Prisons

    • data.world
    csv, zip
    Updated Apr 6, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    The Associated Press (2023). The Marshall Project: COVID Cases in Prisons [Dataset]. https://data.world/associatedpress/marshall-project-covid-cases-in-prisons
    Explore at:
    csv, zipAvailable download formats
    Dataset updated
    Apr 6, 2023
    Authors
    The Associated Press
    Time period covered
    Jul 31, 2019 - Aug 1, 2021
    Description

    Overview

    The Marshall Project, the nonprofit investigative newsroom dedicated to the U.S. criminal justice system, has partnered with The Associated Press to compile data on the prevalence of COVID-19 infection in prisons across the country. The Associated Press is sharing this data as the most comprehensive current national source of COVID-19 outbreaks in state and federal prisons.

    Lawyers, criminal justice reform advocates and families of the incarcerated have worried about what was happening in prisons across the nation as coronavirus began to take hold in the communities outside. Data collected by The Marshall Project and AP shows that hundreds of thousands of prisoners, workers, correctional officers and staff have caught the illness as prisons became the center of some of the country’s largest outbreaks. And thousands of people — most of them incarcerated — have died.

    In December, as COVID-19 cases spiked across the U.S., the news organizations also shared cumulative rates of infection among prison populations, to better gauge the total effects of the pandemic on prison populations. The analysis found that by mid-December, one in five state and federal prisoners in the United States had tested positive for the coronavirus -- a rate more than four times higher than the general population.

    This data, which is updated weekly, is an effort to track how those people have been affected and where the crisis has hit the hardest.

    Methodology and Caveats

    The data tracks the number of COVID-19 tests administered to people incarcerated in all state and federal prisons, as well as the staff in those facilities. It is collected on a weekly basis by Marshall Project and AP reporters who contact each prison agency directly and verify published figures with officials.

    Each week, the reporters ask every prison agency for the total number of coronavirus tests administered to its staff members and prisoners, the cumulative number who tested positive among staff and prisoners, and the numbers of deaths for each group.

    The time series data is aggregated to the system level; there is one record for each prison agency on each date of collection. Not all departments could provide data for the exact date requested, and the data indicates the date for the figures.

    To estimate the rate of infection among prisoners, we collected population data for each prison system before the pandemic, roughly in mid-March, in April, June, July, August, September and October. Beginning the week of July 28, we updated all prisoner population numbers, reflecting the number of incarcerated adults in state or federal prisons. Prior to that, population figures may have included additional populations, such as prisoners housed in other facilities, which were not captured in our COVID-19 data. In states with unified prison and jail systems, we include both detainees awaiting trial and sentenced prisoners.

    To estimate the rate of infection among prison employees, we collected staffing numbers for each system. Where current data was not publicly available, we acquired other numbers through our reporting, including calling agencies or from state budget documents. In six states, we were unable to find recent staffing figures: Alaska, Hawaii, Kentucky, Maryland, Montana, Utah.

    To calculate the cumulative COVID-19 impact on prisoner and prison worker populations, we aggregated prisoner and staff COVID case and death data up through Dec. 15. Because population snapshots do not account for movement in and out of prisons since March, and because many systems have significantly slowed the number of new people being sent to prison, it’s difficult to estimate the total number of people who have been held in a state system since March. To be conservative, we calculated our rates of infection using the largest prisoner population snapshots we had during this time period.

    As with all COVID-19 data, our understanding of the spread and impact of the virus is limited by the availability of testing. Epidemiology and public health experts say that aside from a few states that have recently begun aggressively testing in prisons, it is likely that there are more cases of COVID-19 circulating undetected in facilities. Sixteen prison systems, including the Federal Bureau of Prisons, would not release information about how many prisoners they are testing.

    Corrections departments in Indiana, Kansas, Montana, North Dakota and Wisconsin report coronavirus testing and case data for juvenile facilities; West Virginia reports figures for juvenile facilities and jails. For consistency of comparison with other state prison systems, we removed those facilities from our data that had been included prior to July 28. For these states we have also removed staff data. Similarly, Pennsylvania’s coronavirus data includes testing and cases for those who have been released on parole. We removed these tests and cases for prisoners from the data prior to July 28. The staff cases remain.

    About the Data

    There are four tables in this data:

    • covid_prison_cases.csv contains weekly time series data on tests, infections and deaths in prisons. The first dates in the table are on March 26. Any questions that a prison agency could not or would not answer are left blank.

    • prison_populations.csv contains snapshots of the population of people incarcerated in each of these prison systems for whom data on COVID testing and cases are available. This varies by state and may not always be the entire number of people incarcerated in each system. In some states, it may include other populations, such as those on parole or held in state-run jails. This data is primarily for use in calculating rates of testing and infection, and we would not recommend using these numbers to compare the change in how many people are being held in each prison system.

    • staff_populations.csv contains a one-time, recent snapshot of the headcount of workers for each prison agency, collected as close to April 15 as possible.

    • covid_prison_rates.csv contains the rates of cases and deaths for prisoners. There is one row for every state and federal prison system and an additional row with the National totals.

    Queries

    The Associated Press and The Marshall Project have created several queries to help you use this data:

    Get your state's prison COVID data: Provides each week's data from just your state and calculates a cases-per-100000-prisoners rate, a deaths-per-100000-prisoners rate, a cases-per-100000-workers rate and a deaths-per-100000-workers rate here

    Rank all systems' most recent data by cases per 100,000 prisoners here

    Find what percentage of your state's total cases and deaths -- as reported by Johns Hopkins University -- occurred within the prison system here

    Attribution

    In stories, attribute this data to: “According to an analysis of state prison cases by The Marshall Project, a nonprofit investigative newsroom dedicated to the U.S. criminal justice system, and The Associated Press.”

    Contributors

    Many reporters and editors at The Marshall Project and The Associated Press contributed to this data, including: Katie Park, Tom Meagher, Weihua Li, Gabe Isman, Cary Aspinwall, Keri Blakinger, Jake Bleiberg, Andrew R. Calderón, Maurice Chammah, Andrew DeMillo, Eli Hager, Jamiles Lartey, Claudia Lauer, Nicole Lewis, Humera Lodhi, Colleen Long, Joseph Neff, Michelle Pitcher, Alysia Santo, Beth Schwartzapfel, Damini Sharma, Colleen Slevin, Christie Thompson, Abbie VanSickle, Adria Watson, Andrew Welsh-Huggins.

    Questions

    If you have questions about the data, please email The Marshall Project at info+covidtracker@themarshallproject.org or file a Github issue.

    To learn more about AP's data journalism capabilities for publishers, corporations and financial institutions, go here or email kromano@ap.org.

  12. COVID 19 Dataset

    • kaggle.com
    Updated Oct 23, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Rhona Rose Cortez (2024). COVID 19 Dataset [Dataset]. https://www.kaggle.com/datasets/rhonarosecortez/covid-19-dataset/data
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Oct 23, 2024
    Dataset provided by
    Kagglehttp://kaggle.com/
    Authors
    Rhona Rose Cortez
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Description:

    This comprehensive dataset provides global information on both COVID-19 related deaths and vaccinations from January 5, 2020, to August 4, 2024. It consists of two parts: one tracking COVID-19 cases, deaths, and population statistics, and another monitoring vaccination progress worldwide. This dataset allows for an in-depth analysis of the pandemic’s spread, fatality rates, and the effectiveness of vaccination campaigns across various countries and regions.

    Researchers and data analysts can use this dataset to study trends, compare countries, and evaluate public health responses throughout the COVID-19 pandemic.

    Includes:

    CovidDeaths Dataset: Records of total cases, deaths, and population.

    CovidVaccinations Dataset: Records of daily vaccination counts and cumulative totals.

    Use Cases:

    Analyzing death rates relative to confirmed cases. Examining the percentage of population affected by COVID-19. Evaluating vaccination rates and coverage across different regions. This dataset is ideal for data exploration, statistical analysis, and visualizations related to the COVID-19 pandemic.

  13. T

    Germany Coronavirus COVID-19 Deaths

    • tradingeconomics.com
    csv, excel, json, xml
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    TRADING ECONOMICS, Germany Coronavirus COVID-19 Deaths [Dataset]. https://tradingeconomics.com/germany/coronavirus-deaths
    Explore at:
    csv, excel, xml, jsonAvailable download formats
    Dataset authored and provided by
    TRADING ECONOMICS
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Jan 4, 2020 - May 17, 2023
    Area covered
    Germany
    Description

    Germany recorded 173834 Coronavirus Deaths since the epidemic began, according to the World Health Organization (WHO). In addition, Germany reported 38418899 Coronavirus Cases. This dataset includes a chart with historical data for Germany Coronavirus Deaths.

  14. COVID-19 Coronavirus Complete Dataset

    • kaggle.com
    zip
    Updated Apr 7, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Ashish Ranjan (2020). COVID-19 Coronavirus Complete Dataset [Dataset]. https://www.kaggle.com/ashudata/covid19dataset
    Explore at:
    zip(198044 bytes)Available download formats
    Dataset updated
    Apr 7, 2020
    Authors
    Ashish Ranjan
    Description

    Data Summary

    Data is collected from mentioned Sources, and further processed and available here in usable format. This Data is used for Exploratory data analysis ( EDA ), and for various visualizations.

    Fixes

    1. We tried to fix few major issue with data in Italy, france and spain between 11thmarch to 13th march.

    Column Description

    • Country : Affected Country
    • Date : Date of the observation in YYYY-MM-DD
    • Confirmed : Cumulative number of confirmed cases
    • Death : Cumulative number of death cases
    • Recovered : Cumulative number of recovered cases
    • newConfirmed : Number of Confirmed cases per day
    • newDeath : Number of Death cases per day
    • newRecovered : Number of Recovered cases per day

    Acknowledgements / Sources

    1. Johns Hopkins University : Fetched from GitHub Source - https://github.com/CSSEGISandData/COVID-19/blob/master/csse_covid_19_data/

    2. European Centre for Disease Prevention and Control (ECDC): https://www.ecdc.europa.eu/en/publications-data/download-todays-data-geographic-distribution-covid-19-cases-worldwide

    Inspiration

    Insights like following - 1. Changes in number of Confirmed cases over time. 2. Changes in number of Death cases over time. 3. Changes in number of Recovered cases over time.

  15. Deaths by vaccination status, England

    • ons.gov.uk
    • cy.ons.gov.uk
    xlsx
    Updated Aug 25, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Office for National Statistics (2023). Deaths by vaccination status, England [Dataset]. https://www.ons.gov.uk/peoplepopulationandcommunity/birthsdeathsandmarriages/deaths/datasets/deathsbyvaccinationstatusengland
    Explore at:
    xlsxAvailable download formats
    Dataset updated
    Aug 25, 2023
    Dataset provided by
    Office for National Statisticshttp://www.ons.gov.uk/
    License

    Open Government Licence 3.0http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
    License information was derived automatically

    Description

    Age-standardised mortality rates for deaths involving coronavirus (COVID-19), non-COVID-19 deaths and all deaths by vaccination status, broken down by age group.

  16. C

    China CN: COVID-19: No of Death: ytd: Hubei: Wuhan

    • ceicdata.com
    Updated Feb 15, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    CEICdata.com (2024). China CN: COVID-19: No of Death: ytd: Hubei: Wuhan [Dataset]. https://www.ceicdata.com/en/china/covid19-no-of-death/cn-covid19-no-of-death-ytd-hubei-wuhan
    Explore at:
    Dataset updated
    Feb 15, 2025
    Dataset provided by
    CEICdata.com
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Dec 2, 2022 - Dec 13, 2022
    Area covered
    China
    Description

    COVID-19: Number of Death: Year to Date: Hubei: Wuhan data was reported at 3,869.000 Person in 13 Dec 2022. This stayed constant from the previous number of 3,869.000 Person for 12 Dec 2022. COVID-19: Number of Death: Year to Date: Hubei: Wuhan data is updated daily, averaging 3,869.000 Person from Jan 2020 (Median) to 13 Dec 2022, with 1069 observations. The data reached an all-time high of 3,869.000 Person in 13 Dec 2022 and a record low of 1.000 Person in 14 Jan 2020. COVID-19: Number of Death: Year to Date: Hubei: Wuhan data remains active status in CEIC and is reported by National Health Commission. The data is categorized under High Frequency Database’s Disease Outbreaks – Table CN.GZ: COVID-19: No of Death. Clinical diagnosis included in since 12Feb 自2月12日起纳入临床诊断

  17. COVID-19 Visualisation and Epidemic Analysis Data

    • kaggle.com
    zip
    Updated Apr 1, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Dylan Shen (2020). COVID-19 Visualisation and Epidemic Analysis Data [Dataset]. https://www.kaggle.com/dylansp/covid19-country-level-data-for-epidemic-model
    Explore at:
    zip(67231 bytes)Available download formats
    Dataset updated
    Apr 1, 2020
    Authors
    Dylan Shen
    License

    http://opendatacommons.org/licenses/dbcl/1.0/http://opendatacommons.org/licenses/dbcl/1.0/

    Description

    COVID-19 Dataset for Epidemic Model Development

    I combined several data sources to gain an integrated dataset involving country-level COVID-19 confirmed, recovered and fatalities cases which can be used to build some epidemic models such as SIR, SIR with mortality. Adding information regarding population which can be used for calculating incidence rate and prevalence rate.

    Content

    My approach is to firstly retrieve cumulative confirmed cases and cumulative fatalities from Kaggle COVID19 Global Forecasting (Week 2) Training Dataset which has the information from 2020-01-22 onwards. Then I merged the data regarding recovered cases from the Johns Hopkins University Center for Systems Science and Engineering (JHU CSSE) dataset. For the purpose of building epidemic models, I calculated information regarding daily new confirmed cases, recovered cases, and fatalities, together with remaining confirmed cases which equal to cumulative confirmed cases - cumulative recovered cases - cumulative fatalities. I haven't yet to find creditable data sources regarding probable cases of various countries yet. I'll add them once I found them.

    • Country_Region: The name of the country/region.
    • Population: The population of the given country/region.
    • New_Probable_Cases: Daily new probable cases.
    • Remaining_Probable_Cases: Current remaining probable cases.
    • Total_Probable_Cases: Cumulative probable cases.
    • New_Confirmed_Cases: Daily new confirmed cases.
    • Remaining_Confirmed_Cases: Remaining infected cases which equal to (cumulative confirmed cases - cumulative recovered cases - cumulative fatalities).
    • Total_Confirmed_Cases: Cumulative confirmed cases.
    • New_Recovered_Cases: Daily new recovered cases.
    • Total_Recovered_Cases: Cumulative recovered cases.
    • New_Fatalities: Daily new fatalities.
    • Total_Fatalities: Cumulative fatalities.

    Acknowledgements

    The data source of confirmed cases and death comes from Kaggle COVID19 Global Forecasting (Week 2) Dataset which updated daily. The data source of recovered cases comes from JHU CSSE https://github.com/CSSEGISandData/COVID-19; The data source of the country-level population mainly comes from https://storage.guidotti.dev/covid19/data/ and Wikipedia.

    Inspiration

    1. Building up the country-level COVID-19 case trend dashboard.
    2. Insights regarding the incidence rate and prevalence rate of various countries.
    3. Building up epidemic models for forecasting.
  18. Leading causes of death, total population, by age group

    • www150.statcan.gc.ca
    • open.canada.ca
    Updated Feb 19, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Government of Canada, Statistics Canada (2025). Leading causes of death, total population, by age group [Dataset]. http://doi.org/10.25318/1310039401-eng
    Explore at:
    Dataset updated
    Feb 19, 2025
    Dataset provided by
    Statistics Canadahttps://statcan.gc.ca/en
    Area covered
    Canada
    Description

    Rank, number of deaths, percentage of deaths, and age-specific mortality rates for the leading causes of death, by age group and sex, 2000 to most recent year.

  19. #IndiaNeedsOxygen Tweets

    • kaggle.com
    zip
    Updated Nov 14, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Kash (2021). #IndiaNeedsOxygen Tweets [Dataset]. https://www.kaggle.com/kaushiksuresh147/indianeedsoxygen-tweets
    Explore at:
    zip(4441094 bytes)Available download formats
    Dataset updated
    Nov 14, 2021
    Authors
    Kash
    License

    https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/

    Description

    India marks one COVID-19 death every 5 minutes

    https://ichef.bbci.co.uk/news/976/cpsprodpb/11C98/production/_118165827_gettyimages-1232465340.jpg" alt="">

    Content

    People across India scrambled for life-saving oxygen supplies on Friday and patients lay dying outside hospitals as the capital recorded the equivalent of one death from COVID-19 every five minutes.

    For the second day running, the country’s overnight infection total was higher than ever recorded anywhere in the world since the pandemic began last year, at 332,730.

    India’s second wave has hit with such ferocity that hospitals are running out of oxygen, beds, and anti-viral drugs. Many patients have been turned away because there was no space for them, doctors in Delhi said.

    https://s.yimg.com/ny/api/res/1.2/XhVWo4SOloJoXaQLrxxUIQ--/YXBwaWQ9aGlnaGxhbmRlcjt3PTk2MA--/https://s.yimg.com/os/creatr-uploaded-images/2021-04/8aa568f0-a3e0-11eb-8ff6-6b9a188e374a" alt="">

    Mass cremations have been taking place as the crematoriums have run out of space. Ambulance sirens sounded throughout the day in the deserted streets of the capital, one of India’s worst-hit cities, where a lockdown is in place to try and stem the transmission of the virus. source

    Dataset

    The dataset consists of the tweets made with the #IndiaWantsOxygen hashtag covering the tweets from the past week. The dataset totally consists of 25,440 tweets and will be updated on a daily basis.

    The description of the features is given below | No |Columns | Descriptions | | -- | -- | -- | | 1 | user_name | The name of the user, as they’ve defined it. | | 2 | user_location | The user-defined location for this account’s profile. | | 3 | user_description | The user-defined UTF-8 string describing their account. | | 4 | user_created | Time and date, when the account was created. | | 5 | user_followers | The number of followers an account currently has. | | 6 | user_friends | The number of friends an account currently has. | | 7 | user_favourites | The number of favorites an account currently has | | 8 | user_verified | When true, indicates that the user has a verified account | | 9 | date | UTC time and date when the Tweet was created | | 10 | text | The actual UTF-8 text of the Tweet | | 11 | hashtags | All the other hashtags posted in the tweet along with #IndiaWantsOxygen | | 12 | source | Utility used to post the Tweet, Tweets from the Twitter website have a source value - web | | 13 | is_retweet | Indicates whether this Tweet has been Retweeted by the authenticating user. |

    Acknowledgements

    https://globalnews.ca/news/7785122/india-covid-19-hospitals-record/ Image courtesy: BBC and Reuters

    Inspiration

    The past few days have been really depressing after seeing these incidents. These tweets are the voice of the indians requesting help and people all over the globe asking their own countries to support India by providing oxygen tanks.

    And I strongly believe that this is not just some data, but the pure emotions of people and their call for help. And I hope we as data scientists could contribute on this front by providing valuable information and insights.

  20. g

    World Bank - Chapter 2 : The Long-lasting Impacts of COVID-19 | gimi9.com

    • gimi9.com
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    World Bank - Chapter 2 : The Long-lasting Impacts of COVID-19 | gimi9.com [Dataset]. https://gimi9.com/dataset/worldbank_34049186/
    Explore at:
    License

    CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
    License information was derived automatically

    Description

    Peru has been one of the countries hardest hit by the COVID-19 pandemic in the last two years. To prevent the spread of the virus, the government implemented a strict lockdown at the beginning of the pandemic. Peru’s strict quarantine measures removed people from economic and social activities, and mobility returned to pre-pandemic levels in mid-2022. While the short-term impacts of the COVID-19 pandemic are well documented, the long-term consequences of these losses are unknown. This chapter explores the incidence and long-term effects of COVID-19 deaths on the well-being of surviving households. Efforts to identify COVID-related deaths based on individual characteristics have been quite limited. Most statistics present mortality at the level of aggregate variables, such as age or sex. The main contribution of this chapter therefore lies in shedding light on the incidence of COVID-19 deaths along the income distribution by combining several datasets on the socioeconomic profiles of people who have died from COVID-19.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
TRADING ECONOMICS (2020). World Coronavirus COVID-19 Deaths [Dataset]. https://tradingeconomics.com/world/coronavirus-deaths

World Coronavirus COVID-19 Deaths

World Coronavirus COVID-19 Deaths - Historical Dataset (2020-01-04/2023-05-17)

Explore at:
excel, csv, xml, jsonAvailable download formats
Dataset updated
Mar 9, 2020
Dataset authored and provided by
TRADING ECONOMICS
License

Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically

Time period covered
Jan 4, 2020 - May 17, 2023
Area covered
World
Description

The World Health Organization reported 6932591 Coronavirus Deaths since the epidemic began. In addition, countries reported 766440796 Coronavirus Cases. This dataset provides - World Coronavirus Deaths- actual values, historical data, forecast, chart, statistics, economic calendar and news.

Search
Clear search
Close search
Google apps
Main menu